當前位置:首頁 » 安全設置 » 麗水網路安全大數據
擴展閱讀
車上有個無線網路信號 2025-05-14 02:23:43

麗水網路安全大數據

發布時間: 2022-09-19 15:54:08

❶ 麗水市甌越網路科技有限責任公司怎麼

麗水市甌越網路科技有限責任公司是2017-07-05在浙江省麗水市蓮都區注冊成立的有限責任公司(自然人獨資),注冊地址位於浙江省麗水市蓮都區萬豐小區15幢3單元202室。

麗水市甌越網路科技有限責任公司的統一社會信用代碼/注冊號是91331102MA2A08FD3H,企業法人何劍鋒,目前企業處於開業狀態。

麗水市甌越網路科技有限責任公司的經營范圍是:一般項目:技術服務、技術開發、技術咨詢、技術交流、技術轉讓、技術推廣;網路技術服務;信息技術咨詢服務;軟體開發;數據處理和存儲支持服務;互聯網數據服務;大數據服務;互聯網安全服務;科技中介服務;餐飲管理;供應鏈管理服務;企業管理;個人商務服務;市場營銷策劃;咨詢策劃服務;信息咨詢服務(不含許可類信息咨詢服務);寄賣服務;組織文化藝術交流活動;文化娛樂經紀人服務;會議及展覽服務;攝像及視頻製作服務;圖文設計製作;平面設計;廣告設計、代理;廣告製作;廣告發布(非廣播電台、電視台、報刊出版單位);貿易經紀;銷售代理;服裝服飾批發;鞋帽批發;電子元器件批發;體育用品及器材批發;廚具衛具及日用雜品批發;文具用品批發;人工智慧硬體銷售;軟體銷售(除依法須經批準的項目外,憑營業執照依法自主開展經營活動)。

通過愛企查查看麗水市甌越網路科技有限責任公司更多信息和資訊。

❷ 數據安全的哪些案例,可以看

大數據安全威脅滲透在數據生產、流通和消費等大數據產業的各個環節,包括數據源、大數據加工平台和大數據分析服務等環節的各類主體都是威脅源。」上海社科院信息所主任惠志斌向記者分析稱,大數據安全事件風險成因復雜交織,既有外部攻擊,也有內部泄密,既有技術漏洞,也有管理缺陷,既有新技術新模式觸發的新風險,也有傳統安全問題的持續觸發。

5月27日,中國互聯網協會副秘書長石現升稱,互聯網日益成為經濟社會運行基礎,網路數據安全意識、能力和保護手段正面臨新挑戰。

今年6月1日即將施行的《網路安全法》針對企業機構泄露數據的相關問題,重點做了強調。法案要求各類組織應切實承擔保障數據安全的責任,即保密性、完整性和可用性。另外需保障個人對其個人信息的安全可控。

石現升介紹,實際早在2015年國務院就發布過《促進大數據發展行動綱要》,就明確要「健全大數據安全保障體系」、「強化安全支撐,提升基礎設施關鍵設備安全可靠水平」。

「目前,很多企業和機構還並不知道該如何提升自己的數據安全管理能力,也不知道依據什麼標准作為衡量。」一位業內人士分析稱,問題的症結在於國內數據安全管理尚處起步階段,很多企業機構都沒有設立數據安全評估體系,或者沒有完整的評估參考標准。

「大數據安全能力成熟度模型」已提國標申請

數博會期間,記者從「大數據安全產業實踐高峰論壇」上了解到,為解決此問題,全國信息安全標准化技術委員會等職能部門與數據安全領域的標准化專家學者和產業代表企業協同,著手制定一套用於組織機構數據安全能力的評估標准——《大數據安全能力成熟度模型》,該標準是基於阿里巴巴提出的數據安全成熟度模型(Data Security Maturity Model, DSMM)進行制訂。

圖說:阿里巴巴集團安全部總監鄭斌介紹DSMM。

作為此標准項目的牽頭起草方,阿里巴巴集團安全部總監鄭斌介紹說,該標準是阿里巴巴基於自身數據安全管理實踐經驗成果DSMM擬定初稿,旨在與同行業分享阿里經驗,提升行業整體安全能力。

「互聯網用戶的信息安全從來都不是某一家公司企業的事。」鄭斌稱,《大數據安全能力成熟度模型》的制訂還由中國電子技術標准化研究院、國家信息安全工程技術研究中心、中國信息安全測評中心、公安三所、清華大學和阿里雲計算有限公司等業內權威數據安全機構、學術單位企業等共同合作提出意見。

一位數據安全研究人員分析,企業要提升數據安全管理能力,首先就得認清自身數據保護能力水平,再對症下葯彌補缺失和短板,而該標准正是針對大多數企業普遍存在的,不了解或不清楚自身數據安全管理能力的問題。

從標准架構來看,會從組織機構數據採集、存儲、傳輸、處理、交換和銷毀六個數據生命周期,就企業組織建設、制度流程、技術工具和人員能力四個關鍵能力維度,至少30多個安全域進行全方位考核評估,最終將組織機構的數據安全能力劃分非正式執行、計劃跟蹤、充分定義、量化控制和持續優化,1級至5級的能力成熟等級,等級越高意味數據安全能力越強。

❸ 大數據信息安全技術有哪些

1、雲數據:目前來看,企業快速採用和實施諸如雲服務等新技術還是存在不小的壓力,因為它們可能帶來無法預料的風險和造成意想不到的後果。而且,雲端的大數據對於黑客們來說是個極具吸引力的獲取信息的目標,所以這就對企業制定安全正確的雲計算采購策略提出了更高的要求。
 2、網路安全:隨著在線交易、在線對話、在線互動,在線數據越來越多,黑客們的犯罪動機也比以往任何時候都來得強烈。如今的黑客們組織性更強,更加專業,作案工具也是更加強大,作案手段更是層出不窮。

❹ (1)什麼是安全大數據

安全數據的大數據化主要體現在以下三個方面:
一、數據量越來越大:網路已經從千兆邁向了萬兆,網路安全設備要分析的數據包數據量急劇上升。此外,隨著APT等新型威脅的興起,全包捕獲技術逐步應用,海量數據處理問題也日益凸顯。

二、速度越來越快:對於網路設備而言,包處理和轉發的速度需要更快;對於安管平台、事件分析平台而言,數據源的事件發送速率(EPS,EventperSecond,事件數每秒)越來越快。

三、種類越來越多:除了數據包、日誌、資產數據,安全要素信息還加入了漏洞信息、配置信息、身份與訪問信息、用戶行為信息、應用信息、業務信息、外部情報信息等。

我們需要大數據安全分析

安全數據的大數據化,以及傳統安全分析所面臨的挑戰和發展趨勢,都指向了同一個技術——大數據分析。正如Gartner在2011年明確指出,「信息安全正在變成一個大數據分析問題」。

於是,業界出現了將大數據分析技術應用於信息安全的技術——大數據安全分析(BigDataSecurityAnalysis,簡稱BDSA),也有人稱做針對安全的大數據分析(BigDataAnalysisforSecurity)。

藉助大數據安全分析技術,能夠更好地解決天量安全要素信息的採集、存儲的問題,藉助基於大數據分析技術的機器學習,能夠更加智能地洞悉信息與網路安全的態勢,更加主動、彈性地去應對新型復雜的威脅和未知多變的風險。

❺ 什麼是大數據信息安全的威脅

在攜程信用卡信息泄露、小米社區用戶信息泄露、OpenSSL“心臟出血”漏洞等事件中,大量用戶信息數據被盜,導致用戶網路銀行賬戶發生入侵事件等情況。這些事情發生在個人用戶身上。如果類似事件發生在國家財政、政務等相關部門的數據平台系統上,其後果將是不可想像的,對國家網路安全造成的損失將是前所未有的。大數據時代,我國網路安全面臨多重安全威脅。


1、大數據信息安全的威脅——網路基礎設施和基本的硬體和軟體系統由其他人控制


大數據平台依託互聯網,為政府、企業、公眾提供服務。然而,從基礎設施的角度來看,中國互聯網已經存在一些不可控的因素。例如,域名解析系統(DNS)是Internet的基礎設施之一,使訪問Internet變得很容易,而不必記住復雜的IP地址字元串。今年1月,由於DNS根伺服器受到攻擊,數千萬人在數小時內無法訪問該網站。根伺服器是全球DNS的基礎,但全世界有13個根伺服器,都是國外的,由美國控制。此外,中國還沒有完全實現對大數據平台基礎軟硬體系統的自主控制。在能源、金融、電信等重要信息系統的核心軟硬體實施中,伺服器、資料庫等相關產品占據主導地位。因此,目前中國的信息流是通過對國外企業產品的計算、傳輸和存儲來實現的。相關設備設置更多“後門”,國內數據安全生命線幾乎全部掌握在外國公司手中。2013年棱鏡事件的曝光,突顯了硬體和軟體基礎設施對中國數據安全乃至國家安全的重要性。


2、大數據信息安全的威脅——網站和應用程序充斥著漏洞和後門


近年來,由於網站和應用系統的漏洞,由後門引起的重大安全事件頻繁發生,以上三起事件都屬於這一類。據中國安全公司的網站安全檢測服務統計,多達60%的中國網站存在安全漏洞和後門。可以說,網站和應用系統的漏洞是大數據平檯面臨的最大威脅之一。然而,各種第三方資料庫和中間件在中國的各種大數據行業應用中得到了廣泛的應用。然而,此類系統的安全狀況並不樂觀,存在廣泛的漏洞。更令人擔憂的是,網站的錯誤修復都不令人滿意。


3、大數據信息安全的威脅——除了系統問題之外,網路攻擊的手段更加豐富


其中,終端惡意軟體和惡意代碼是黑客或敵對勢力攻擊大數據平台、竊取數據的主要手段之一。目前,越來越多的網路攻擊來自終端。終端滲透攻擊也成為國與國之間網路戰的主要手段。例如,著名的針對伊朗核設施的stuxnet病毒,利用Windows操作系統的弱點,滲透到特定終端,滲透到伊朗核工廠的內部網路,摧毀伊朗核設施。此外,針對大數據平台的高級持續威脅(Advanced Persistent Threat, APT)攻擊十分常見,可以繞過各種傳統的安全檢測和保護措施,竊取網路信息系統的核心數據和各種智能。例如,極光襲擊谷歌和其他30多家高科技公司就是一個例子。APT攻擊結合了社會工程、吊馬、脆弱性、深度滲透、潛伏期長、隱蔽性等特點,具有極強的破壞性。它不僅是未來網路戰的主要手段,也是對我國網路空間安全危害最大的攻擊手段之一。近年來,具有國家和組織背景的APT攻擊不斷增多,大數據平台無疑將成為APT攻擊的主要目標。


大數據信息安全的威脅有哪些?這才是大數據工程師頭疼的問題,在攜程信用卡信息泄露、小米社區用戶信息泄露、OpenSSL“心臟出血”漏洞等事件中,大量用戶信息數據被盜,你能處理好嗎?如果您還擔心自己入門不順利,可以點擊本站的其他文章進行學習。

❻ 網路信息安全和大數據安全一樣嗎

不一樣的,大數據主要是數據的整理和統計。
網路信息安全一般指的是Web安全,也就是網頁安全,這方面考察的更多的是工具的熟練使用。這是兩個完全不一樣的方向哦。

❼ 大數據安全的挑戰是什麼

當前,隨著互聯網+、大數據、雲計算、移動互聯網等新技術興起,特別是大數據技術創新應用,使我們具備了對海量數據的處理和分析能力,數據驅動的時代已經來臨。與此同時,數據匯聚、數據分析等帶來的安全問題也給我們帶來前所未有的挑戰。

基於目前我國大數據安全保護現狀,以及大數據面臨的安全風險挑戰,筆者提出以下幾方面建議對策:

一是進一步加強頂層設計。在《網路安全法》的基礎上,完善數據安全保護的規章制度,明確數據在收集、使用、處理、交易、出境等各環節的安全要求。完善數據安全保護的網路安全國家標准,充分發揮標準的指導和引領作用,提升數據保護能力和水平。

二是加強重要數據基礎設施保護。建立大數據分類分級安全保護機制,結合各行業數據的敏感程度、數據脫敏與否、數據可用性要求等對大數據資產進行分類分級,採取不同級別的安全防護策略。

三是落實網路安全責任制。明確大數據管理者和運營者的法律責任與義務。加強監督管理和風險評估,提升數據保護能力。對掌控大數據資源的單位進行大數據業務上線前安全評估,對重點產品進行在線安全監測,開展定期的檢查和不定期的抽查,發現問題及時督促整改。

四是加強網路安全宣傳。通過國家網路安全宣傳周等活動,普及網路安全知識,加強網路安全教育,提升廣大網民網路安全意識和防護技能,推動形成全社會重視數據安全的良好氛圍。

❽ 大數據安全的六大挑戰

大數據安全的六大挑戰_數據分析師考試

大數據的價值為大家公認。業界通常以4個「V」來概括大數據的基本特徵——Volume(數據體量巨大)、Variety(數據類型繁多)、Value(價值密度低)、Velocity(處理速度快)。當你准備對大數據所帶來的各種光鮮機遇大加利用的同時,請別忘記大數據也會引入新的安全威脅,存在於大數據時代「潘多拉魔盒」中的魔鬼可能會隨時出現。

挑戰一:大數據的巨大體量使得信息管理成本顯著增加

4個「V」中的第一個「V」(Volume),描述了大數據之大,這些巨大、海量數據的管理問題是對每一個大數據運營者的最大挑戰。在網路空間,大數據是更容易被「發現」的顯著目標,大數據成為網路攻擊的第一演兵場所。一方面,大量數據的集中存儲增加了泄露風險,黑客的一次成功攻擊能獲得比以往更多的數據量,無形中降低了黑客的進攻成本,增加了「攻擊收益」;另一方面,大數據意味著海量數據的匯集,這裡面蘊藏著更復雜、更敏感、價值巨大的數據,這些數據會引來更多的潛在攻擊者。

在大數據的消費者方面,公司在未來幾年將處理更多的內部生成的數據。然而在許多組織中,不同的部門像財務、工程、生產、市場、IT等之間的信息仍然是孤立的,各部門之間相互設防,造成信息無法共享。那些能夠在不破壞壁壘和部門現實優勢的前提下更透明地溝通的公司將更具競爭優勢。

【解決方案】 首先要找到有安全管理經驗並受過大數據管理所需要技能培訓的人員,尤其是在今天人力成本和培訓成本不斷上升的節奏中,這一定足以讓許多CEO肝顫,但這些針對大數據管理人員的巨額教育和培訓成本,是一種非常必要的開銷。

與此同時,在流程的設計上,一定要將數據分散存儲,任何一個存儲單元被「黑客」攻破,都不可能拿到全集,同時對於不同安全域要進行准確的評估,像關鍵信息索引的保護一定要加強,「好鋼用在刀刃上」,作為數據保全,能夠應對部分設施的災難性損毀。

挑戰二:大數據的繁多類型使得信息有效性驗證工作大大增加

4個「V」中的第二個「V」(Variety),描述了數據類型之多,大數據時代,由於不再拘泥於特定的數據收集模式,使得數據來自於多維空間,各種非結構化的數據與結構化的數據混雜在一起。

未來面臨的挑戰將會是從數據中提取需要的數據,很多組織將不得不接受的現實是,太多無用的信息造成的信息不足或信息不匹配。我們可以考慮這樣的邏輯:依託於大數據進行演算法處理得出預測,但是如果這些收集上來的數據本身有問題又該如何呢?也許大數據的數據規模可以使得我們無視一些偶然非人為的錯誤,但是如果有個敵手故意放出干擾數據呢?現在非常需要研究相關的演算法來確保數據來源的有效性,尤其是比較強調數據有效性的大數據領域。

正是因為這個原因,對於正在收集和儲存大量客戶數據的公司來說,最顯而易見的威脅就是在過去的幾年裡,存放於企業資料庫中數以TB計,不斷增加的客戶數據是否真實可靠,依然有效。

眾所周知,海量數據本身就蘊藏著價值,但是如何將有用的數據與沒有價值的數據進行區分看起來是一個棘手的問題,甚至引發越來越多的安全問題。

【解決方案】 嘗試盡可能使數據類型具體化,增加對數據更細粒度的了解,使數據本身更加細化,縮小數據的聚焦范圍,定義數據的相關參數,數據的篩選要做得更加精緻。與此同時,進一步健全特徵庫,加強數據的交叉驗證,通過邏輯沖突去偽存真。

挑戰三:大數據的低密度價值分布使得安全防禦邊界有所擴展

4個「V」中的第三個「V」(Value),描述了大數據單位數據的低價值。這種廣種薄收似的價值量度,使得信息效能被攤薄了,大數據的安全預防與攻擊事件的分析過程更加復雜,相當於安全管理范圍被放大了。

大數據時代的安全與傳統信息安全相比,變得更加復雜,具體體現在三個方面:一方面,大量的數據匯集,包括大量的企業運營數據、客戶信息、個人的隱私和各種行為的細節記錄,這些數據的集中存儲增加了數據泄露風險;另一方面,因為一些敏感數據的所有權和使用權並沒有被明確界定,很多基於大數據的分析都未考慮到其中涉及的個體隱私問題;再一方面,大數據對數據完整性、可用性和秘密性帶來挑戰,在防止數據丟失、被盜取、被濫用和被破壞上存在一定的技術難度,傳統的安全工具不再像以前那麼有用。

【解決方案】 確立有限管理邊界,依據保護要求,加強重點保護,構建一體化的數據安全管理體系,遵循網路防護和數據自主預防並重的原則,並不是實施了全面的網路安全護理就能徹底解決大數據的安全問題,數據不丟失只是傳統的邊界網路安全的一個必要補充,我們還需要對大數據安全管理的盲區進行監控,只有將二者結合在一起,才是一個全面的一體化安全管理的解決方案

挑戰四:大數據的快速處理要求使得獨立決策的比例顯著降低

「4個「V」中最後一個「V」(Velocity),決定了利用海量數據快速得出有用信息的屬性。

大數據時代,對事物因果關系的關注,轉變為對事物相關關系的關注。如果大數據系統只是一種輔助決策系統,這還不是最可怕的。事實上,今天大數據分析日益成為一項重要的業務決策流程,越來越多的決策結果來自於大數據的分析建議,對於領導者最艱難的事情之一,是讓我的邏輯思考來做決定,還是由機器的數據分析做決定,可怕的是,今天看來,機器往往是正確的,這不得不讓我們產生依賴。試想一下,如果收集的數據已經被修正過,或是系統邏輯已經被控制了呢!但是面對海量的數據收集、存儲、管理、分析和共享,傳統意義上的對錯分析和奇偶較驗已失去作用。

【解決方案】 在依靠大數據進行分析、決策的同時,還應輔助其他的傳統決策支持系統,盡可能明智地使用數據所告訴我們的結果,讓大數據為我們所用。但絕對不要片面地依賴於大數據系統。

挑戰五:大數據獨特的導入方式使得攻防雙方地位的不對等性大大降低

在大數據時代,數據加工和存儲鏈條上的時空先後順序已被模糊,可擴展的數據聯系使得隱私的保護更加困難。過去傳統的安全防護工作,是先紮好籬笆、築好牆,等待「黑客」的攻擊,我們雖然不知道下一個「黑客」是誰,但我們一定知道,它是通過尋求新的漏洞,從前面逐層進入。守方在明處,但相比攻方有明顯的壓倒性優勢。而在大數據時代,任何人都可以是信息的提供者和維護者,這種由先天的結構性導入設計所帶來的變化,你很難知道「它」從哪裡進來,「哪裡」才是前沿。這種變化,使得攻、防雙方的力量對比的不對等性大大下降。

同時,由於這種不對等性的降低,在我們用數據挖掘和數據分析等大數據技術獲取有價值信息的同時,「黑客」也可以利用這些大數據技術發起新的攻擊。「黑客」會最大限度地收集更多有用信息,比如社交網路、郵件、微博、電子商務、電話和家庭住址等信息,大數據分析使「黑客」的攻擊更加精準。此外,「黑客」可能會同時控制上百萬台傀儡機,利用大數據發起僵屍網路攻擊。

【解決方案】 面對大數據所帶來新的安全問題,有針對性地更新安全防護手段,增加新型防護手段,混合生產數據和經營數據,多種業務流並行,增加特徵標識建設內容,增強對數據資源的管理和控制。

挑戰六:大數據網路的相對開放性使得安全加固策略的復雜性有所降低

在大數據環境下,數據的使用者同時也是數據的創造者和供給者,數據間的聯系是可持續擴展的,數據集是可以無限延伸的,上述原因就決定了關於大數據的應用策略要有新的變化,並要求大數據網路更加開放。大數據要對復雜多樣的數據存儲內容做出快速處理,這就要求很多時候,安全管理的敏感度和復雜度不能定得太高。此外,大數據強調廣泛的參與性,這將倒逼系統管理者調低許多策略的安全級別。

當然,大數據的大小也影響到安全控制措施能否正確地執行,升級速度無法跟上數據量非線性增長的步伐,就會暴露大數據安全防護的漏洞。

【解決方案】 使用更加開放的分布式部署方式,採用更加靈活、更易於擴充的信息基礎設施,基於威脅特徵建立實時匹配檢測,基於統一的時間源消除高級可持續攻擊(APT)的可能性,精確控制大數據設計規模,削弱「黑客」可以利用的空間。

大數據時代已經到來,大數據已經產生出巨大影響力,並對我們的社會經濟活動帶來深刻影響。充分利用大數據技術來挖掘信息的巨大價值,從而實現並形成強有力的競爭優勢,必將是一種趨勢。面對大數據時代的六種安全挑戰,如果我們能夠予以足夠重視,採取相應措施,將可以起到未雨綢繆的作用。

以上是小編為大家分享的關於大數據安全的六大挑戰的相關內容,更多信息可以關注環球青藤分享更多干貨

❾ 網路安全未來發展趨勢怎麼樣

網路安全態勢緊張,網路安全事件頻發

據國家互聯網應急中心(CNCERT),2019年上半年,CNCERT新增捕獲計算機惡意程序樣本數量約3200萬個,計算機惡意程序傳播次數日均達約998萬次,CNCERT抽樣監測發現,2019年上半年我國境內峰值超過10Gbps的大流量分布式拒絕服務攻擊(DDoS攻擊)事件數量平均每月約4300起,同比增長18%;國家信息安全漏洞共享平台(CNVD)收錄通用型安全漏洞5859個。網站安全方面,2019年上半年,CNCERT自主監測發現約4.6萬個針對我國境內網站的仿冒頁面,境內外約1.4萬個IP地址對我國境內約2.6萬個網站植入後門,同比增長約1.2倍,可見我國網路安全態勢緊張。



網路安全行業的發展短期內是通過頻繁出現的安全事件驅動,短中期離不開國家政策合規,中長期則是通過信息化、雲計算、萬物互聯等基礎架構發展驅動。2020年網路安全領域將進一步迎來網路安全合規政策及安全事件催化,例如自2020年1月1日起施行《中華人民共和國密碼法》,2020年3月1日起施行《網路信息內容生態治理規定》等。2020年作為
「十三五」收官之年,將陸續開始編制網路安全十四五規劃。在各種因素的驅動下,2020年我國網路安全行業將得到進一步發展。

——以上數據來源於前瞻產業研究院《中國網路安全行業發展前景預測與投資戰略規劃分析報告》。