當前位置:首頁 » 手機網路 » 移動網路構造

移動網路構造

發布時間: 2022-08-14 22:01:00

移動網路架構

2G/3G/4G 他們的網路結構是不太一樣的。
2G:UE(移動台)-BTS(基站)-BSC(基站管理器)-MSC(移動交換中心)-BSC(基站管理器)-BTS(基站)-UE(移動台)
3G:電路域走話音:UE(移動台)-Node B(節點B)-RNC(無線網路控制器)-電路域CS[MSC(移動交換中心)]-RNC(無線網路控制器)-Node B(節點B)-UE(移動台)
分組域走數據:UE(移動台)-Node B(節點B)-RNC(無線網路控制器)-分組域PS[SGSN(服務GPRS支持節點)]-分組域PS[GGSN(網關GPRS支持節點)]-互聯網
4G:只有分組域:UE(移動台)-eNode B(演進型節點B)-SGSN(服務GPRS支持節點)-GGSN(網關GPRS支持節點)-互聯網
在4G中,eNode B融合了部分RNC的功能,而RNC直接融合到核心網去了。
2G也能走數據,但是由於只有10Kbps左右,所以忽略不計了。
4G目前沒有通話功能,但是架構上設計了通話模塊Volte,只是沒有大面積普及,只有試點,而4G的通話主要是切換到其他制式的通訊網路上,移動是切換到2G,聯通是切換到3G。

⑵ 3g,4g之類的移動通信網路,最常用的網路拓撲結構類似哪種形狀

3g,4g之類的移動通信網路最常用的網路拓撲結構類似蜂窩的形狀。

傳統蜂窩通信系統主要由交換網路子系統(NSS)、無線基站子系統(BSS)和移動台(MS)三大部分組成。蜂窩系統使用小區分裂的方法來擴容,即通過增加基站數量把現有小區劃分為若干更小的小區,當小區半徑縮小時,干擾將隨之增強,嚴重製約了系統容量,同時基站密度也將急劇加大。若小區半徑減為原先的1/2,所需基站數將是原來的4倍,導致切換頻率大大增加,系統復雜度和成本呈指數級上升。

4G系統的RAN擬採用簇型結構,分布式控制,這種結構下,基站被聚合成一個簇並擁有一個連接到核心網的「簇頭」基站。簇內的基站由一種區域網互相連接。無線網路控制器(RNC)的功能被分配到每個基站,形成分布式基站控制。

⑶ 4G的網路結構

4G移動系統網路結構可分為三層:物理網路層、中間環境層、應用網路層。物理網路層提供接入和路由選擇功能,它們由無線和核心網的結合格式完成。中間環境層的功能有QoS映射、地址變換和完全性管理等。
物理網路層與中間環境層及其應用環境之間的介面是開放的,它使發展和提供新的應用及服務變得更為容易,提供無縫高數據率的無線服務,並運行於多個頻帶。

什麼是GSM說詳細點它的三層結構是什麼

GSM900和DCS1800就是我們平常講的雙頻網路,它們都是GSM標准。兩個系統功能相同,主要是頻率不同,GSM900工作在900MHZ,DCS1800工作在1800MHZ。我國最早使用的是GSM900,隨著通信網路規模和用戶數量的迅速發展,原有的GSM900網路頻率變得日益緊張,為更好地滿足用戶增長的需求,我國近期引入了DCS1800,並採用以GSM900網路為依託, DCS1800網路為補充的組網方式,構成GSM900/DCS1800雙頻網,以緩和高話務密集區無線信道日趨緊張的狀況。只要用戶使用的是雙頻手機,就可在GSM900/DCS1800兩者之間自由切換,自動選擇最佳信道進行通話,即使在通話中手機也可在兩個網路之間自動切換而用戶毫無察覺,而且手機選擇了最佳信道,接通率得到了提高。為適應這個趨勢,進一步搶占市場份額,諾基亞、摩托羅拉、愛立信等世界著名行動電話設備生產廠商競相開發並推出多頻段手機。

(一)GSM系統的網路結構

GSM的歷史可以追溯到1982年,當時,北歐四國向CEPT(Conference Europe of Post and Telecommunications)提交了一份建議書,要求制定900MHZ頻段的歐洲公共電信業務規 范,以建立全歐統一的蜂窩系統。同年,成立了移動通信特別小組(GSM-Group Special Mobile)。在1982年~1985年期間,討論焦點是制定模擬蜂窩網標准還是制定數字蜂窩網 標准問題,直到1986年決定為制定數字蜂窩網標准。1986年,在巴黎對不同公司、不同 方案的系統(8個)進行了比較,包括現場試驗。1987年5月選定窄帶TDMA方案。與此同時,18個國家簽署了諒解備忘錄,相互達成履行規范的協議。1988年頒布了GSM標准, 也稱泛歐數字蜂窩通信標准。在現階段,GSM包括兩個並行的系統:GSM900和DCS1800, 這兩個系統功能相同,主要是頻率不同。在GSM建議中,未對硬體作出規定,只對功能和介面制定了詳細規定,這樣便於不同產品可以互通。GSM建議共有12個系統。

1.GSM系統的主要組成

GSM數字蜂窩通信系統的主要組成部分可分為移動台、基站子系統和網路子系統。 基站子系統(簡稱基站BS)由基站收發台(BTS)和基站控制器(BSC)組成;網路子系 統由移動交換中心(MSC)和操作維護中心(OMC)以及原地位置寄存器(HLR)、訪問 位置寄存器(VLR)、鑒權中心(AUC)和設備標志寄存器(EIR)等組成。

2.GSM的區域、號碼、地址與識別

1)區域劃分

從地理位置范圍來看,GSM系統分為GSM服務區,公用陸地移動網(PLMN)業務區、移動 交換控制區(MSC區)、位置區(LA)、基站區和小區。

*GSM服務區

由聯網的GSM全部成員國組成,移動用戶只要在服務區內,就能得到系統的各種服 務,包括完成國際 漫遊。

*PLMN業務區

由GSM系統構成的公用陸地移動網(GSM/PLMN)處於國際或國內匯接交換機的級別上,該區域為PLMN業務區,它可以與公用交換電信網(PSTN)、綜合業務數字網(ISDN) 和公用數據網(PDNN)互連,在該區域內,有共同的編號方法及路由規劃。一個PLMN 業務區包括多個MSC業務區,甚至可擴展全國。

*MSC業務區

在該區域內,有共同的編號方法及路由規劃。由一個移動交換中心控制區域稱為 MSC業務區。一個MSC區可以由一個或多個位置區組成。

*位置區

每一個MSC業務區分成若干位置區(LA),位置區由若干基站區組成,它與一個或 若干個基站控制器(BSC)有關。在位置區內移動台移動時,不需要作位置更新。當尋 呼移動用戶時,位置區內全部基站可以同時發尋呼信號。系統中,位置區域以位置區 識別碼(LAI)來區分MSC業務區的不同位置區。

*基站區

一般指一個基站控制器所控制若干個小區的區域稱為基站區。

*小區

小區也叫蜂窩區,理想形狀是正六邊形,一個小區包含一個基站,每個基站包含 若干套收,發信機,其有效覆蓋范圍決定於發射功率、天線高度等因素,一般為幾公 里。基站可位於正六邊形中心,採用全向天線,稱為中心激勵;也可位於正六邊形頂 點(相隔設置),採用120度或60度定向天線,稱為頂點激勵。 若小區內業務量激增時,小區可以縮小(一分為四),新的小區俗稱「小小區」, 在蜂窩網中稱為小區分裂。

2)識別號碼

GSM網路是十分復雜的,它包括交換系統,基站子系統和移動台。移動用戶可以 與市話網用戶、綜合業務數字網用戶和其它移動用戶進行接續呼叫,因此必須具有多 種識別號碼。

1>國際移動用戶識別碼(IMSI)

國際移動用戶識別碼是用於識別GSM/PLMN網中用戶,簡稱用戶識別碼,根據GSM 建議,IMSI最大長度為15位十進制數字。

MCC MNC MSIN/NMSI

3位數字 1或者2位數字 10-11位數字

MCC-移動國家碼,3位數字。如中國的MCC為460。

MNC-移動網號,最多2位數字。用於識別歸屬的移動通信網(PLMN)。

MSIN-移動用戶識別碼。用於識別移動通信網中的移動用戶。

NMSI-國內移動用戶識別碼。由移動網號和移動用戶識別碼組成。

2>臨時用戶識別碼(TMSI)

為安全起見,在空中傳送用戶識別碼時用TMSI來代替IMSI,因為TMSI只在本地有效(即 在該MSC/VLR區域內),其組成結構由管理部門選擇,但總長不超過4個位元組。

3>國際移動設備識別碼(IMEI)

IMEI是唯一的,用於識別移動設備的號碼。用於監控被竊或無效的這一類移動設備, IMEI的構成如下圖所示。

IMEI=TAC+FAC+SNR+SP(15位數)。

TAC FAC SNR SP

6位數字 2位數字 6位數字 1位數字

TAC - Type Approval Code (TAC) 型號批准碼,由歐洲型號批准中心分配。 前2位為國家碼。(例如:Nokia的,Ericsson的,Motorola的,又各式各樣不同型號的 批准碼又不盡相同,如同是Ericsson的,GH388和GF388就不一樣,雖然只差有無蓋; 但只要是同一型號的,前六碼一定一樣,如果不一樣,可能是冒牌貨!)

FAC - Final Assembly Code (FAC)最後裝配碼,表示生產廠或最後裝配地, 由廠家編碼。如40的話,是Motorola在英國(UK)的工廠,07也是Motorola的工廠,在 德國,67的話也是,在美國本地。對Nokia,FAC是51。 SNR - Serial Number (SNR)序號碼,獨立地、唯一地識別每個TAC和FAC移 動設備,所以同一個牌子的同一型號的SNR是不可能一樣的。

SP - Spare備用碼,通常是0。

4>移動台PSTN/ISDN號碼(MSISDN)

MSISDN用於公用交換電信網(PSTN)或綜合業務數字網(ISDN)撥向GSM 系統的號碼,構成如下:

MSISDN=CC+NDC+SN(總長不超過15位數字)

CC=國家碼(如中國為86),NDC=國內地區碼,SN=用戶號碼

5>移動台漫遊號碼(MSRN)

當移動台漫遊到另一個移動交換中心業務區時,該移動交換中心將給移動台分配 一個臨時漫遊號碼,用於路由選擇。漫遊號碼格式與被訪地的移動台PSTN/ISDN號碼格 式相同。當移動台離開該區後,被訪位置寄存器(VLR)和原地位置寄存器(HLR)都 要刪除該漫遊號碼,以便可再分配給其它移動台使用。

MSRN分配過程如下:

市話用戶通過公用交換電信網發MSISDN號至GSMC、HLR。HLR請求被訪MSC/VLR分配 一個臨時性漫遊號碼,分配後將該號碼送至HLR。HLR一方面向MSC發送該移動台有關參 數,如國際移動用戶識別碼(IMSI);另一方面HLR向GMSC告知該移動台漫遊號碼, GMSC即可選擇路由,完成市話用戶->GMSC->MSC->移動台接續任務。

6>位置區識別碼(LAI)

LAI用於移動用戶的位置更新。LAI=MCC+MNC+LAC 。MCC=移動國家碼,識別國家, 與IMSI中的三位數字相同。MNC=移動網號,識別不同的GSMPLMN網,與IMSI中的MNC相 同。LAC=位置區號碼,識別一個GSMPLMN網中的位置區。LAC的最大長度為16bits,一 個GSMPLMN中可以定義65536個不同的位置區。

7>小區全球識別碼(CGI)

CGI是用來識別一個位置區內的小區。它是在位置區識別碼(LAI)後加上一個小 區識別碼(CI)。

CGC=MCC+MNC+LAC+CI。

CI=小區識別碼,識別一個位置區內的小區,最多為16bits。

8>基站識別碼(BSIC)

BSIC用於移動台識別不同的相鄰基站,BSIC採用6比特編碼。

(二)GSM系統信道分類

蜂窩通信系統要傳輸不同類型的信息,包括業務信息和各種控制信息,因而要在物理 信道上安排相應的邏輯信道。這些邏輯信道有的用於呼叫接續階段,有的用於通信進行 當中,也有的用於系統運行的全部時間內。

1、業務信道(TCH)傳輸話音和數據

話音業務信道按速率的不同,可分為全速率話音業務信道(TCH/FS)和半速率話音 業務信道(TCH/HS)。

同樣,數據業務信道按速率的不同,也分為全速率數據業務信道(如TCH/F9.6, TCH/F4.8,TCH/F2.4)和半速率數據業務信道(如 TCH/H4.8,TCH/H2.4)(這里的數 字9.6,4.8和2.4表示數據速率,單位為kb/s)。

2、控制信道(CCH)傳輸各種信令信息

控制信道分為三類:

1)廣播信息(BCH)是一種「一點對多點」的單方向控制信道,用於基站向所有移 動台廣播公用信息。傳輸的內容是移動台入網和呼叫建立所需要的各種信息。其中又分 為:

a、頻率校正信道(FCCH):傳輸供移動台校正其工作頻率的信息;

b、同步信道(SCH):傳輸供移動台進行同步和對基站進行識別的信息;

c、廣播控制信道(BCCH):傳輸通用信息,用於移動台測量信號強度和識別小區 標志等。

2)公共控制信道(CCCH)是一種「一點對多點」的雙向控制信道,其用途是在呼 叫接續階段,傳輸鏈路連接所需要的控制信令與信息。其中又分為:

a、尋呼信道(PCH):傳輸基站尋呼移動台的信息;

b、隨機接入信道(RACH):移動台申請入網時,向基站發送入網請求信息;

c、准許接入信道(AGCH):基站在呼叫接續開始時,向移動台發送分配專用控制 信道的信令。

3)專用控制信道(DCCH)是一種「點對點」的雙向控制信道,其用途是在呼叫接 續階段和在通信進行當中,在移動台和基站之間傳輸必需的控制信息。其中又分為:
a、獨立專用控制信道(SDCCH):傳輸移動台和基站連接和信道分配的信令;

b、慢速輔助控制信道(SACCH):在移動台和基站之間,周期地傳輸一些特定的信 息,如功率調整、幀調整和測量數據等信息;SACCH是安排在業務信道和有關的控制信 道中,以復接方式傳輸信息。安排在業務信道時,以SACCH/T表示,安排在控制信道時, 以SACCH/C表示,SACCH/常與SDCCH聯合使用。

c、快速輔助控制信道(FACCH):傳送與SDCCH相同的信息。使用時要中斷業務信 息(4幀),把FACCH插入,不過,只有在沒有分配SDCCH的情況下,才使用這種控制信 道。這種控制信道的傳輸速率較快,每次佔用4幀時間,約18.5ms。

由此可見,GSM通信系統為了傳輸所需的各種信令,設置了多種專門的控制信道。 這樣做,除因為數字傳輸為設置多各邏輯信道提供了可能外,主要是為了增強系統的控 制功能(比如後面將要提到的,為提高過境切換的速度而採用移動台輔助切換技術), 也為了保證話音通信質量,在模擬蜂窩系統中,要在通話進行過程中,進行控制信息的 傳輸,必須中斷話音信息的傳輸(100ms),這就是所謂的「中斷一猝發」的控制方式。 信道中斷100ms,會使話音產生可以聽得到的喀喇聲。如果這種中斷過於頻繁,勢必明 顯地降低話音質量,因此,模擬蜂窩系統必須限制在通話過程中傳輸控制信息的容量。 與此不同,GSM蜂窩系統採用專用控制信道傳輸控制信息,除去FACCH外,不在通信過 程中中斷話音信息,因而能保證話音的傳輸質量。其中FACCH雖然也採取「中斷一猝發」 控制方式,但是只在特定場合下才使用,而且佔用的時間短(18.5ms),其影響明顯 減小。GSM蜂窩系統還採用信息處理技術,來估計並補償這種因為插入FACCH而被刪除 的話音。

⑸ 移動通信網的主要結構有哪些

移動通信網的組成

移動通信網由無線接入網、核心網和骨幹網三部分組成。無線接入網主要為移動終端提供接入網路服務,核心網和骨幹網主要為各種業務提供交換和傳輸服務。從通信技術層面看,移動通信網的基本技術可分為傳輸技術和交換技術兩大類。

從傳輸技術來看,在核心網和骨幹網中由於通信媒質是有線的,對信號傳輸的損傷相對較小,傳輸技術的難度相對較低。但在無線接入網中由於通信媒質是無線的,而且終端是移動的,這樣的信道可稱為移動(無線)信道,它具有多徑衰落的特徵,並且是開放的信道,容易受到外界干擾,這樣的信道對信號傳輸的損傷是比較嚴重的,因此,信號在這樣信道傳輸時可靠性較低。同時,無線信道的頻率資源有限,因此有效地利用頻率資源是非常重要的。也就是說,在無線接入網中,提高傳輸的可靠性和有效性的難度比較高。

從網路技術來看,交換技術包括電路交換和分組交換兩種方式。目前移動通信網和移動數據網通常都有這兩種交換方式。在核心網中,分組交換實質上是為分組選擇路由,這是一種類似於移動IP選路機制(或稱為路由技術),它是通過網路的移動性管理(MM)功能來實現的

⑹ LTE 的網路結構中有哪些網元作用是什麼

LTE網路結構有以下網元:

1、eNodeB(簡稱為eNB)是LTE網路中的無線基站,也是LTE無線接入網的網元,負責空中介面相關的所有功能:

(1)無線鏈路維護功能,保持與終端間的無線鏈路,同時負責無線鏈路數據和IP數據之間的協議轉換;

(2)無線資源管理功能,包括無線鏈路的建立和釋放、無線資源的調度和分配等;

(3)部分移動性管理功能,包括配置終端進行測量、評估終端無線鏈路質量、決策終端在小區間的切換等。

2G/3G基站只負責了與終端無線鏈路的連接,而鏈路的具體維護工作(無線資源管理、不經過核心網的移動性管理等)都是由基站的上一級管理實體(2G中是BSC、3G中的RNC)完成的,此外無線接入網與核心網的橋梁功能也是在BSC或RNC中實現的。

總之,eNB大致相當於2G中BTS與BSC的結合體,或3G中NodeB與RNC的結合體。

2、MME(Mobility Management Entity)是3GPP協議LTE接入網路的關鍵控制節點,它負責空閑模式的UE(User Equipment)的定位,傳呼過程,包括中繼,簡單的說MME是負責信令處理部分。

它涉及到bearer激活/關閉過程,並且當一個UE初始化並且連接到時為這個UE選擇一個SGW(Serving GateWay)。通過和HSS交互認證一個用戶,為一個用戶分配一個臨時ID。MME同時支持在法律許可的范圍內,進行攔截、監聽。MME為2G/3G接入網路提供了控制函數介面,通過S3介面。為漫遊UEs,面向HSS同樣提供了S6a介面。

3、SGW(Serving GateWay,服務網關)是移動通信網路EPC中的重要網元。

EPC網路實際上是原3G核心網PS域的演進版本,而SGW的功能和作用與原3G核心網SGSN網元的用戶面相當,即在新的EPC網路中,控制面功能和媒體面功能分離更加徹底。 

4、PGW(PDN GateWay,PDN網關)是移動通信網路EPC中的重要網元。

EPC網路實際上是原3G核心網PS域的演進版本,而PGW也相當於是一個演進了的GGSN網元,其功能和作用與原GGSN網元相當。

(6)移動網路構造擴展閱讀

隨著技術的演進與發展,3GPP相繼提出了TD-LTE,FDD-LTE等技術。

1、TD-LTE

TD-LTE是一種新一代寬頻移動通信技術,是我國擁有自主知識產權的TD-SCDMA的後續演進技術,在繼承了TDD優點的同時又引入了多天線MIMO與頻分復用OFDM技術。相比於3G,TD-LTE在系統性能上有了跨越式提高,能夠為用戶提供更加豐富多彩的移動互聯網業務。

2、FDD-LTE

FDD(頻分雙工)是該技術支援的兩種雙工模式之一,應用FDD式的LTE即為FDD-LTE。

由於無線技術的差異使用頻段的不同以及各 個廠家的利益等因素,FDD-LTE的標准化與產業發展都領先於TDD-LTE。FDD模式的特點是在分離(上下行頻率間隔190MHz)的兩個對稱頻率信道上,系統進行接收和傳送,用保證頻段來分離接收和傳送信道。

FDD模式的優點是採用包交換等技術,可突破二代發展的瓶頸,實現高速數據業務,並可提高頻譜利用率,增加系統容量。但FDD必須採用成對的頻率,即在每2 x 5MHz的帶寬內提供第三代業務。

該方式在支持對稱業務時,能充分利用上下行的頻譜,但在非對稱的分組交換(互聯網)工作時,頻譜利用率則大大降低(由於低上行負載,造成頻譜利用率降低約40%)。 在這點上,TDD模式有著FDD無法比擬的優勢。

⑺ 什麼是移動通信網路結構

在寬頻移動通信系統中,為了滿是不同用戶對不同業務的需求,將各種針對不同業務的接入系統通過多媒體接入系統連接到基於IP的核心網中,形成一個公共的、靈活的、可擴展的平台,寬頻無線移動通信網路系統的網路體系結構可以由下而上分為:物理層、網路業務執行技術層、應用層等3層。物理層提供接入和選路功能,網路業務執行技術層作為橋接層提供QoS映射、地址轉換、即插即用、安全管理、有源網路。物理層與網路業務執行技術層提供開放式IP介面。應用層與網路業務執行技術層之間也是開放式介面,用於第三方開發和提供新業務。結合移動通信市場發展和用戶需求,寬頻無線移動網路的根本任務是能夠接收、獲取到終端的呼叫,在多個運行網路(平台)之間或者多個無線介面之間,建立其最有效的通信路徑,並對其進行實時的定位和跟蹤。在移動通信過程中,移動網路還要保持良好的無縫連接能力,保證數據傳輸的高質量、高速率。此移動網路將基於多層蜂窩結構,通過多個無線介面,由多個業務提供者和眾多網路運營者提供多媒體業務。

⑻ 移動網路分接入層,匯聚層,核心層,其中各層的主要設備是什麼啊

核心層:核心層是網路的高速交換主幹,對整個網路的連通起到至關重要的作用。核心層應該具有如下幾個特性:可靠性、高效性、冗餘性、容錯性、可管理性、適應性、低延時性等。在核心層中,應該採用高帶寬的千兆以上交換機。

因為核心層是網路的樞紐中心,重要性突出。核心層設備採用雙機冗餘熱備份是非常必要的,也可以使用負載均衡功能,來改善網路性能。

匯聚層:匯聚層是網路接入層和核心層的「中介」,就是在工作站接入核心層前先做匯聚,以減輕核心層設備的負荷。

匯聚層具有實施策略、安全、工作組接入、虛擬區域網(VLAN)之間的路由、源地址或目的地址過濾等多種功能。在匯聚層中,應該選用支持三層交換技術和VLAN的交換機,以達到網路隔離和分段的目的。

接入層:接入層向本地網段提供工作站接入。在接入層中,減少同一網段的工作站數量,能夠向工作組提供高速帶寬。接入層可以選擇不支持VLAN和三層交換技術的普通交換機。

(8)移動網路構造擴展閱讀

三層網路結構基於性能瓶頸和網路利用率等等的原因,資深的網路設計師都在探索新的數據中心的拓撲結構。

三層網路結構數據中心網路傳輸模式是不斷地改變的。大多數網路都是縱向(north-south)的傳輸模式---主機與網路中的其它非相同網段的主機通信都是設備-交換機-路由到達目的地。同時,三層網路結構在同一個網段的主機通常連接到同一個交換機,可以直接相互通訊。

然而,三層網路結構現代數據中心的計算和存儲基礎設施,主要網路流量模式從已經不止是單純的不同網段之間通訊。三層網路結構內外網的通訊、網路段分布在多個接入交換機,要求主機通過網路互連等這些環境。這些三層網路結構網路環境的變化催生了兩種技術趨勢:網路收斂和虛擬化。

網路收斂:三層網路結構中,儲存網路和通信網路在同一個物理網路中。主機和陣列之間的數據傳輸通過儲存網路來傳輸,在邏輯拓撲上就像是直接連接的一樣。如ISCSI等。

虛擬化:將物理客戶端向虛擬客戶端轉化。虛擬化伺服器是未來發展的主流和趨勢,它將使三層網路結構的網路節點的移動變得非常簡單。

橫向網路(east-west)在縱向設計的三層網路結構中傳輸數據會帶有傳輸的瓶頸,因為數據經過了許多不必要的節點(如路由和交換機等設備)。如果三層網路結構上主機需要通過高速帶寬相互訪問,但通過層層的uplink口,會導致潛在的、而且非常明顯的性能衰減。

三層網路結構的原始設計更會加劇這種性能衰減,由於生成樹協議會防止冗餘鏈路存在環路,雙上行鏈路接入交換機只能使用一個指定的網路介面鏈接。

雖然增大內部交換層的帶寬有助於改善三層網路結構的傳輸阻塞,但這樣受益的只是一個節點。E-W模式中主機之間的的數據傳輸並非同一時間只是存在兩個節點之間。相反,三層網路結構數據中心中的主機之間在任何時間都有數據傳輸的。因此,三層網路結構增加帶寬這種高成本低效率的投資只是治標不治本。

參考資料來源:網路-三層網路結構

參考資料來源:網路-匯聚層

參考資料來源:網路-接入層

⑼ 移動通信網的基本網路結構包括哪些功能

結構模塊有
移動台
交換子系統
auc
omc
bts
,移動台和bts負責信息的接收和發送,auc負責用戶的鑒權,計費管理,omc負責全網的監控

⑽ 3g,4g之類的移動通信網路,最常用的網路拓撲結構類似哪種形狀

3g,4g之類的移動通信網路最常用的網路拓撲結構類似蜂窩的形狀。

傳統蜂窩通信系統主要由交換網路子系統(NSS)、無線基站子系統(BSS)和移動台(MS)三大部分組成。蜂窩系統使用小區分裂的方法來擴容,即通過增加基站數量把現有小區劃分為若干更小的小區,當小區半徑縮小時,干擾將隨之增強,嚴重製約了系統容量,同時基站密度也將急劇加大。若小區半徑減為原先的1/2,所需基站數將是原來的4倍,導致切換頻率大大增加,系統復雜度和成本呈指數級上升。

4G系統的RAN擬採用簇型結構,分布式控制,這種結構下,基站被聚合成一個簇並擁有一個連接到核心網的「簇頭」基站。簇內的基站由一種區域網互相連接。無線網路控制器(RNC)的功能被分配到每個基站,形成分布式基站控制。