當前位置:首頁 » 安全設置 » 大數據與網路安全感謝信
擴展閱讀
什麼網站有橙光游戲 2025-05-14 17:40:16
疫情期間如何在線做網站 2025-05-14 17:33:17

大數據與網路安全感謝信

發布時間: 2022-05-12 18:03:52

A. 如何看待大數據環境下的網路信息安全問題

大數據時代個人信息安全非常重要。可以說將來會成為制約行業發展的關健因素!因為個人信息泄露已經成為某些人盈利的手段!6月1號起實施的《網路安全法》或許可以規范一下大數據時代的個人信息安全!為大家的網路信息安全帶來一定的保障。必須強制網路企業強化個人信息安全意識,信息由哪家企業泄漏的就應該由哪家企業來承擔責任,而不是不痛不癢的口頭警告。


B. 大數據與雲計算,信息網路安全

  1. 大數據技術是指從各種各樣類型的數據中,快速獲得有價值信息的能力。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。

    大數據的應用:大數據是信息產業持續高速增長的新引擎,幾乎各個行業都會逐步引入大數據技術,尤其是那些將要實現互聯網信息化轉型的傳統企業。面向大數據市場的新技術、新產品、新服務、新業態會不斷涌現。在硬體與集成設備領域,大數據將對晶元、存儲產業產生重要影響,還將催生一體化數據存儲處理伺服器、內存計算等市場。在軟體與服務領域,大數據將引發數據快速處理分析、數據挖掘技術和軟體產品的發展。

    2.雲計算是基於互聯網的相關服務的增加、使用和交付模式,通常涉及通過互聯網來提供動態易擴展且經常是虛擬化的資源。雲是網路、互聯網的一種比喻說法。過去在圖中往往用雲來表示電信網,後來也用來表示互聯網和底層基礎設施的抽象。

    雲計算的主要應用:雲物聯,「物聯網就是物物相連的互聯網」。這有兩層意思:第一,物聯網的核心和基礎仍然是互聯網,是在互聯網基礎上的延伸和擴展的網路;第二,其用戶端延伸和擴展到了任何物品與物品之間,進行信息交換和通信。

如果你的基礎不是很好,再加上網路安全形勢的嚴峻,國家政策對網路安全的偏向,個人建議可以選擇網路安全方向,希望可以幫到您,謝謝!

C. 信息安全,互聯網,大數據,與我們有著怎樣的聯系

互聯網大數據與我們有著,密不可分的聯系,因為信息安全,他就對於我們個人具有安全互聯網大數據,與我們現在的這些生活當中的呃,這些東西的或有著很好的關系

D. 如何利用大數據來處理網路安全攻擊

「大數據」已經成為時下最火熱的IT行業詞彙,各行各業的大數據解決方案層出不窮。究竟什麼是大數據、大數據給信息安全帶來哪些挑戰和機遇、為什麼網路安全需要大數據,以及怎樣把大數據思想應用於網路安全技術,本文給出解答。
一切都源於APT
APT(Advanced Persistent Threat)攻擊是一類特定的攻擊,為了獲取某個組織甚至是國家的重要信息,有針對性的進行的一系列攻擊行為的整個過程。APT攻擊利用了多種攻擊手段,包括各種最先進的手段和社會工程學方法,一步一步的獲取進入組織內部的許可權。APT往往利用組織內部的人員作為攻擊跳板。有時候,攻擊者會針對被攻擊對象編寫專門的攻擊程序,而非使用一些通用的攻擊代碼。此外,APT攻擊具有持續性,甚至長達數年。這種持續體現在攻擊者不斷嘗試各種攻擊手段,以及在滲透到網路內部後長期蟄伏,不斷收集各種信息,直到收集到重要情報。更加危險的是,這些新型的攻擊和威脅主要就針對國家重要的基礎設施和單位進行,包括能源、電力、金融、國防等關繫到國計民生,或者是國家核心利益的網路基礎設施。
現有技術為什麼失靈
先看兩個典型APT攻擊案例,分析一下盲點在哪裡
1、 RSA SecureID竊取攻擊
1) 攻擊者給RSA的母公司EMC的4名員工發送了兩組惡意郵件。郵件標題為「2011 Recruitment Plan」,寄件人是[email protected],正文很簡單,寫著「I forward this file to you for review. Please open and view it.」;裡面有個EXCEL附件名為「2011 Recruitment plan.xls」;
2) 很不幸,其中一位員工對此郵件感到興趣,並將其從垃圾郵件中取出來閱讀,殊不知此電子表格其實含有當時最新的Adobe Flash的0day漏洞(CVE-2011-0609)。這個Excel打開後啥也沒有,除了在一個表單的第一個格子裡面有個「X」(叉)。而這個叉實際上就是內嵌的一個Flash;
3) 該主機被植入臭名昭著的Poison Ivy遠端控制工具,並開始自BotNet的C&C伺服器(位於 good.mincesur.com)下載指令進行任務;
4) 首批受害的使用者並非「位高權重」人物,緊接著相關聯的人士包括IT與非IT等伺服器管理員相繼被黑;
5) RSA發現開發用伺服器(Staging server)遭入侵,攻擊方隨即進行撤離,加密並壓縮所有資料(都是rar格式),並以FTP傳送至遠端主機,又迅速再次搬離該主機,清除任何蹤跡;
6) 在拿到了SecurID的信息後,攻擊者就開始對使用SecurID的公司(例如上述防務公司等)進行攻擊了。
2、 震網攻擊
遭遇超級工廠病毒攻擊的核電站計算機系統實際上是與外界物理隔離的,理論上不會遭遇外界攻擊。堅固的堡壘只有從內部才能被攻破,超級工廠病毒也正充分的利用了這一點。超級工廠病毒的攻擊者並沒有廣泛的去傳播病毒,而是針對核電站相關工作人員的家用電腦、個人電腦等能夠接觸到互聯網的計算機發起感染攻擊,以此 為第一道攻擊跳板,進一步感染相關人員的U盤,病毒以U盤為橋梁進入「堡壘」內部,隨即潛伏下來。病毒很有耐心的逐步擴散,利用多種漏洞,包括當時的一個 0day漏洞,一點一點的進行破壞。這是一次十分成功的APT攻擊,而其最為恐怖的地方就在於極為巧妙的控制了攻擊范圍,攻擊十分精準。
以上兩個典型的APT攻擊案例中可以看出,對於APT攻擊,現代安全防禦手段有三個主要盲點:

1、0day漏洞與遠程加密通信
支撐現代網路安全技術的理論基礎最重要的就是特徵匹配,廣泛應用於各類主流網路安全產品,如殺毒、入侵檢測/防禦、漏洞掃描、深度包檢測。Oday漏洞和遠程加密通信都意味著沒有特徵,或者說還沒來得及積累特徵,這是基於特徵匹配的邊界防護技術難以應對的。
2、長期持續性的攻擊
現代網路安全產品把實時性作為衡量系統能力的一項重要指標,追求的目標就是精準的識別威脅,並實時的阻斷。而對於APT這種Salami式的攻擊,則是基於實時時間點的檢測技術難以應對的。
3、內網攻擊
任何防禦體系都會做安全域劃分,內網通常被劃成信任域,信任域內部的通信不被監控,成為了盲點。需要做接入側的安全方案加固,但不在本文討論范圍。

大數據怎麼解決問題
大數據可總結為基於分布式計算的數據挖掘,可以跟傳統數據處理模式對比去理解大數據:
1、數據采樣——>全集原始數據(Raw Data)
2、小數據+大演算法——>大數據+小演算法+上下文關聯+知識積累
3、基於模型的演算法——>機械窮舉(不帶假設條件)
4、精確性+實時性——>過程中的預測
使用大數據思想,可對現代網路安全技術做如下改進:
1、特定協議報文分析——>全流量原始數據抓取(Raw Data)
2、實時數據+復雜模型演算法——>長期全流量數據+多種簡單挖掘演算法+上下文關聯+知識積累
3、實時性+自動化——>過程中的預警+人工調查
通過傳統安全防禦措施很難檢測高級持續性攻擊,企業必須先確定日常網路中各用戶、業務系統的正常行為模型是什麼,才能盡早確定企業的網路和數據是否受到了攻擊。而安全廠商可利用大數據技術對事件的模式、攻擊的模式、時間、空間、行為上的特徵進行處理,總結抽象出來一些模型,變成大數據安全工具。為了精準地描述威脅特徵,建模的過程可能耗費幾個月甚至幾年時間,企業需要耗費大量人力、物力、財力成本,才能達到目的。但可以通過整合大數據處理資源,協調大數據處理和分析機制,共享資料庫之間的關鍵模型數據,加快對高級可持續攻擊的建模進程,消除和控制高級可持續攻擊的危害。

E. 大數據時代的信息安全和未來展望

大數據時代的信息安全和未來展望
隨著高級可持續性攻擊的出現以及惡意軟體的復雜性與日俱增,企業急需一種突破傳統信息安全保障模式的、靈活的技術和方案來應對未來不斷變化的安全威脅。大數據徹底的改變了信息安全行業,基於大數據分析的智能驅動型安全戰略將幫助信息安全從業人員重獲警惕性和時間的優勢,以使他們更好地檢測和防禦高級網路威脅。
大數據時代信息安全面臨挑戰
在大數據時代,無處不在的智能終端、隨時在線的網路傳輸、互動頻繁的社交網路使得互聯網時時刻刻都在產生著海量的數據。隨著產生、存儲、分析的數據量越來越大,在這些海量數據背後隱藏著大量的經濟與政治利益。大數據如同一把雙刃劍,在我們享受大數據分析帶來的精準信息的同時,其所帶來的安全問題也開始成為企業的隱患。
1、黑客更顯著的攻擊目標:在網路空間里,大數據是更容易被「發現」的大目標。一方面,大數據意味著海量的數據,也意味著更復雜、更敏感的數據,這些數據會吸引更多的潛在攻擊者。另一方面,數據的大量匯集,使得黑客成功攻擊一次就能獲得更多數據,無形中降低了黑客的攻擊成本,增加了其「收益率」。
2、隱私泄露風險增加:大量數據的匯集不可避免地加大了用戶隱私泄露的風險。一方面,數據集中存儲增加了泄露風險,而這些數據不被濫用,也成為人身安全的一部分。另一方面,一些敏感數據的所有權和使用權並沒有明確界定,很多基於大數據的分析都未考慮到其中涉及的個體隱私問題。
3、威脅現有的存儲和防護措施:大數據存儲帶來新的安全問題。數據大集中的後果是復雜多樣的數據存儲在一起,很可能會出現將某些生產數據放在經營數據存儲位置的情況,致使企業安全管理不合規。大數據的大小也影響到安全控制措施能否正確運行。安全防護手段的更新升級速度無法跟上數據量非線性增長的步伐,就會暴露大數據安全防護的漏洞。
4、大數據技術成為黑客的攻擊手段:在企業用數據挖掘和數據分析等大數據技術獲取商業價值的同時,黑客也在利用這些大數據技術向企業發起攻擊。黑客會最大限度地收集更多有用信息,比如社交網路、郵件、微博、電子商務、電話和家庭住址等信息,大數據分析使黑客的攻擊更加精準。此外,大數據也為黑客發起攻擊提供了更多機會。黑客利用大數據發起僵屍網路攻擊,可能會同時控制上百萬台傀儡機並發起攻擊。
5、成為高級可持續攻擊的載體:傳統的檢測是基於單個時間點進行的基於威脅特徵的實時匹配檢測,而高級可持續攻擊(APT)是一個實施過程,無法被實時檢測。此外,由於大數據的價值低密度特性,使得安全分析工具很難聚焦在價值點上,黑客可以將攻擊隱藏在大數據中,給安全服務提供商的分析製造很大困難。黑客設置的任何一個會誤導安全廠商目標信息提取和檢索的攻擊,都會導致安全監測偏離應有方向。
6、信息安全產業面臨變革:大數據的到來也為信息安全產業的發展帶來了新的契機,還沒有意識到這場變革的安全廠商將在這場變革大潮中被拋棄。大數據正在為安全分析提供新的可能性,在未來的安全架構體系中,通過大數據智能分析有效的將原來分割的安全產品更好的融合起來,成為不同的安全智能節點,這將是在大數據時代安全產業需要研究突破的重點。
大數據安全未來趨勢展望
據MacDonald預測,到2016年,40%的企業(銀行、保險、醫葯和國防行業為主)將積極地對至少10TB數據進行分析,以找出潛在危險的活動。然而,供應商的產品格局卻無法在短期內進行轉變。現在,企業通常依賴於SIEM系統來關聯和分析安全相關的數據,MacDonald表示目前的SIEM產品無法處理這么大的工作量,大多數SIEM產品提供接近實時數據,但只能處理規范化數據,還有些SIEM產品能夠處理大量原始交易數據,但無法提供實時情報信息。
Gartner公司分析師表示,使用「大數據」來提高企業信息安全不完全是炒作,這在未來幾年內這將成為現實。大數據將為安全團隊帶來新的工作方式,通過了解大數據的優勢、制定切合實際的目標以及利用現有安全技術的優勢,安全管理人員將會發現他們在大數據進行的投資是值得的。
RSA大中國區總經理胡軍表示,「大數據將帶動安全行業方向性的改變,安全與數據互相影響,未來共同促進發展。現今的安全需要更全面和廣泛的可視性,敏捷的分析,可採取行動的情報和可擴展的基礎設施。」
我們可以看到,大數據安全已經成為不可阻擋的趨勢。在未來,不論是從商業需求角度,還是產業技術角度,大數據安全都將成為業界關注的熱點。而在這場大數據安全的盛宴中,也必然會出現新老更替、推陳出新,這一切就讓我們拭目以待吧!

F. 網路黃金的感謝信怎麼寫

你以為網路黃金是3M呀……還感謝信怎麼寫……

G. 大數據時代:如何守護我們的數據安全

大數據時代:如何守護我們的數據安全
不管你承認不承認,我們已經全面進入了大數據時代。無時無刻,我們的很多信息都被通過各種途徑傳播出去,這就必然導致安全問題的產生。
大數據的安全問題有多嚴重?在此前舉辦的「2016中國大數據產業峰會」上發生的一個實例,就可見一斑。
在360展區,市民嚴女士隨手將錢包、手機放到安檢筐里,空手走過安檢門。她通過安檢門,突然發現大屏幕上顯示出自己銀行卡的姓名拼音、身份證號、銀行卡號、卡片有效期、最近10次的消費時間、消費地點、取現記錄、轉賬記錄等等。嚴女士驚呼:「遇到了魔術師」。
360安全專家劉洋解釋,實際上,存放手機錢包的安檢筐里存有一張具有NFC(近距離通信)功能的無線讀卡器,旁邊還有配套的信號接收器和電腦等設備,就像公交車刷卡器,只要銀行卡靠近讀卡器,卡片的信息就顯示出來,安檢門其實就是「安全魔術師」手中的障眼法。就在嚴女士將錢包放進安檢筐的那一刻,嚴女士的個人信息就已經泄露了。
那麼,我們靠什麼來保障我們的數據安全呢?難道我們只能看著個人的數據和隱私到處泄露嗎?
數據安全事件日益高發
近來,大數據安全事件呈高發之勢。日前,廣東警方破獲一起高科技經濟犯罪案件,17歲的「黑客」葉世廣,攻破了多個商業銀行網站,竊取了儲戶的身份證號、銀行卡號、支付密碼等數據,帶領一批人在網上大肆盜刷別人的信用卡,涉案金額近15億元,涉及銀行49家。
今年2月,發生了世界上有史以來規模最大的網路盜竊案。黑客入侵了孟加拉國央行在紐約聯邦儲備銀行的賬戶,盜走了8100萬美元,後來孟加拉國官方表示,黑客出現了一個拼寫錯誤,否則隨後還將進行一筆近10億美元的轉賬。
今年3月,與敘利亞有關聯的激進黑客組織對一個自來水廠發起網路攻擊。黑客操縱系統改變了進入到自來水中的化學物含量,阻礙凈水過程。
類似的案例不勝枚舉。
360公司總裁齊向東向《中國科學報》記者表示,接入互聯網的設備越多,網路攻擊的發生幾率就越高,網路攻擊首先瞄準大數據,攻擊造成大數據丟失、情報泄密和破壞網路安全運行。大數據技術是一把雙刃劍,既可以造福社會、造福人民,又可以被一些人用來損害社會公共利益和民眾利益。
大數據安全體系構建勢在必行
「在互聯網乃至物聯網時代,如果我們不能很好地解決安全問題,就會影響社會各方面的發展。因此,各級政府在鼓勵發展大數據的同時,要同步考慮構建大數據安全體系。」齊向東表示。
值得注意的是,傳統的網路安全思路已經無法保障大數據時代的安全。劉洋向記者介紹,傳統網路安全的防護思路是劃分邊界,將內網、外網分開,業務網和公眾網分離,用終端設備將潛在風險隔離。通過在每個邊界設立網關設備和網路流量設備,來守住「邊界」,以期解決安全問題。但隨著移動互聯網、雲服務的出現,移動終端在4G信號、Wi-Fi信號、電纜之間穿梭,網路邊界實際上已經消亡。
「很多傳統的大企業認為,只要自己購買伺服器並搭建獨立的機房,安排專門的技術人員就能夠保護企業的數據不被泄露,能夠保護企業的信息安全。但實際上,在如今的互聯網時代,這種傳統的方法更加容易被不法分子所攻破。」阿里雲安全資深總監肖力向《中國科學報》記者介紹,這是因為從技術實力來看,絕大部分企業並不是專門做網路安全、數據安全,其設置的技術壁壘難以阻擋專業的黑客。
齊向東介紹,360安全中心每天發現木馬樣本近千萬個,每天發現的各種軟硬體漏洞、網站漏洞超過120個,「每一個木馬每一個漏洞,都可能攻破預先部署的安全設備和安全軟體」。這種情況下,企業的傳統防護的確難以奏效。
雲平台和大數據需「雙劍合璧」
在采訪中,有專家認為,對付大數據時代的數據安全問題,防止信息泄露,除了完善相關法製法規,更加需要雲平台的防護技術,結合大數據技術來應對數據安全。
「在雲計算不斷深入發展的當下,將數據存儲在雲平台上,或許比傳統的企業信息防護更加安全。」肖力介紹,以阿里雲為例,阿里雲在架構設計之初就同步考慮了安全架構,不僅將安全的基因植入到整個雲平台和各個雲產品中,也將數據安全要求嵌入產品開發生命周期的各個環節。依靠專業的雲計算平台,強大的技術團隊能夠更好地應付來自黑客的攻擊。
不同用戶之間,無論是CPU、內存,還是存儲和網路,都默認相互隔離,既看不到對方的數據,也不會相互影響。「就像一間五星級酒店被分割成多個房間,他們之間是相互獨立和封閉的,從而確保不同租戶互不幹擾和數據隔離。」肖力表示。
據介紹,目前全國35%的網站的數據安全防護都依託於阿里雲平台的防護。阿里雲的雲盾,涵蓋網路安全、伺服器安全、數據安全、業務安全和移動安全這五個安全領域,來保護數據安全。
360也有自己的雲安全管理平台。劉洋介紹,該平台將360獨有的雲安全漏洞挖掘能力輸出給廣大用戶,通過統一管理、安全可見以及網路、主機、應用、數據的分層縱深防禦,為用戶全面解決雲安全問題。
「用大數據技術來解決大數據時代的安全問題十分必要。」齊向東進一步指出,必須建立「數據驅動安全」的思維,搭建全新的互聯網安全體系—「傳統安全+互聯網+大數據」。也就是說,要利用漏洞挖掘技術、網路攻擊技術、軟體樣行為分析技術以及由網路地址解析資料庫、網路訪問日誌資料庫、文件黑白名單資料庫等組成大數據系統與分析技術,構建全天候全方位感知網路安全態勢。「要基於強大的大資料庫、利用先進的大數據技術和廣泛的用戶覆蓋率,提前感知網路威脅態勢,為大眾提供未知威脅的發現與回溯功能並進行有效防護。」齊向東說。
「未來還應當聯合各方力量,共建互聯網安全產業鏈生態,來應對大數據時代的安全風險。」肖力表示。

H. 大數據和網路安全哪個方向更好

隨著工業物聯網(IIoT)在製造企業的全面鋪開,安全專家必須准備好弄懂這些網路應有的樣子與操作。同時,所有安全計劃都需擁有足夠的彈性,要能扛住迎面而來的各種攻擊。未來十年將給網路安全帶來最大影響的是什麼?簡單講,這個問題的答案有兩個方向:人工智慧(AI)和大數據分析。

鑒於這些技術發展會給未來時光帶來重大影響,未來的安全環境,將取決於AI和分析如何融入囊括了網路及物理安全的全面彈性安全計劃。

網路安全-工業物聯網

至於如何構建該整體安全項目,能夠賦予製造商資產清單與網路可見性的網路監視技術是個不錯的開始。隨著公司企業越來越依賴數字環境,擁有該總體安全觀也變得越來越重要了。如果十年內發生的攻擊類似烏克蘭兩次遭遇的大斷電,或挪威鋁業巨頭NorskHydro遭遇的勒索軟體攻擊,公司企業需准備備用工廠,以便在必要的時候能夠手動運營以阻止攻擊。

未來5~10年,物聯網對工業運營的意義愈加重大,工業系統也將接入可大幅降低設備間通信延遲的5G網路,因而工業系統聯網程度增加幾乎已成不爭的事實。物聯網設備安全通常天生不怎麼強,所以當物聯網設備大規模部署的時候,工業系統便面臨相當棘手的設備安全管理挑戰了。

網路安全-工業運營

更糟的是,連接性增加意味著能嘗試突破系統的黑客也增加了,更高端的黑客或許能夠窺探系統,而網路安全問題也隨著連接性的增長而愈加惡化。而且,很多工業系統如果以特定方式操縱可能傷及人命,所以連接性增加不僅影響到工業系統管理和保護,也影響公共政策制定。

網路安全-數字轉型

工業網路安全遭受的最大影響將是數字轉型的非預期結果。數字轉型很好,也很有必要,但同時伴隨著風險。隨著我們引入越來越多的數字終端,數據流隨之產生。數據流的飛速增長將超出我們的處理范圍,無法現場有效分析全部數據。而且,我們將以這些數據驅動有關過程的決策,甚或驅動過程本身。最終,我們或許會開始通過人工智慧/機器學習將這些分析性數據產品饋送回過程。

換句話說,過程產生數據,數據離開過程網路流向雲、霧、湖、現場、外部等等地方,被分析、重用再饋送回過程。所有這些都會以我們剛剛才開始考慮的方式,往過程數據及該控制/過程網路外部相關系統,引入新的風險。

I. 大數據和網路安全在今後的發展前景哪個會更好那

應該說,兩個都是都是今後發展的重點,再加上人工智慧,個人覺得將會是互聯網乃至工業的一次革命。
1、大數據方面。大數據范圍很廣,每個行業都有相應的應用,但是投入也是很大的,例如鐵路系統,車輛違章監控系統,ETC系統等都應用了大數據,這些大數據將進行提煉後,用於基礎分析、客戶引導、智能管理等。對於提高政府職能,降低能耗,開源節流,人工輔助等都有很大很深的應用。總的來說,大數據中所有的數據都是有價值的,但是採集數據有很多的路要走,更多的需要物聯網、人工智慧的配合。
2、網路安全方面。這個應該是當下整個社會的一個突出問題。網路改變了人們的使用方式,推動了一系列的變革,但問題也是很突出,它是一把雙刃劍,有利有弊,但總體利大於弊,正因為網路的不斷發展,才推動了大數據的進步。
3、人工智慧方面。人工智慧應該是一個 今後發展的這個重點及亮點。人工智慧主要利用語言、圖像識別、感測器等設備集中進行運算,發揮其特定的作用,來執行任務。