當前位置:首頁 » 電腦故障 » 數據為什麼用神經網路做異常檢測
擴展閱讀
手機應用軟體開發流程 2025-07-21 16:48:34

數據為什麼用神經網路做異常檢測

發布時間: 2022-10-28 11:06:04

『壹』 神經網路異常檢測方法和機器學習異常檢測方法對於入侵檢測的應用

神經網路異常檢測方法

神經網路入侵檢測方法是通過訓練神經網路連續的信息單元來進行異常檢測,信息單元指的是命令。網路的輸入為用戶當前輸入的命令和已執行過的W個命令;用戶執行過的命令被神經網路用來預測用戶輸入的下一個命令,如下圖。若神經網路被訓練成預測用戶輸入命令的序列集合,則神經網路就構成用戶的輪郭框架。當用這個神經網路預測不出某用戶正確的後繼命令,即在某種程度上表明了用戶行為與其輪廓框架的偏離,這時表明有異常事件發生,以此就能作異常入侵檢測。


上面式子用來分類識別,檢測異常序列。實驗結果表明這種方法檢測迅速,而且誤警率底。然而,此方法對於用戶動態行為變化以及單獨異常檢測還有待改善。復雜的相似度量和先驗知識加入到檢測中可能會提高系統的准確性,但需要做進一步工作。

『貳』 數據挖掘中的異常檢測

數據挖掘中的異常檢測
一、實時分析需要關注的三大指標
數據化運營需要關注的指標非常多,如PV、UV、轉化率、留存率等等。忽略留存、轉化等結果型指標,在分鍾級的實時監測中,運營主要關注網站平台的三大類數據指標:
訪問用戶量
訪問來源
訪問行為
用戶訪問量、訪問來源和訪問行為對網站平台的運營具有重要意義:
分鍾級的訪問量可以幫助我們了解流量的趨勢,方便及時發現流量的異常;
訪問來源的監測方便我們了解實時訪問來源和權重,為渠道優化做准備;
訪問行為的實時監測幫助我們了解用戶的訪問偏好,方便後期進行網站內容優化。現有的SaaS (軟體即服務)產品中,將上述實時指標模塊統一於一個後台頁面中,這樣的設計便於運營者對實時的情況一目瞭然、運籌帷幄。
二、通過三個案例講透實時分析
從異常的流量峰值中發現問題
運營者一般都比較關注網站平台的PV、UV及其走勢,這也是網站流量分析的基礎指標。以天或者小時為顆粒度的流量分析較為粗糙,會掩蓋很多時間節點上的流量波動細節。如果我們用分鍾級的粒度來觀察流量,又會有什麼發現呢?某內容社區7月16日16:30-16:35用戶訪問量激增,是平時的4倍左右(如上圖圓圈所示)。社區的運營人員馬上就發現了這個異常值,藉助[訪問來源]發現該節點訪問來源排第一位的是微信(mp.weixinbridge.com),然而當時並不知具體原因。在稍後的朋友圈分享的文章中發現,當時某運營大咖在一個微信群分享中推薦了該社區平台,貢獻了16:30-16:35社區激增的訪問量。該社區的PR果斷抓住這次機會,邀請該運營大咖來該社區做知識分享,起到了非常好的傳播效果。
這是通過激增流量發現合作渠道的典型案例,值得所有企業思考。反之,如果流量暴跌,甚至降為零,那麼這個時候就馬上檢查網站/APP是否正常,以便及時修復問題。
精準投放:渠道優化與反作弊
作為一個運營人員,如果產品在各大渠道上投放了廣告,則可以通過[訪問來源]來時刻監測渠道的廣告效果,進而確定渠道帶來的訪問用戶量和質量。
某互聯網企業近期做了系列的渠道投放測試。他們通過[訪問來源]發現其中兩個渠道帶來的量非常少,而且價格不菲,於是短暫上線就立即撤掉了該投放。同時實時分析還可以用於反作弊,短時間、單一渠道流量暴增很可能就是刷單或者流量作弊的表現。某日上午該網站訪問量連續出現兩個異常高峰,且該期間絕大部分流量來自一個渠道。運營人員對此非常警覺,經排查是代理商作弊,用機器人刷量;事後該企業果斷放棄該代理渠道。上述兩個行為為該企業挽回了大量損失。
實時監測,讓產品運營更加高效
現在互聯網產品迭代的速度越來越快,產品運營需要對新上線的產品或者功能進行追蹤,評估產品的效果或者市場反饋。互聯網金融領域存在組團詐騙進件(進件,即購買金融產品)的情況。以某互聯網金融公司為例,因為風險控制的原因會控制對外宣傳的力度,每天的訪問用戶數基本比較穩定。某日,該互金公司上線了一個新的金融產品,公司的運營人員通過[訪問用戶實時走勢]發現訪問用戶陡然增加,再通過[活躍網頁]發現該產品中的某個頁面的訪問量特別高,經過排查確定這是該產品的漏洞,會導致公司流失大量資金,他們果斷採取修復措施再重新上線。如果還是用傳統的流量監測方法,可能等到兩三天才能發現這個漏洞,到時候流失資金可能達幾百萬之巨。
三、數據驅動的精細化運營
一個產品或者運營手段從最初的「idea」到最後成型上線,運營人員需要通過數據來衡量它的表現及市場反饋。同時,從數據中發現問題,提出假設,不斷升級迭代;從而形成「idea — proct – data」的良性循環,驅動業務和客戶的增長。在運營的過程中,數據反饋越及時,我們迭代的速度就越快,運營的效率就越高。1.01的365次方約等於38;換言之,通過實時分析可以實現不斷的、快速的小幅迭代,而這積累起來就是運營、是企業巨大的進步。

『叄』 ​一文看懂數據清洗:缺失值、異常值和重復值的處理

作者:宋天龍

如需轉載請聯系華章 科技

數據缺失分為兩種:一種是 行記錄的缺失 ,這種情況又稱數據記錄丟失;另一種是 數據列值的缺失 ,即由於各種原因導致的數據記錄中某些列的值空缺。

不同的數據存儲和環境中對於缺失值的表示結果也不同,例如,資料庫中是Null,Python返回對象是None,Pandas或Numpy中是NaN。

在極少數情況下,部分缺失值也會使用空字元串來代替,但空字元串絕對不同於缺失值。從對象的實體來看,空字元串是有實體的,實體為字元串類型;而缺失值其實是沒有實體的,即沒有數據類型。

丟失的數據記錄通常無法找回,這里重點討論數據列類型缺失值的處理思路。通常有4種思路。

1. 丟棄

這種方法簡單明了,直接刪除帶有缺失值的行記錄(整行刪除)或者列欄位(整列刪除),減少缺失數據記錄對總體數據的影響。 但丟棄意味著會消減數據特徵 ,以下任何一種場景都不宜採用該方法。

2. 補全

相對丟棄而言,補全是更加常用的缺失值處理方式。通過一定的方法將缺失的數據補上,從而形成完整的數據記錄,對於後續的數據處理、分析和建模至關重要。常用的補全方法如下。

3. 真值轉換法

在某些情況下,我們可能無法得知缺失值的分布規律,並且無法對於缺失值採用上述任何一種補全方法做處理;或者我們認為數據缺失也是一種規律,不應該輕易對缺失值隨意處理,那麼還有一種缺失值處理思路—真值轉換。

該思路的根本觀點是, 我們承認缺失值的存在,並且把數據缺失也作為數據分布規律的一部分 ,將變數的實際值和缺失值都作為輸入維度參與後續數據處理和模型計算中。但是變數的實際值可以作為變數值參與模型計算,而缺失值通常無法參與運算,因此需要對缺失值進行真值轉換。

以用戶性別欄位為例,很多資料庫集都無法對會員的性別進行補足,但又捨不得將其丟棄掉,那麼我們將選擇將其中的值,包括男、女、未知從一個變數的多個值分布狀態轉換為多個變數的真值分布狀態。

然後將這3列新的欄位作為輸入維度替換原來的1個欄位參與後續模型計算。

4. 不處理

在數據預處理階段,對於具有缺失值的數據記錄不做任何處理,也是一種思路。這種思路主要看後期的數據分析和建模應用, 很多模型對於缺失值有容忍度或靈活的處理方法 ,因此在預處理階段可以不做處理。

常見的能夠自動處理缺失值的模型包括:KNN、決策樹和隨機森林、神經網路和樸素貝葉斯、DBSCAN(基於密度的帶有雜訊的空間聚類)等。這些模型對於缺失值的處理思路是:

在數據建模前的數據歸約階段,有一種歸約的思路是 降維 ,降維中有一種直接選擇特徵的方法。假如我們通過一定方法確定帶有缺失值(無論缺少欄位的值缺失數量有多少)的欄位對於模型的影響非常小,那麼我們根本就不需要對缺失值進行處理。

因此,後期建模時的欄位或特徵的重要性判斷也是決定是否處理欄位缺失值的重要參考因素之一。

對於缺失值的處理思路是先通過一定方法找到缺失值,接著分析缺失值在整體樣本中的分布佔比,以及缺失值是否具有顯著的無規律分布特徵,然後考慮後續要使用的模型中是否能滿足缺失值的自動處理,最後決定採用哪種缺失值處理方法。

在選擇處理方法時,注意投入的時間、精力和產出價值,畢竟,處理缺失值只是整個數據工作的冰山一角而已。

在數據採集時,可在採集端針對各個欄位設置一個默認值。以MySQL為例,在設計資料庫表時,可通過default指定每個欄位的默認值,該值必須是常數。

在這種情況下,假如原本數據採集時沒有採集到數據,欄位的值應該為Null,雖然由於在建立庫表時設置了默認值會導致「缺失值」看起來非常正常,但本質上還是缺失的。對於這類數據需要尤其注意。

異常數據是數據分布的常態,處於特定分布區域或范圍之外的數據通常會被定義為異常或「噪音」。產生數據「噪音」的原因很多,例如業務運營操作、數據採集問題、數據同步問題等。

對異常數據進行處理前,需要先辨別出到底哪些是真正的數據異常。從數據異常的狀態看分為兩種:

大多數數據挖掘或數據工作中,異常值都會在數據的預處理過程中被認為是噪音而剔除,以避免其對總體數據評估和分析挖掘的影響。但在以下幾種情況下,我們無須對異常值做拋棄處理。

1. 異常值正常反映了業務運營結果

該場景是由業務部門的特定動作導致的數據分布異常,如果拋棄異常值將導致無法正確反饋業務結果。

例如:公司的A商品正常情況下日銷量為1000台左右。由於昨日舉行優惠促銷活動導致總銷量達到10000台,由於後端庫存備貨不足導致今日銷量又下降到100台。在這種情況下,10000台和100台都正確地反映了業務運營的結果,而非數據異常案例。

2. 異常檢測模型

異常檢測模型是針對整體樣本中的異常數據進行分析和挖掘,以便找到其中的異常個案和規律,這種數據應用圍繞異常值展開,因此異常值不能做拋棄處理。

異常檢測模型常用於客戶異常識別、信用卡欺詐、貸款審批識別、葯物變異識別、惡劣氣象預測、網路入侵檢測、流量作弊檢測等。在這種情況下,異常數據本身是目標數據,如果被處理掉將損失關鍵信息。

3. 包容異常值的數據建模

如果數據演算法和模型對異常值不敏感,那麼即使不處理異常值也不會對模型本身造成負面影響。例如在決策樹中,異常值本身就可以作為一種分裂節點。

數據集中的重復值包括以下兩種情況:

去重是重復值處理的主要方法,主要目的是保留能顯示特徵的唯一數據記錄。但當遇到以下幾種情況時,請慎重(不建議)執行數據去重。

1. 重復的記錄用於分析演變規律

以變化維度表為例。例如在商品類別的維度表中,每個商品對應的同1個類別的值應該是唯一的,例如蘋果iPhone7屬於個人電子消費品,這樣才能將所有商品分配到唯一類別屬性值中。但當所有商品類別的值重構或升級時(大多數情況下隨著公司的發展都會這么做),原有的商品可能被分配了類別中的不同值。如下表所示展示了這種變化。

此時,我們在數據中使用Full join做跨重構時間點的類別匹配時,會發現蘋果iPhone7會同時匹配到個人電子消費品和手機數碼2條記錄。對於這種情況,需要根據具體業務需求處理。

2. 重復的記錄用於樣本不均衡處理

在開展分類數據建模工作時,樣本不均衡是影響分類模型效果的關鍵因素之一。解決分類方法的一種方法是對少數樣本類別做簡單過采樣,通過隨機過采樣,採取簡單復制樣本的策略來增加少數類樣本。

經過這種處理方式後,也會在數據記錄中產生相同記錄的多條數據。此時,我們不能對其中的重復值執行去重操作。

3. 重復的記錄用於檢測業務規則問題

對於以分析應用為主的數據集而言,存在重復記錄不會直接影響實際運營,畢竟數據集主要是用來做分析的。

但對於事務型的數據而言, 重復數據可能意味著重大運營規則問題 ,尤其當這些重復值出現在與企業經營中與金錢相關的業務場景時,例如:重復的訂單、重復的充值、重復的預約項、重復的出庫申請等。

這些重復的數據記錄通常是由於數據採集、存儲、驗證和審核機制的不完善等問題導致的,會直接反映到前台生產和運營系統。以重復訂單為例:

因此,這些問題必須在前期數據採集和存儲時就通過一定機制解決和避免。如果確實產生了此類問題,那麼數據工作者或運營工作者可以基於這些重復值來發現規則漏洞,並配合相關部門,最大限度地降低由此而帶來的運營風險。

本文摘編自《Python數據分析與數據化運營》(第2版),經出版方授權發布。

『肆』 大數據科學家需要掌握的幾種異常值檢測方法

引言

異常值檢測與告警一直是工業界非常關注的問題,自動准確地檢測出系統的異常值,不僅可以節約大量的人力物力,還能盡早發現系統的異常情況,挽回不必要的損失。個推也非常重視大數據中的異常值檢測,例如在運維部門的流量管理業務中,個推很早便展開了對異常值檢測的實踐,也因此積累了較為豐富的經驗。本文將從以下幾個方面介紹異常值檢測。

1、異常值檢測研究背景

2、異常值檢測方法原理

3、異常值檢測應用實踐

異常值檢測研究背景

異常值,故名思議就是不同於正常值的值。 在數學上,可以用離群點來表述,這樣便可以將異常值檢測問題轉化為數學問題來求解。

異常值檢測在很多場景都有廣泛的應用,比如:

1、流量監測

互聯網上某些伺服器的訪問量,可能具有周期性或趨勢性:一般情況下都是相對平穩的,但是當受到某些黑客攻擊後,其訪問量可能發生顯著的變化,及早發現這些異常變化對企業而言有著很好的預防告警作用。

2、金融風控

正常賬戶中,用戶的轉賬行為一般屬於低頻事件,但在某些金融詐騙案中,一些嫌犯的賬戶就可能會出現高頻的轉賬行為,異常檢測系統如果能發現這些異常行為,及時採取相關措施,則會規避不少損失。

3、機器故障檢測

一個運行中的流水線,可能會裝有不同的感測器用來監測運行中的機器,這些感測器數據就反應了機器運行的狀態,這些實時的監測數據具有數據量大、維度廣的特點,用人工盯著看的話成本會非常高,高效的自動異常檢測演算法將能很好地解決這一問題。

異常值檢測方法原理

本文主要將異常值檢測方法分為兩大類:一類是基於統計的異常值檢測,另一類是基於模型的異常值檢測。

基於統計的方法  

基於模型的方法

1、基於統計的異常值檢測方法

常見的基於統計的異常值檢測方法有以下2種,一種是基於3σ法則,一種是基於箱體圖。

3σ法則  

箱體圖

3σ法則是指在樣本服從正態分布時,一般可認為小於μ-3σ或者大於μ+3σ的樣本值為異常樣本,其中μ為樣本均值,σ為樣本標准差。在實際使用中,我們雖然不知道樣本的真實分布,但只要真實分布與正太分布相差不是太大,該經驗法則在大部分情況下便是適用的。

箱體圖也是一種比較常見的異常值檢測方法,一般取所有樣本的25%分位點Q1和75%分位點Q3,兩者之間的距離為箱體的長度IQR,可認為小於Q1-1.5IQR或者大於Q3+1.5IQR的樣本值為異常樣本。

基於統計的異常檢測往往具有計算簡單、有堅實的統計學基礎等特點,但缺點也非常明顯,例如需要大量的樣本數據進行統計,難以對高維樣本數據進行異常值檢測等。

2、基於模型的異常值檢測

通常可將異常值檢測看作是一個二分類問題,即將所有樣本分為正常樣本和異常樣本,但這和常規的二分類問題又有所區別,常規的二分類一般要求正負樣本是均衡的,如果正負樣本不均勻的話,訓練結果往往會不太好。但在異常值檢測問題中,往往面臨著正(正常值)負(異常值)樣本不均勻的問題,異常值通常比正常值要少得多,因此需要對常規的二分類模型做一些改進。

基於模型的異常值檢測一般可分為有監督模型異常值檢測和無監督模型異常值檢測,比較典型的有監督模型如oneclassSVM、基於神經網路的自編碼器等。 oneclassSVM就是在經典的SVM基礎上改進而來,它用一個超球面替代了超平面,超球面以內的值為正常值,超球面以外的值為異常值。

經典的SVM  

1

 基於模型的方法

2

基於神經網路的自編碼器結構如下圖所示。

自編碼器(AE)

將正常樣本用於模型訓練,輸入與輸出之間的損失函數可採用常見的均方誤差,因此檢測過程中,當正常樣本輸入時,均方誤差會較小,當異常樣本輸入時,均方誤差會較大,設置合適的閾值便可將異常樣本檢測出來。但該方法也有缺點,就是對於訓練樣本比較相近的正常樣本判別較好,但若正常樣本與訓練樣本相差較大,則可能會導致模型誤判。

無監督模型的異常值檢測是異常值檢測中的主流方法,因為異常值的標注成本往往較高,另外異常值的產生往往無法預料,因此有些異常值可能在過去的樣本中根本沒有出現過, 這將導致某些異常樣本無法標注,這也是有監督模型的局限性所在。 較為常見的無監督異常值檢測模型有密度聚類(DBSCAN)、IsolationForest(IF)、RadomCutForest(RCF)等,其中DBSCAN是一種典型的無監督聚類方法,對某些類型的異常值檢測也能起到不錯的效果。該演算法原理網上資料較多,本文不作詳細介紹。

IF演算法最早由南京大學人工智慧學院院長周志華的團隊提出,是一種非常高效的異常值檢測方法,該方法不需要對樣本數據做任何先驗的假設,只需基於這樣一個事實——異常值只是少數,並且它們具有與正常值非常不同的屬性值。與隨機森林由大量決策樹組成一樣,IsolationForest也由大量的樹組成。IsolationForest中的樹叫isolation tree,簡稱iTree。iTree樹和決策樹不太一樣,其構建過程也比決策樹簡單,因為其中就是一個完全隨機的過程。

假設數據集有N條數據,構建一顆iTree時,從N條數據中均勻抽樣(一般是無放回抽樣)出n個樣本出來,作為這顆樹的訓練樣本。

在樣本中,隨機選一個特徵,並在這個特徵的所有值范圍內(最小值與最大值之間)隨機選一個值,對樣本進行二叉劃分,將樣本中小於該值的劃分到節點的左邊,大於等於該值的劃分到節點的右邊。

這樣得到了一個分裂條件和左、右兩邊的數據集,然後分別在左右兩邊的數據集上重復上面的過程,直至達到終止條件。 終止條件有兩個,一個是數據本身不可再分(只包括一個樣本,或者全部樣本相同),另外一個是樹的高度達到log2(n)。 不同於決策樹,iTree在演算法裡面已經限制了樹的高度。不限制雖然也可行,但出於效率考慮,演算法一般要求高度達到log2(n)深度即可。

把所有的iTree樹構建好了,就可以對測試數據進行預測了。預測的過程就是把測試數據在iTree樹上沿對應的條件分支往下走,直到達到葉子節點,並記錄這過程中經過的路徑長度h(x),即從根節點,穿過中間的節點,最後到達葉子節點,所走過的邊的數量(path length)。最後,將h(x)帶入公式,其中E(.)表示計算期望,c(n)表示當樣本數量為n時,路徑長度的平均值,從而便可計算出每條待測數據的異常分數s(Anomaly Score)。異常分數s具有如下性質:

1)如果分數s越接近1,則該樣本是異常值的可能性越高;

2)如果分數s越接近0,則該樣本是正常值的可能性越高;

RCF演算法與IF演算法思想上是比較類似的,前者可以看成是在IF演算法上做了一些改進。針對IF演算法中沒有考慮到的時間序列因素,RCF演算法考慮了該因素,並且在數據樣本采樣策略上作出了一些改進,使得異常值檢測相對IF演算法變得更加准確和高效,並能更好地應用於流式數據檢測。

IF演算法

RCF演算法

上圖展示了IF演算法和RCF演算法對於異常值檢測的異同。我們可以看出原始數據中有兩個突變異常數據值,對於後一個較大的突變異常值,IF演算法和RCF演算法都檢測了出來,但對於前一個較小的突變異常值,IF演算法沒有檢測出來,而RCF演算法依然檢測了出來,這意味著RCF有更好的異常值檢測性能。

異常值檢測應用實踐

理論還需結合實踐,下面我們將以某應用從2016.08.16至2019.09.21的日活變化情況為例,對異常值檢測的實際應用場景予以介紹:

從上圖中可以看出該應用的日活存在著一些顯著的異常值(比如紅色圓圈部分),這些異常值可能由於活動促銷或者更新迭代出現bug導致日活出現了比較明顯的波動。下面分別用基於統計的方法和基於模型的方法對該日活序列數據進行異常值檢測。

基於3σ法則(基於統計)

RCF演算法(基於模型)

從圖中可以看出,對於較大的突變異常值,3σ法則和RCF演算法都能較好地檢測出來, 但對於較小的突變異常值,RCF演算法則要表現得更好。

總結

上文為大家講解了異常值檢測的方法原理以及應用實踐。綜合來看,異常值檢測演算法多種多樣 ,每一種都有自己的優缺點和適用范圍,很難直接判斷哪一種異常檢測演算法是最佳的, 具體在實戰中,我們需要根據自身業務的特點,比如對計算量的要求、對異常值的容忍度等,選擇合適的異常值檢測演算法。

接下來,個推也會結合自身實踐,在大數據異常檢測方面不斷深耕,繼續優化演算法模型在不同業務場景中的性能,持續為開發者們分享前沿的理念與最新的實踐方案。

『伍』 人工神經網路概念梳理與實例演示

人工神經網路概念梳理與實例演示
神經網路是一種模仿生物神經元的機器學習模型,數據從輸入層進入並流經激活閾值的多個節點。
遞歸性神經網路一種能夠對之前輸入數據進行內部存儲記憶的神經網路,所以他們能夠學習到數據流中的時間依賴結構。
如今機器學習已經被應用到很多的產品中去了,例如,siri、Google Now等智能助手,推薦引擎——亞馬遜網站用於推薦商品的推薦引擎,Google和Facebook使用的廣告排名系統。最近,深度學習的一些進步將機器學習帶入公眾視野:AlphaGo 打敗圍棋大師李世石事件以及一些圖片識別和機器翻譯等新產品的出現。
在這部分中,我們將介紹一些強大並被普遍使用的機器學習技術。這當然包括一些深度學習以及一些滿足現代業務需求傳統方法。讀完這一系列的文章之後,你就掌握了必要的知識,便可以將具體的機器學習實驗應用到你所在的領域當中。
隨著深層神經網路的精度的提高,語音和圖像識別技術的應用吸引了大眾的注意力,關於AI和深度學習的研究也變得更加普遍了。但是怎麼能夠讓它進一步擴大影響力,更受歡迎仍然是一個問題。這篇文章的主要內容是:簡述前饋神經網路和遞歸神經網路、怎樣搭建一個遞歸神經網路對時間系列數據進行異常檢測。為了讓我們的討論更加具體化,我們將演示一下怎麼用Deeplearning4j搭建神經網路。
一、什麼是神經網路?
人工神經網路演算法的最初構思是模仿生物神經元。但是這個類比很不可靠。人工神經網路的每一個特徵都是對生物神經元的一種折射:每一個節點與激活閾值、觸發的連接。
連接人工神經元系統建立起來之後,我們就能夠對這些系統進行訓練,從而讓他們學習到數據中的一些模式,學到之後就能執行回歸、分類、聚類、預測等功能。
人工神經網路可以看作是計算節點的集合。數據通過這些節點進入神經網路的輸入層,再通過神經網路的隱藏層直到關於數據的一個結論或者結果出現,這個過程才會停止。神經網路產出的結果會跟預期的結果進行比較,神經網路得出的結果與正確結果的不同點會被用來更正神經網路節點的激活閾值。隨著這個過程的不斷重復,神經網路的輸出結果就會無限靠近預期結果。
二、訓練過程
在搭建一個神經網路系統之前,你必須先了解訓練的過程以及網路輸出結果是怎麼產生的。然而我們並不想過度深入的了解這些方程式,下面是一個簡短的介紹。
網路的輸入節點收到一個數值數組(或許是叫做張量多維度數組)就代表輸入數據。例如, 圖像中的每個像素可以表示為一個標量,然後將像素傳遞給一個節點。輸入數據將會與神經網路的參數相乘,這個輸入數據被擴大還是減小取決於它的重要性,換句話說,取決於這個像素就不會影響神經網路關於整個輸入數據的結論。
起初這些參數都是隨機的,也就是說神經網路在建立初期根本就不了解數據的結構。每個節點的激活函數決定了每個輸入節點的輸出結果。所以每個節點是否能夠被激活取決於它是否接受到足夠的刺激強度,即是否輸入數據和參數的結果超出了激活閾值的界限。
在所謂的密集或完全連接層中,每個節點的輸出值都會傳遞給後續層的節點,在通過所有隱藏層後最終到達輸出層,也就是產生輸入結果的地方。在輸出層, 神經網路得到的最終結論將會跟預期結論進行比較(例如,圖片中的這些像素代表一隻貓還是狗?)。神經網路猜測的結果與正確結果的計算誤差都會被納入到一個測試集中,神經網路又會利用這些計算誤差來不斷更新參數,以此來改變圖片中不同像素的重要程度。整個過程的目的就是降低輸出結果與預期結果的誤差,正確地標注出這個圖像到底是不是一條狗。
深度學習是一個復雜的過程,由於大量的矩陣系數需要被修改所以它就涉及到矩陣代數、衍生品、概率和密集的硬體使用問題,但是用戶不需要全部了解這些復雜性。
但是,你也應該知道一些基本參數,這將幫助你理解神經網路函數。這其中包括激活函數、優化演算法和目標函數(也稱為損失、成本或誤差函數)。
激活函數決定了信號是否以及在多大程度上應該被發送到連接節點。階梯函數是最常用的激活函數, 如果其輸入小於某個閾值就是0,如果其輸入大於閾值就是1。節點都會通過階梯激活函數向連接節點發送一個0或1。優化演算法決定了神經網路怎麼樣學習,以及測試完誤差後,權重怎麼樣被更准確地調整。最常見的優化演算法是隨機梯度下降法。最後, 成本函數常用來衡量誤差,通過對比一個給定訓練樣本中得出的結果與預期結果的不同來評定神經網路的執行效果。
Keras、Deeplearning4j 等開源框架讓創建神經網路變得簡單。創建神經網路結構時,需要考慮的是怎樣將你的數據類型匹配到一個已知的被解決的問題,並且根據你的實際需求來修改現有結構。
三、神經網路的類型以及應用
神經網路已經被了解和應用了數十年了,但是最近的一些技術趨勢才使得深度神經網路變得更加高效。
GPUs使得矩陣操作速度更快;分布式計算結構讓計算能力大大增強;多個超參數的組合也讓迭代的速度提升。所有這些都讓訓練的速度大大加快,迅速找到適合的結構。
隨著更大數據集的產生,類似於ImageNet 的大型高質量的標簽數據集應運而生。機器學習演算法訓練的數據越大,那麼它的准確性就會越高。
最後,隨著我們理解能力以及神經網路演算法的不斷提升,神經網路的准確性在語音識別、機器翻譯以及一些機器感知和面向目標的一些任務等方面不斷刷新記錄。
盡管神經網路架構非常的大,但是主要用到的神經網路種類也就是下面的幾種。
3.1前饋神經網路
前饋神經網路包括一個輸入層、一個輸出層以及一個或多個的隱藏層。前饋神經網路可以做出很好的通用逼近器,並且能夠被用來創建通用模型。
這種類型的神經網路可用於分類和回歸。例如,當使用前饋網路進行分類時,輸出層神經元的個數等於類的數量。從概念上講, 激活了的輸出神經元決定了神經網路所預測的類。更准確地說, 每個輸出神經元返回一個記錄與分類相匹配的概率數,其中概率最高的分類將被選為模型的輸出分類。
前饋神經網路的優勢是簡單易用,與其他類型的神經網路相比更簡單,並且有一大堆的應用實例。
3.2卷積神經網路
卷積神經網路和前饋神經網路是非常相似的,至少是數據的傳輸方式類似。他們結構大致上是模仿了視覺皮層。卷積神經網路通過許多的過濾器。這些過濾器主要集中在一個圖像子集、補丁、圖塊的特徵識別上。每一個過濾器都在尋找不同模式的視覺數據,例如,有的可能是找水平線,有的是找對角線,有的是找垂直的。這些線條都被看作是特徵,當過濾器經過圖像時,他們就會構造出特徵圖譜來定位各類線是出現在圖像的哪些地方。圖像中的不同物體,像貓、747s、榨汁機等都會有不同的圖像特徵,這些圖像特徵就能使圖像完成分類。卷積神經網路在圖像識別和語音識別方面是非常的有效的。
卷積神經網路與前饋神經網路在圖像識別方面的異同比較。雖然這兩種網路類型都能夠進行圖像識別,但是方式卻不同。卷積神經網路是通過識別圖像的重疊部分,然後學習識別不同部分的特徵進行訓練;然而,前饋神經網路是在整張圖片上進行訓練。前饋神經網路總是在圖片的某一特殊部分或者方向進行訓練,所以當圖片的特徵出現在其他地方時就不會被識別到,然而卷積神經網路卻能夠很好的避免這一點。
卷積神經網路主要是用於圖像、視頻、語音、聲音識別以及無人駕駛的任務。盡管這篇文章主要是討論遞歸神經網路的,但是卷積神經網路在圖像識別方面也是非常有效的,所以很有必要了解。
3.3遞歸神經網路
與前饋神經網路不同的是,遞歸神經網路的隱藏層的節點里有內部記憶存儲功能,隨著輸入數據的改變而內部記憶內容不斷被更新。遞歸神經網路的結論都是基於當前的輸入和之前存儲的數據而得出的。遞歸神經網路能夠充分利用這種內部記憶存儲狀態處理任意序列的數據,例如時間序列。
遞歸神經網路經常用於手寫識別、語音識別、日誌分析、欺詐檢測和網路安全
遞歸神經網路是處理時間維度數據集的最好方法,它可以處理以下數據:網路日誌和伺服器活動、硬體或者是醫療設備的感測器數據、金融交易、電話記錄。想要追蹤數據在不同階段的依賴和關聯關系需要你了解當前和之前的一些數據狀態。盡管我們通過前饋神經網路也可以獲取事件,隨著時間的推移移動到另外一個事件,這將使我們限制在對事件的依賴中,所以這種方式很不靈活。
追蹤在時間維度上有長期依賴的數據的更好方法是用內存來儲存重要事件,以使近期事件能夠被理解和分類。遞歸神經網路最好的一點就是在它的隱藏層裡面有「內存」可以學習到時間依賴特徵的重要性。
接下來我們將討論遞歸神經網路在字元生成器和網路異常檢測中的應用。遞歸神經網路可以檢測出不同時間段的依賴特徵的能力使得它可以進行時間序列數據的異常檢測。
遞歸神經網路的應用
網路上有很多使用RNNs生成文本的例子,遞歸神經網路經過語料庫的訓練之後,只要輸入一個字元,就可以預測下一個字元。下面讓我們通過一些實用例子發現更多RNNs的特徵。
應用一、RNNs用於字元生成
遞歸神經網路經過訓練之後可以把英文字元當做成一系列的時間依賴事件。經過訓練後它會學習到一個字元經常跟著另外一個字元(「e」經常跟在「h」後面,像在「the、he、she」中)。由於它能預測下一個字元是什麼,所以它能有效地減少文本的輸入錯誤。
Java是個很有趣的例子,因為它的結構包括很多嵌套結構,有一個開的圓括弧必然後面就會有一個閉的,花括弧也是同理。他們之間的依賴關系並不會在位置上表現的很明顯,因為多個事件之間的關系不是靠所在位置的距離確定的。但是就算是不明確告訴遞歸神經網路Java中各個事件的依賴關系,它也能自己學習了解到。
在異常檢測當中,我們要求神經網路能夠檢測出數據中相似、隱藏的或許是並不明顯的模式。就像是一個字元生成器在充分地了解數據的結構後就會生成一個數據的擬像,遞歸神經網路的異常檢測就是在其充分了解數據結構後來判斷輸入的數據是不是正常。
字元生成的例子表明遞歸神經網路有在不同時間范圍內學習到時間依賴關系的能力,它的這種能力還可以用來檢測網路活動日誌的異常。
異常檢測能夠使文本中的語法錯誤浮出水面,這是因為我們所寫的東西是由語法結構所決定的。同理,網路行為也是有結構的,它也有一個能夠被學習的可預測模式。經過在正常網路活動中訓練的遞歸神經網路可以監測到入侵行為,因為這些入侵行為的出現就像是一個句子沒有標點符號一樣異常。
應用二、一個網路異常檢測項目的示例
假設我們想要了解的網路異常檢測就是能夠得到硬體故障、應用程序失敗、以及入侵的一些信息。
模型將會向我們展示什麼呢?
隨著大量的網路活動日誌被輸入到遞歸神經網路中去,神經網路就能學習到正常的網路活動應該是什麼樣子的。當這個被訓練的網路被輸入新的數據時,它就能偶判斷出哪些是正常的活動,哪些是被期待的,哪些是異常的。
訓練一個神經網路來識別預期行為是有好處的,因為異常數據不多,或者是不能夠准確的將異常行為進行分類。我們在正常的數據里進行訓練,它就能夠在未來的某個時間點提醒我們非正常活動的出現。
說句題外話,訓練的神經網路並不一定非得識別到特定事情發生的特定時間點(例如,它不知道那個特殊的日子就是周日),但是它一定會發現一些值得我們注意的一些更明顯的時間模式和一些可能並不明顯的事件之間的聯系。
我們將概述一下怎麼用 Deeplearning4j(一個在JVM上被廣泛應用的深度學習開源資料庫)來解決這個問題。Deeplearning4j在模型開發過程中提供了很多有用的工具:DataVec是一款為ETL(提取-轉化-載入)任務准備模型訓練數據的集成工具。正如Sqoop為Hadoop載入數據,DataVec將數據進行清洗、預處理、規范化與標准化之後將數據載入到神經網路。這跟Trifacta』s Wrangler也相似,只不過它更關注二進制數據。
開始階段
第一階段包括典型的大數據任務和ETL:我們需要收集、移動、儲存、准備、規范化、矢量話日誌。時間跨度的長短是必須被規定好的。數據的轉化需要花費一些功夫,這是由於JSON日誌、文本日誌、還有一些非連續標注模式都必須被識別並且轉化為數值數組。DataVec能夠幫助進行轉化和規范化數據。在開發機器學習訓練模型時,數據需要分為訓練集和測試集。
訓練神經網路
神經網路的初始訓練需要在訓練數據集中進行。
在第一次訓練的時候,你需要調整一些超參數以使模型能夠實現在數據中學習。這個過程需要控制在合理的時間內。關於超參數我們將在之後進行討論。在模型訓練的過程中,你應該以降低錯誤為目標。
但是這可能會出現神經網路模型過度擬合的風險。有過度擬合現象出現的模型往往會在訓練集中的很高的分數,但是在遇到新的數據時就會得出錯誤結論。用機器學習的語言來說就是它不夠通用化。Deeplearning4J提供正則化的工具和「過早停止」來避免訓練過程中的過度擬合。
神經網路的訓練是最花費時間和耗費硬體的一步。在GPUs上訓練能夠有效的減少訓練時間,尤其是做圖像識別的時候。但是額外的硬體設施就帶來多餘的花銷,所以你的深度學習的框架必須能夠有效的利用硬體設施。Azure和亞馬遜等雲服務提供了基於GPU的實例,神經網路還可以在異構集群上進行訓練。
創建模型
Deeplearning4J提供ModelSerializer來保存訓練模型。訓練模型可以被保存或者是在之後的訓練中被使用或更新。
在執行異常檢測的過程中,日誌文件的格式需要與訓練模型一致,基於神經網路的輸出結果,你將會得到是否當前的活動符合正常網路行為預期的結論。
代碼示例
遞歸神經網路的結構應該是這樣子的:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder(
.seed(123)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
.weightInit(WeightInit.XAVIER)
.updater(Updater.NESTEROVS).momentum(0.9)
.learningRate(0.005)
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.(0.5)
.list()
.layer(0, new GravesLSTM.Builder().activation("tanh").nIn(1).nOut(10).build())
.layer(1, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation("softmax").nIn(10).nOut(numLabelClasses).build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
下面解釋一下幾行重要的代碼:
.seed(123)
隨機設置一個種子值對神經網路的權值進行初始化,以此獲得一個有復驗性的結果。系數通常都是被隨機的初始化的,以使我們在調整其他超參數時仍獲得一致的結果。我們需要設定一個種子值,讓我們在調整和測試的時候能夠用這個隨機的權值。
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
決定使用哪個最優演算法(在這個例子中是隨機梯度下降法)來調整權值以提高誤差分數。你可能不需要對這個進行修改。
.learningRate(0.005)
當我們使用隨機梯度下降法的時候,誤差梯度就被計算出來了。在我們試圖將誤差值減到最小的過程中,權值也隨之變化。SGD給我們一個讓誤差更小的方向,這個學習效率就決定了我們該在這個方向上邁多大的梯度。如果學習效率太高,你可能是超過了誤差最小值;如果太低,你的訓練可能將會永遠進行。這是一個你需要調整的超參數。

『陸』 BP神經網路的原理的BP什麼意思

人工神經網路有很多模型,但是日前應用最廣、基本思想最直觀、最容易被理解的是多層前饋神經網路及誤差逆傳播學習演算法(Error Back-Prooaeation),簡稱為BP網路。

在1986年以Rumelhart和McCelland為首的科學家出版的《Parallel Distributed Processing》一書中,完整地提出了誤差逆傳播學習演算法,並被廣泛接受。多層感知網路是一種具有三層或三層以上的階層型神經網路。典型的多層感知網路是三層、前饋的階層網路(圖4.1),即:輸入層、隱含層(也稱中間層)、輸出層,具體如下:

圖4.1 三層BP網路結構

(1)輸入層

輸入層是網路與外部交互的介面。一般輸入層只是輸入矢量的存儲層,它並不對輸入矢量作任何加工和處理。輸入層的神經元數目可以根據需要求解的問題和數據表示的方式來確定。一般而言,如果輸入矢量為圖像,則輸入層的神經元數目可以為圖像的像素數,也可以是經過處理後的圖像特徵數。

(2)隱含層

1989年,Robert Hecht Nielsno證明了對於任何在閉區間內的一個連續函數都可以用一個隱層的BP網路來逼近,因而一個三層的BP網路可以完成任意的n維到m維的映射。增加隱含層數雖然可以更進一步的降低誤差、提高精度,但是也使網路復雜化,從而增加了網路權值的訓練時間。誤差精度的提高也可以通過增加隱含層中的神經元數目來實現,其訓練效果也比增加隱含層數更容易觀察和調整,所以一般情況應優先考慮增加隱含層的神經元個數,再根據具體情況選擇合適的隱含層數。

(3)輸出層

輸出層輸出網路訓練的結果矢量,輸出矢量的維數應根據具體的應用要求來設計,在設計時,應盡可能減少系統的規模,使系統的復雜性減少。如果網路用作識別器,則識別的類別神經元接近1,而其它神經元輸出接近0。

以上三層網路的相鄰層之間的各神經元實現全連接,即下一層的每一個神經元與上一層的每個神經元都實現全連接,而且每層各神經元之間無連接,連接強度構成網路的權值矩陣W。

BP網路是以一種有教師示教的方式進行學習的。首先由教師對每一種輸入模式設定一個期望輸出值。然後對網路輸入實際的學習記憶模式,並由輸入層經中間層向輸出層傳播(稱為「模式順傳播」)。實際輸出與期望輸出的差即是誤差。按照誤差平方最小這一規則,由輸出層往中間層逐層修正連接權值,此過程稱為「誤差逆傳播」(陳正昌,2005)。所以誤差逆傳播神經網路也簡稱BP(Back Propagation)網。隨著「模式順傳播」和「誤差逆傳播」過程的交替反復進行。網路的實際輸出逐漸向各自所對應的期望輸出逼近,網路對輸入模式的響應的正確率也不斷上升。通過此學習過程,確定下各層間的連接權值後。典型三層BP神經網路學習及程序運行過程如下(標志淵,2006):

(1)首先,對各符號的形式及意義進行說明:

網路輸入向量Pk=(a1,a2,...,an);

網路目標向量Tk=(y1,y2,...,yn);

中間層單元輸入向量Sk=(s1,s2,...,sp),輸出向量Bk=(b1,b2,...,bp);

輸出層單元輸入向量Lk=(l1,l2,...,lq),輸出向量Ck=(c1,c2,...,cq);

輸入層至中間層的連接權wij,i=1,2,...,n,j=1,2,...p;

中間層至輸出層的連接權vjt,j=1,2,...,p,t=1,2,...,p;

中間層各單元的輸出閾值θj,j=1,2,...,p;

輸出層各單元的輸出閾值γj,j=1,2,...,p;

參數k=1,2,...,m。

(2)初始化。給每個連接權值wij、vjt、閾值θj與γj賦予區間(-1,1)內的隨機值。

(3)隨機選取一組輸入和目標樣本

提供給網路。

(4)用輸入樣本

、連接權wij和閾值θj計算中間層各單元的輸入sj,然後用sj通過傳遞函數計算中間層各單元的輸出bj

基坑降水工程的環境效應與評價方法

bj=f(sj) j=1,2,...,p (4.5)

(5)利用中間層的輸出bj、連接權vjt和閾值γt計算輸出層各單元的輸出Lt,然後通過傳遞函數計算輸出層各單元的響應Ct

基坑降水工程的環境效應與評價方法

Ct=f(Lt) t=1,2,...,q (4.7)

(6)利用網路目標向量

,網路的實際輸出Ct,計算輸出層的各單元一般化誤差

基坑降水工程的環境效應與評價方法

(7)利用連接權vjt、輸出層的一般化誤差dt和中間層的輸出bj計算中間層各單元的一般化誤差

基坑降水工程的環境效應與評價方法

(8)利用輸出層各單元的一般化誤差

與中間層各單元的輸出bj來修正連接權vjt和閾值γt

基坑降水工程的環境效應與評價方法

(9)利用中間層各單元的一般化誤差

,輸入層各單元的輸入Pk=(a1,a2,...,an)來修正連接權wij和閾值θj

基坑降水工程的環境效應與評價方法

(10)隨機選取下一個學習樣本向量提供給網路,返回到步驟(3),直到m個訓練樣本訓練完畢。

(11)重新從m個學習樣本中隨機選取一組輸入和目標樣本,返回步驟(3),直到網路全局誤差E小於預先設定的一個極小值,即網路收斂。如果學習次數大於預先設定的值,網路就無法收斂。

(12)學習結束。

可以看出,在以上學習步驟中,(8)、(9)步為網路誤差的「逆傳播過程」,(10)、(11)步則用於完成訓練和收斂過程。

通常,經過訓練的網路還應該進行性能測試。測試的方法就是選擇測試樣本向量,將其提供給網路,檢驗網路對其分類的正確性。測試樣本向量中應該包含今後網路應用過程中可能遇到的主要典型模式(宋大奇,2006)。這些樣本可以直接測取得到,也可以通過模擬得到,在樣本數據較少或者較難得到時,也可以通過對學習樣本加上適當的雜訊或按照一定規則插值得到。為了更好地驗證網路的泛化能力,一個良好的測試樣本集中不應該包含和學習樣本完全相同的模式(董軍,2007)。

『柒』 什麼是BP神經網路

BP演算法的基本思想是:學習過程由信號正向傳播與誤差的反向回傳兩個部分組成;正向傳播時,輸入樣本從輸入層傳入,經各隱層依次逐層處理,傳向輸出層,若輸出層輸出與期望不符,則將誤差作為調整信號逐層反向回傳,對神經元之間的連接權矩陣做出處理,使誤差減小。經反復學習,最終使誤差減小到可接受的范圍。具體步驟如下:
1、從訓練集中取出某一樣本,把信息輸入網路中。
2、通過各節點間的連接情況正向逐層處理後,得到神經網路的實際輸出。
3、計算網路實際輸出與期望輸出的誤差。
4、將誤差逐層反向回傳至之前各層,並按一定原則將誤差信號載入到連接權值上,使整個神經網路的連接權值向誤差減小的方向轉化。
5、対訓練集中每一個輸入—輸出樣本對重復以上步驟,直到整個訓練樣本集的誤差減小到符合要求為止。

『捌』 為什麼要對訓練好的神經網路進行測試目的是什麼測試和訓練過程區別是什麼

訓練得到擬合程度高的網路,測試樣本的准確率未必高。一個好的網路應該具有很好的泛化能力。
可以這樣理解,訓練是根據你輸入的數據通過修正權值來減小誤差得到網路模型,測試是用另外的數據去測試網路的性能。

『玖』 異常檢測有哪些主要的分析方法

1. 概率統計方法
在基於異常檢測技術的IDS中應用最早也是最多的一種方法。
首先要對系統或用戶的行為按照一定的時間間隔進行采樣,樣本的內容包括每個會話的登錄、退出情況,CPU和內存的佔用情況,硬碟等存儲介質的使用情況等。
將每次採集到的樣本進行計算,得出一系列的參數變數對這些行為進行描述,從而產生行為輪廓,將每次采樣後得到的行為輪廓與已有輪廓進行合並,最終得到系統和用戶的正常行為輪廓。IDS通過將當前採集到的行為輪廓與正常行為輪廓相比較,來檢測是否存在網路入侵行為。
2. 預測模式生成法
假設條件是事件序列不是隨機的而是遵循可辨別的模式。這種檢測方法的特點是考慮了事件的序列及其相互聯系,利用時間規則識別用戶行為正常模式的特徵。通過歸納學習產生這些規則集,並能動態地修改系統中的這些規則,使之具有較高的預測性、准確性。如果規則在大部分時間是正確的,並能夠成功地運用預測所觀察到的數據,那麼規則就具有高可信度。
3. 神經網路方法
基本思想是用一系列信息單元(命令)訓練神經單元,這樣在給定一組輸入後、就可能預測出輸出。與統計理論相比,神經網路更好地表達了變數間的非線性關系,並且能自動學習並更新。實驗表明UNIX系統管理員的行為幾乎全是可以預測的,對於一般用戶,不可預測的行為也只佔了很少的一部分。

『拾』 誤用檢測和異常檢測的基本原理

異常檢測
異常檢測通常用於檢測系統內容錯誤,當系統內容錯誤時將發出執行異常事件。具體使用方法時,在「檢測執行內容」事件中,設置所要執行的命令。然後執行其方法『檢測執行』。如果發現命令錯誤時,就發出執行異常事件。
注意:這里的錯誤,不是指搭建錯誤,而是系統內部錯誤。
異常檢測的經典應用以客戶伺服器方式執行提交時,如果服務端出現錯誤,造成沒有提交成功,這時就要發出系統異常事件,使數據正常處理,數據表數據滾回。如向銀行系統的伺服器更改存錢信息,當伺服器錯誤沒有接收到新的數據,這時要發出異常事件使數據恢復為原來的數據,表示沒存上。
在常規應用中,假設一段代碼必須按正確的時候進行,錯了的時候發出異常事件. 誤用檢測按照預定模式搜尋事件數據。最適用於對已知模式的可靠檢驗。執行誤用檢測,主要依賴於可靠的用戶活動記錄和分析事件的方法。