當前位置:首頁 » 手機軟體 » 哪些神經網路會發生權重共享

哪些神經網路會發生權重共享

發布時間: 2022-07-25 03:36:35

① 循環神經網路的反向傳播

可以採用MATLAB軟體中的神經網路工具箱來實現BP神經網路演算法。BP神經網路的學習過程由前向計算過程、誤差計算和誤差反向傳播過程組成。雙含隱層BP神經網路的MATLAB程序,由輸入部分、計算部分、輸出部分組成,其中輸入部分包括網路參數與訓練樣本數據的輸入、初始化權系、求輸入輸出模式各分量的平均值及標准差並作相應數據預處理、讀入測試集樣本數據並作相應數據預處理;計算部分包括正向計算、反向傳播、計算各層權矩陣的增量、自適應和動量項修改各層權矩陣;輸出部分包括顯示網路最終狀態及計算值與期望值之間的相對誤差、輸出測試集相應結果、顯示訓練,測試誤差曲線。

② 卷積神經網路權值共享怎麼體現的


  • 用局部連接而不是全連接,同時權值共享。


局部連接的概念參考局部感受域,即某個視神經元僅考慮某一個小區域的視覺輸入,因此相比普通神經網路的全連接層(下一層的某一個神經元需要與前一層的所有節點連接),卷積網路的某一個卷積層的所有節點只負責前層輸入的某一個區域(比如某個3*3的方塊)。這樣一來需要訓練的權值數相比全連接而言會大大減少,進而減小對樣本空間大小的需求。
權值共享的概念就是,某一隱藏層的所有神經元共用一組權值。
這兩個概念對應卷積層的話,恰好就是某個固定的卷積核。卷積核在圖像上滑動時每處在一個位置分別對應一個「局部連接」的神經元,同時因為「權值共享」的緣故,這些神經元的參數一致,正好對應同一個卷積核。
順便補充下,不同卷積核對應不同的特徵,比如不同方向的邊(edge)就會分別對應不同的卷積核。

  • 激活函數f(x)用ReLU的話避免了x過大梯度趨於0(比如用sigmoid)而影響訓練的權值的情況(即GradientVanishing)。同時結果會更稀疏一些。

  • 池化之後(例如保留鄰域內最大或~~平均以舍棄一些信息)一定程度也壓制了過擬合的情況。


綜述


總體來說就是重復卷積-relu來提取特徵,進行池化之後再作更深層的特徵提取,實質上深層卷積網路的主要作用在於特徵提取。最後一層直接用softmax來分類(獲得一個介於0~1的值表達輸入屬於這一類別的概率)。

哪些神經網路結構會發生權重共享

說的確定應該就是訓練方法吧,神經網路的權值不是人工給定的。而是用訓練集(包括輸入和輸出)訓練,用訓練集訓練一遍稱為一個epoch,一般要許多epoch才行,目的是使得目標與訓練結果的誤差(一般採用均方誤差)小到一個給定的閾值。以上所說是有監督的學習方法,還有無監督的學習方法。

④ 卷積神經網路演算法是什麼

一維構築、二維構築、全卷積構築。

卷積神經網路(Convolutional Neural Networks, CNN)是一類包含卷積計算且具有深度結構的前饋神經網路(Feedforward Neural Networks),是深度學習(deep learning)的代表演算法之一。

卷積神經網路具有表徵學習(representation learning)能力,能夠按其階層結構對輸入信息進行平移不變分類(shift-invariant classification),因此也被稱為「平移不變人工神經網路(Shift-Invariant Artificial Neural Networks, SIANN)」。

卷積神經網路的連接性:

卷積神經網路中卷積層間的連接被稱為稀疏連接(sparse connection),即相比於前饋神經網路中的全連接,卷積層中的神經元僅與其相鄰層的部分,而非全部神經元相連。具體地,卷積神經網路第l層特徵圖中的任意一個像素(神經元)都僅是l-1層中卷積核所定義的感受野內的像素的線性組合。

卷積神經網路的稀疏連接具有正則化的效果,提高了網路結構的穩定性和泛化能力,避免過度擬合,同時,稀疏連接減少了權重參數的總量,有利於神經網路的快速學習,和在計算時減少內存開銷。

卷積神經網路中特徵圖同一通道內的所有像素共享一組卷積核權重系數,該性質被稱為權重共享(weight sharing)。權重共享將卷積神經網路和其它包含局部連接結構的神經網路相區分,後者雖然使用了稀疏連接,但不同連接的權重是不同的。權重共享和稀疏連接一樣,減少了卷積神經網路的參數總量,並具有正則化的效果。

在全連接網路視角下,卷積神經網路的稀疏連接和權重共享可以被視為兩個無限強的先驗(pirior),即一個隱含層神經元在其感受野之外的所有權重系數恆為0(但感受野可以在空間移動);且在一個通道內,所有神經元的權重系數相同。

如何理解卷積神經網路中的權值共享

所謂的權值共享就是說,給一張輸入圖片,用一個filter去掃這張圖,filter裡面的數就叫權重,這張圖每個位置是被同樣的filter掃的,所以權重是一樣的,也就是共享。 這么說可能還不太明白,如果你能理解什麼叫全連接神經網路的話,那麼從一個盡量減少參數個數的角度去理解就可以了。 對於一張輸入圖片,大小為W*H,如果使用全連接網路,生成一張X*Y的feature map,需要W*H*X*Y個參數,如果原圖長寬是10^2級別的,而且XY大小和WH差不多的話,那麼這樣一層網路需要的參數個數是10^8~10^12級別。 這么多參數肯定是不行的,那麼我們就想辦法減少參數的個數對於輸出層feature map上的每一個像素,他與原圖片的每一個像素都有連接,每一個鏈接都需要一個參數。但注意到圖像一般都是局部相關的,那麼如果輸出層的每一個像素只和輸入層圖片的一個局部相連,那麼需要參數的個數就會大大減少。假設輸出層每個像素只與輸入圖片上F*F的一個小方塊有連接,也就是說輸出層的這個像素值,只是通過原圖的這個F*F的小方形中的像素值計算而來,那麼對於輸出層的每個像素,需要的參數個數就從原來的W*H減小到了F*F。如果對於原圖片的每一個F*F的方框都需要計算這樣一個輸出值,那麼需要的參數只是W*H*F*F,如果原圖長寬是10^2級別,而F在10以內的話,那麼需要的參數的個數只有10^5~10^6級別,相比於原來的10^8~10^12小了很多很多。

⑥ 人工智慧CNN卷積神經網路如何共享權值

首先權值共享就是濾波器共享,濾波器的參數是固定的,即是用相同的濾波器去掃一遍圖像,提取一次特徵特徵,得到feature map。在卷積網路中,學好了一個濾波器,就相當於掌握了一種特徵,這個濾波器在圖像中滑動,進行特徵提取,然後所有進行這樣操作的區域都會被採集到這種特徵,就好比上面的水平線。

⑦ 研究人工神經網路的權值分布有什麼意義

神經網路一般都是非常龐大的,每個邊對應一個權值,如果權值不共享的話,數據量就更大了,但是為了提高效率,引入了權值共享,但是還不夠,想再次提高效率和精確度,進行主成分分析,把一些重要的權重保留,不重要的舍棄,你這個權值分布就很有意義了,比如權重是5的權值在概率上佔到了百分之95,或者說主成分分析的結果前2類權重就占據了百分之80,那麼剩下的權值就可以省略,當然這都是理論上的

⑧ 有哪些深度神經網路模型

目前經常使用的深度神經網路模型主要有卷積神經網路(CNN) 、遞歸神經網路(RNN)、深信度網路(DBN) 、深度自動編碼器(AutoEncoder) 和生成對抗網路(GAN) 等。

遞歸神經網路實際.上包含了兩種神經網路。一種是循環神經網路(Recurrent NeuralNetwork) ;另一種是結構遞歸神經網路(Recursive Neural Network),它使用相似的網路結構遞歸形成更加復雜的深度網路。RNN它們都可以處理有序列的問題,比如時間序列等且RNN有「記憶」能力,可以「模擬」數據間的依賴關系。卷積網路的精髓就是適合處理結構化數據。

關於深度神經網路模型的相關學習,推薦CDA數據師的相關課程,課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。這種教學方式能夠引發學員的獨立思考及主觀能動性,學員掌握的技能知識可以快速轉化為自身能夠靈活應用的技能,在面對不同場景時能夠自由發揮。點擊預約免費試聽課。

⑨ 如何理解人工智慧神經網路中的權值共享問題

權值(權重)共享這個詞是由LeNet5模型提出來的。以CNN為例,在對一張圖偏進行卷積的過程中,使用的是同一個卷積核的參數。比如一個3×3×1的卷積核,這個卷積核內9個的參數被整張圖共享,而不會因為圖像內位置的不同而改變卷積核內的權系數。說的再直白一些,就是用一個卷積核不改變其內權系數的情況下卷積處理整張圖片(當然CNN中每一層不會只有一個卷積核的,這樣說只是為了方便解釋而已)。

⑩ BP神經網路在權重優化中的應用

不好意思!
走錯房間了!
這里是數學!
美邦建議您
去別的地方看看!