帶寬:Maxnetbitrate。
帶寬是指的鏈路帶寬,也就是一段線路,也就是教材上寫的「一點到另外一點」:當討論通信鏈路的帶寬時,一般是指鏈路上每秒所能傳送的比特數,它取決於鏈路時鍾速率和信道編碼在計算機網路中又稱為線速。可以說乙太網的帶寬是10Mbps。但是需要區分鏈路上的可用帶寬(帶寬)與實際鏈路中每秒所能傳送的比特數(吞吐量)。通常更傾向於用「吞吐量」一詞來表示一個系統的測試性能。這樣,因為實現受各種低效率因素的影響,所以由一段帶寬為10Mbps的鏈路連接的一對節點可能只達到2Mbps的吞吐量。這樣就意味著,一個主機上的應用能夠以2Mbps的速度向另外的一個主機發送數據
吞吐量其實等同我們平時說的速率了,但是是單點的:吞吐量的大小主要由網路設備的內外網口硬體,及程序演算法的效率決定,尤其是程序演算法,對於像防火牆系統這樣需要進行大量運算的設備來說,演算法的低效率會使通信量大打折扣。因此,大多數防火牆雖號稱100M防火牆,由於其演算法依靠軟體實現,通信量遠遠沒有達到100M,實際只有10M-20M。純硬體防火牆,由於採用硬體進行運算,因此吞吐量可以接近線速,達到90-95M,是真正的100M防火牆
這里再補充一個概念:吞吐量的測試方法是:在測試中以一定速率發送一定數量的幀,並計算待測設備傳輸的幀,如果發送的幀與接收的幀數量相等,那麼就將發送速率提高並重新測試;如果接收幀少於發送幀則降低發送速率重新測試,直至得出最終結果。吞吐量測試結果以比特/秒或位元組/秒錶示
所以,吞吐量和帶寬的關系就出來了:當幀的大小確定的時候,以一個不大不小的速率發送並沒有失敗,吞吐量就接近於帶寬(也可以認為是測試出了帶寬),這時發送時延的公式用幀大小除以吞吐量也是成立的(也就是題主疑問的是單點還是點到點之間的區別)。請注意,如果幀的大小變了,幀發送的速率也會變化,但是
很顯然,對於固定線路,帶寬必然是確定的。我們把題主的問題簡化到帶寬測試中來:由於設備具有發送時延,所以在通過固定大小幀(車)的時候實際是有消耗的,我們選擇一個不大不小的速率發送車,是為了最有效的消除發送時延對測試的影響,這樣用最終每秒發送的數據量就可以衡量帶寬。
總結一下,發送時延可以歸結為公式表述:和單點發送的幀成正比(數據越多,處理的時間越長);和單點的吞吐量成反比(吞吐量越高,時間越短)。但是,就一個設備來說,吞吐量是可變的,所以需要一個最大的吞吐量來固定衡量,這樣就是帶寬了。也可理解為同一個線路只有得到最大帶寬的時候,才會有最小時延,不同線路的帶寬不一樣發送時延也不一樣。以上就是教材公式的變形,把分母的線路帶寬用Maxthrought來替代即可。
不必糾結這里帶寬的點到點,實際就是線路帶寬使用到這個公式裡面來了,你理解為單點也沒有問題。
㈡ 計算機網路的主要性能指標有哪些
性能指標從不同的方面來度量計算機網路的性能。
1、速率
計算機發送出的信號都是數字形式的。比特(bit)是計算機中的數據量的單位,也是資訊理論中使用的信息量單位。英文字bit來源binarydigit(一個二進制數字),因此一個比特就是二進制數字中的一個1或0。網路技術中的速率指的是鏈接在計算機網路上的主機在數字信道上傳送數據的速率,也稱為數據率(datarate)或者比特率(bitrate)。速率的單位是b/s(比特每秒)或者bit/s,也可以寫為bps,即bitpersecond。當數據率較高時,可以使用kb/s(k=10^3=千)、Mb/s(M=10^6=兆)、Gb/s(G=10^9=吉)或者Tb/s(T=10^12=太)。現在一般常用更簡單並不是很嚴格的記法來描述網路的速率,如100M乙太網,而省略了b/s,意思為數據率為100Mb/s的乙太網。這里的數據率通常指額定速率。
2、帶寬
帶寬本上包含兩種含義:
(1)帶寬本來指某個信號具有的頻帶寬度。信號的帶寬是指該信號所包含的各種不同頻率成分所佔據的頻率范圍。例如,在傳統的通信線路上傳送的電話信號的標准帶寬是3.1kHz(從300Hz到3.1kHz,即聲音的主要成分的頻率范圍)。這種意義的帶寬的單位是赫茲。在以前的通信的主幹線路傳送的是模擬信號(即連續變化的信號)。因此,表示通信線路允許通過的信號頻帶范圍即為線路的帶寬。
(2)在計算機網路中,貸款用來表示網路的通信線路所能傳送數據的能力,因此網路帶寬表示在單位時間內從網路的某一點到另一點所能通過的「最高數據量「。這種意義的帶寬的單位是」比特每秒「,即為b/s。子這種單位的前面也通常加上千(k)、兆(M)、吉(G)、太(T)這樣的倍數。
3、吞吐量
吞吐量(throughput)表示在單位時間內通過某個網路(或信道、介面)的數據量。吞吐量進場用於對現實世界中的網路的一種測量,以便知道實際上到底有多少數據量能夠通過網路。顯然,吞吐量受到網路的帶寬或網路的額定速率的限制。例如,對於一個100Mb/s的乙太網,其額定速率為100Mb/s,那麼這個數值也是該乙太網的吞吐量的絕對上限值。因此,對100Mb/s的乙太網,其典型的吞吐量可能只有70Mb/s。
4、時延
時延指數據(一個報文或者分組)從網路(或鏈路)的一端傳送到另一端所需的時間。時延是一個非常重要的性能指標,也可以稱為延遲或者遲延。
網路中的時延由以下幾部分組成:
(1)發送時延發送時延是主機或路由器發送數據幀所需要的時間,也就是從發送數據幀的第一個比特算起,到該幀的最後一個比特發送完畢所需時間。發送時延也可以稱為傳輸時延。發送的時延=數據幀長度(b)/發送速率(b/s)。
對於一定的網路,發送時延並非固定不變,而是與發送的幀長成正比,與發送數率成反比。
(2)傳播時延傳播時延是電磁波在信道中傳播一定的距離需要花費的時間。
傳播時延=信道長度(m)/電磁波在信道上的傳播數率(m/s)
電磁波在自由空間的傳播速率是光速,即3.0×10^5km/s。電磁波在網路傳輸媒體中的傳播速率比在自由空間低一些,在銅線電纜中的傳播速率約為2.3×10^5km/s,在光纖中的傳播速率約為2.0×10^5km/s。
(3)處理時延主機或路由器在收到分組時需要花費一定的時間處理,分析分組首部、從分組中提取數據部分、進行差錯檢驗、查到適當路由等,這就產生了處理時延。
(4)排隊時延分組在經過網路傳輸時,要經過許多的路由器。但分組在進入路由器後要先在輸入隊列中排隊等待處理。在路由器確定了轉發介面後,還要在輸出隊列中排隊等待轉發。這就產生了排隊延時。排隊延時通常取決於網路當時的通信量。
這樣數據在網路中盡力的總延時就是
總延時=發送延時+傳播延時+處理延時+排隊延時
對於高速網路鏈路,提高的僅僅是數據的發送數率而不是比特在鏈路上的傳播速率。荷載信息的電磁波在通信線路上的傳播速率與數據的發送速率並無關系。提高的數據的發送速率只是減小了數據的發送時延。
5、時延帶寬積
把以上兩個網路性能的兩個度量,傳播時延和帶寬相乘,就等到另外一個度量:傳播時延帶寬積,即
時延帶寬積=傳播時延×帶寬
例如,傳播時延為20ms,帶寬為10Mb/s,則時延帶寬積=20×10×10^3/1000=2×10^5bit。這就表示,若發送端連續發送數據,則在發送的第一個比特即將達到終點時,發送端就已經發送了20萬個比特,而這20萬個bit都在鏈路上向前移動。
6、往返時間RTT
在計算機網路中,往返時間RTT也是一個重要的性能指標,表示從發送方發送數據開始,到發送方收到來自接收方的確認,總共經歷的時間。對於上面提到的例子,往返時間RTT就是40ms,而往返時間和帶寬的乘積是4×10^5(bit)。
顯然,往返時間與所發送的分組長度有關。發送很長的數據塊的往返時間,應當比發送很短的數據塊往返時間要多些。
往返時間帶寬積的意義就是當發送方連續發送數據時,即能夠及時收到對方的確認,但已經將許多比特發送到鏈路上了。對於上述例子,假定數據的接收方及時發現了差錯,並告知發送發,使發送方立即停止發送,但也已經發送了40萬個比特了。
7、利用率
利用率有信道利用率和網路利用率。信道利用率指出某信道有百分之幾的時間是被利用的。網路利用率則是全網路的信道利用率的加權平均值。信道利用率並非越高越好。這是因為,根據排隊的理論,當某信道的利用率增大時,該信道引起的時延也就迅速增加。
如果D0表示網路空閑時的時延,D表示當前網路時延,可以用簡單公式(D=D0/(1-U)來表示D,D0和利用率U之間的關系。U數值在0和1之間。當網路的利用率接近最大值1時,網路的時延就趨近於無窮大。
㈢ 計算機網路主要的兩個性能指標是什麼啊
速率、帶寬、吞吐量、時延、時延帶寬積、往返時間rtt、利用率
計算機發送出的信號都是數字形式的。比特(bit)是計算機中的數據量的單位,也是資訊理論中使用的信息量單位。英文字bit來源binary
digit(一個二進制數字),因此一個比特就是二進制數字中的一個1或0。網路技術中的速率指的是鏈接在計算機網路上的主機在數字信道上傳送數據的速率,也稱為數據率(data
rate)或者比特率(bit
rate)。速率的單位是b/s(比特每秒)或者bit/s,也可以寫為bps,即bit
per
second。當數據率較高時,可以使用kb/s(k=10^3=千)、mb/s(m=10^6=兆)、gb/s(g=10^9=吉)或者tb/s(t=10^12=太)。現在一般常用更簡單並不是很嚴格的記法來描述網路的速率,如100m乙太網,而省略了b/s,意思為數據率為100mb/s的乙太網。這里的數據率通常指額定速率。
㈣ 計算機網路的常用網路
雖然我們所能看到的區域網主要是以雙絞線為代表傳輸介質的乙太網,那隻不過是我們所看到都基本上是企、事業單位的區域網,在網路發展的早期或在其它各行各業中,因其行業特點所採用的區域網也不一定都是乙太網,在區域網中常見的有:乙太網(Ethernet)、令牌網(Token Ring)、FDDI網、非同步傳輸模式網(ATM)等幾類,下面分別作一些簡要介紹。 (EtherNet)
乙太網最早是由Xerox(施樂)公司創建的,在1980年由DEC、Intel和Xerox三家公司聯合開發為一個標准。乙太網是應用最為廣泛的區域網,包括標准乙太網(10Mbps)、快速乙太網(100Mbps)、千兆乙太網(1000 Mbps)和10G乙太網,它們都符合IEEE802.3系列標准規范。
(1)標准乙太網
最開始乙太網只有10Mbps的吞吐量,它所使用的是CSMA/CD(帶有沖突檢測的載波偵聽多路訪問)的訪問控制方法,通常把這種最早期的10Mbps乙太網稱之為標准乙太網。乙太網主要有兩種傳輸介質,那就是雙絞線和同軸電纜。所有的乙太網都遵循IEEE 802.3標准,下面列出是IEEE 802.3的一些乙太網絡標准,在這些標准中前面的數字表示傳輸速度,單位是「Mbps」,最後的一個數字表示單段網線長度(基準單位是100m),Base表示「基帶」的意思,Broad代表「寬頻」。
·10Base-5 使用粗同軸電纜,最大網段長度為500m,基帶傳輸方法;
·10Base-2 使用細同軸電纜,最大網段長度為185m,基帶傳輸方法;
·10Base-T 使用雙絞線電纜,最大網段長度為100m;
·1Base-5 使用雙絞線電纜,最大網段長度為500m,傳輸速度為1Mbps;
·10Broad-36 使用同軸電纜(RG-59/U CATV),最大網段長度為3600m,是一種寬頻傳輸方式;
·10Base-F 使用光纖傳輸介質,傳輸速率為10Mbps;
(2)快速乙太網
(Fast Ethernet)
隨著網路的發展,傳統標準的乙太網技術已難以滿足日益增長的網路數據流量速度需求。在1993年10月以前,對於要求10Mbps以上數據流量的LAN應用,只有光纖分布式數據介面(FDDI)可供選擇,但它是一種價格非常昂貴的、基於100Mpbs光纜的LAN。1993年10月,Grand Junction公司推出了世界上第一台快速乙太網集線器FastSwitch10/100和網路介面卡FastNIC100,快速乙太網技術正式得以應用。隨後Intel、SynOptics、3COM、BayNetworks等公司亦相繼推出自己的快速乙太網裝置。與此同時,IEEE802工程組亦對100Mbps乙太網的各種標准,如100BASE-TX、100BASE-T4、MII、中繼器、全雙工等標准進行了研究。1995年3月IEEE宣布了IEEE802.3u 100BASE-T快速乙太網標准(Fast Ethernet),就這樣開始了快速乙太網的時代。
快速乙太網與原來在100Mbps帶寬下工作的FDDI相比它具有許多的優點,最主要體現在快速乙太網技術可以有效的保障用戶在布線基礎實施上的投資,它支持3、4、5類雙絞線以及光纖的連接,能有效的利用現有的設施。
快速乙太網的不足其實也是乙太網技術的不足,那就是快速乙太網仍是基於載波偵聽多路訪問和沖突檢測(CSMA/CD)技術,當網路負載較重時,會造成效率的降低,當然這可以使用交換技術來彌補。
100Mbps快速乙太網標准又分為:100BASE-TX 、100BASE-FX、100BASE-T4三個子類。
·100BASE-TX:是一種使用5類數據級無屏蔽雙絞線或屏蔽雙絞線的快速乙太網技術。它使用兩對雙絞線,一對用於發送,一對用於接收數據。在傳輸中使用4B/5B編碼方式,信號頻率為125MHz。符合EIA586的5類布線標准和IBM的SPT 1類布線標准。使用同10BASE-T相同的RJ-45連接器。它的最大網段長度為100米。它支持全雙工的數據傳輸。
·100BASE-FX:是一種使用光纜的快速乙太網技術,可使用單模和多模光纖(62.5和125um) 多模光纖連接的最大距離為550米。單模光纖連接的最大距離為3000米。在傳輸中使用4B/5B編碼方式,信號頻率為125MHz。它使用MIC/FDDI連接器、ST連接器或SC連接器。它的最大網段長度為150m、412m、2000m或更長至10公里,這與所使用的光纖類型和工作模式有關,它支持全雙工的數據傳輸。100BASE-FX特別適合於有電氣干擾的環境、較大距離連接、或高保密環境等情況下的適用。
·100BASE-T4:是一種可使用3、4、5類無屏蔽雙絞線或屏蔽雙絞線的快速乙太網技術。它使用4對雙絞線,3對用於傳送數據,1對用於檢測沖突信號。在傳輸中使用8B/6T編碼方式,信號頻率為25MHz,符合EIA586結構化布線標准。它使用與10BASE-T相同的RJ-45連接器,最大網段長度為100米。
(3)千兆乙太網
(GB Ethernet)
隨著乙太網技術的深入應用和發展,企業用戶對網路連接速度的要求越來越高,1995年11月,IEEE802.3工作組委任了一個高速研究組(HigherSpeedStudy Group),研究將快速乙太網速度增至更高。該研究組研究了將快速乙太網速度增至1000Mbps的可行性和方法。1996年6月,IEEE標准委員會批准了千兆位乙太網方案授權申請(Gigabit Ethernet Project Authorization Request)。隨後IEEE802.3工作組成立了802.3z工作委員會。IEEE802.3z委員會的目的是建立千兆位乙太網標准:包括在1000Mbps通信速率的情況下的全雙工和半雙工操作、802.3乙太網幀格式、載波偵聽多路訪問和沖突檢測(CSMA/CD)技術、在一個沖突域中支持一個中繼器(Repeater)、10BASE-T和100BASE-T向下兼容技術千兆位乙太網具有乙太網的易移植、易管理特性。千兆乙太網在處理新應用和新數據類型方面具有靈活性,它是在贏得了巨大成功的10Mbps和100Mbps IEEE802.3乙太網標準的基礎上的延伸,提供了1000Mbps的數據帶寬。這使得千兆位乙太網成為高速、寬頻網路應用的戰略性選擇。
1000Mbps千兆乙太網主要有以下三種技術版本:1000BASE-SX,-LX和-CX版本。1000BASE-SX 系列採用低成本短波的CD(compact disc,光碟激光器) 或者VCSEL(Vertical Cavity Surface Emitting Laser,垂直腔體表面發光激光器)發送器;而1000BASE-LX系列則使用相對昂貴的長波激光器;1000BASE-CX系列則打算在配線間使用短跳線電纜把高性能伺服器和高速外圍設備連接起來。
(4)10G乙太網
10Gbps的乙太網標准已經由IEEE 802.3工作組於2000年正式制定,10G乙太網仍使用與以往10Mbps和100Mbps乙太網相同的形式,它允許直接升級到高速網路。同樣使用IEEE 802.3標準的幀格式、全雙工業務和流量控制方式。在半雙工方式下,10G乙太網使用基本的CSMA/CD訪問方式來解決共享介質的沖突問題。此外,10G乙太網使用由IEEE 802.3小組定義了和乙太網相同的管理對象。總之,10G乙太網仍然是乙太網,只不過更快。但由於10G乙太網技術的復雜性及原來傳輸介質的兼容性問題(只能在光纖上傳輸,與原來企業常用的雙絞線不兼容了),還有這類設備造價太高(一般為2 ̄9萬美元),所以這類乙太網技術還處於研發的初級階段,還沒有得到實質應用。 令牌環網是IBM公司於20世紀70年代發展的,這種網路比較少見。在老式的令牌環網中,數據傳輸速度為4Mbps或16Mbps,新型的快速令牌環網速度可達100Mbps。令牌環網的傳輸方法在物理上採用了星形拓撲結構,但邏輯上仍是環形拓撲結構。結點間採用多站訪問部件(Multistation Access Unit,MAU)連接在一起。MAU是一種專業化集線器,它是用來圍繞工作站計算機的環路進行傳輸。由於數據包看起來像在環中傳輸,所以在工作站和MAU中沒有終結器。
在這種網路中,有一種專門的幀稱為「令牌」,在環路上持續地傳輸來確定一個結點何時可以發送包。令牌為24位長,有3個8位的域,分別是首定界符(Start Delimiter,SD)、訪問控制(Access Control,AC)和終定界符(End Delimiter,ED)。首定界符是一種與眾不同的信號模式,作為一種非數據信號表現出來,用途是防止它被解釋成其它東西。這種獨特的8位組合只能被識別為幀首標識符(SOF)。由於乙太網技術發展迅速,令牌網存在固有缺點,令牌在整個計算機區域網已不多見,原來提供令牌網設備的廠商多數也退出了市場,所以在區域網市場中令牌網可以說是「昨日黃花」了。 (Fiber Distributed Data Interface)
FDDI的英文全稱為「Fiber Distributed Data Interface」,中文名為「光纖分布式數據介面」,它是於80年代中期發展起來一項區域網技術,它提供的高速數據通信能力要高於當時的乙太網(10Mbps)和令牌網(4或16Mbps)的能力。FDDI標准由ANSI X3T9.5標准委員會制訂,為繁忙網路上的高容量輸入輸出提供了一種訪問方法。FDDI技術同IBM的Tokenring技術相似,並具有LAN和Tokenring所缺乏的管理、控制和可靠性措施,FDDI支持長達2KM的多模光纖。FDDI網路的主要缺點是價格同前面所介紹的「快速乙太網」相比貴許多,且因為它只支持光纜和5類電纜,所以使用環境受到限制、從乙太網升級更是面臨大量移植問題。
當數據以100Mbps的速度輸入輸出時,在當時FDDI與10Mbps的乙太網和令牌環網相比性能有相當大的改進。但是隨著快速乙太網和千兆乙太網技術的發展,用FDDI的人就越來越少了。因為FDDI使用的通信介質是光纖,這一點它比快速乙太網及100Mbps令牌網傳輸介質要貴許多,然而FDDI最常見的應用只是提供對網路伺服器的快速訪問,所以在FDDI技術並沒有得到充分的認可和廣泛的應用。
FDDI的訪問方法與令牌環網的訪問方法類似,在網路通信中均採用「令牌」傳遞。它與標準的令牌環又有所不同,主要在於FDDI使用定時的令牌訪問方法。FDDI令牌沿網路環路從一個結點向另一個結點移動,如果某結點不需要傳輸數據,FDDI將獲取令牌並將其發送到下一個結點中。如果處理令牌的結點需要傳輸,那麼在指定的稱為「目標令牌循環時間」(Target Token Rotation Time,TTRT)的時間內,它可以按照用戶的需求來發送盡可能多的幀。因為FDDI採用的是定時的令牌方法,所以在給定時間中,來自多個結點的多個幀可能都在網路上,以為用戶提供高容量的通信。
FDDI可以發送兩種類型的包:同步的和非同步的。同步通信用於要求連續進行且對時間敏感的傳輸(如音頻、視頻和多媒體通信);非同步通信用於不要求連續脈沖串的普通的數據傳輸。在給定的網路中,TTRT等於某結點同步傳輸需要的總時間加上最大的幀在網路上沿環路進行傳輸的時間。FDDI使用兩條環路,所以當其中一條出現故障時,數據可以從另一條環路上到達目的地。連接到FDDI的結點主要有兩類,即A類和B類。A類結點與兩個環路都有連接,由網路設備如集線器等組成,並具備重新配置環路結構以在網路崩潰時使用單個環路的能力;B類結點通過A類結點的設備連接在FDDI網路上,B類結點包括伺服器或工作站等。 ATM的英文全稱為「asynchronous transfer mode」,中文名為「非同步傳輸模式」,它的開發始於70年代後期。ATM是一種較新型的單元交換技術,同乙太網、令牌環網、FDDI網路等使用可變長度包技術不同,ATM使用53位元組固定長度的單元進行交換。它是一種交換技術,它沒有共享介質或包傳遞帶來的延時,非常適合音頻和視頻數據的傳輸。ATM主要具有以下優點:
1.ATM使用相同的數據單元,可實現廣域網和區域網的無縫連接。
2.ATM支持VLAN(虛擬區域網)功能,可以對網路進行靈活的管理和配置。
3.ATM具有不同的速率,分別為25、51、155、622Mbps,從而為不同的應用提供不同的速率。
ATM是採用「信元交換」來替代「包交換」進行實驗,發現信元交換的速度是非常快的。信元交換將一個簡短的指示器稱為虛擬通道標識符,並將其放在TDM時間片的開始。這使得設備能夠將它的比特流非同步地放在一個ATM通信通道上,使得通信變得能夠預知且持續的,這樣就為時間敏感的通信提供了一個預QoS,這種方式主要用在視頻和音頻上。通信可以預知的另一個原因是ATM採用的是固定的信元尺寸。ATM通道是虛擬的電路,並且MAN傳輸速度能夠達到10Gbps。 (Wireless Local Area Network;WLAN)
無線區域網是目前最新,也是最為熱門的一種區域網,特別是自Intel推出首款自帶無線網路模塊的迅馳筆記本處理器以來。無線區域網與傳統的區域網主要不同之處就是傳輸介質不同,傳統區域網都是通過有形的傳輸介質進行連接的,如同軸電纜、雙絞線和光纖等,而無線區域網則是採用空氣作為傳輸介質的。正因為它擺脫了有形傳輸介質的束縛,所以這種區域網的最大特點就是自由,只要在網路的覆蓋范圍內,可以在任何一個地方與伺服器及其它工作站連接,而不需要重新鋪設電纜。這一特點非常適合那些移動辦公一簇,有時在機場、賓館、酒店等(通常把這些地方稱為「熱點」),只要無線網路能夠覆蓋到,它都可以隨時隨地連接上無線網路,甚至Internet。
無線區域網所採用的是802.11系列標准,它也是由IEEE 802標准委員會制定的。這一系列主要有4個標准,分別為:802.11b(ISM 2.4GHz)、802.11a(5GHz)、802.11g(ISM 2.4GHz) 和802.11z,前三個標准都是針對傳輸速度進行的改進,最開始推出的是802.11b,它的傳輸速度為11MB/s,因為它的連接速度比較低,隨後推出了802.11a標准,它的連接速度可達54MB/s。但由於兩者不互相兼容,致使一些早已購買802.11b標準的無線網路設備在新的802.11a網路中不能用,所以在正式推出了兼容802.11b與802.11a兩種標準的802.11g,這樣原有的802.11b和802.11a兩種標準的設備都可以在同一網路中使用。802.11z是一種專門為了加強無線區域網安全的標准。因為無線區域網的「無線」特點,致使任何進入此網路覆蓋區的用戶都可以輕松以臨時用戶身份進入網路,給網路帶來了極大的不安全因素(常見的安全漏洞有:SSID廣播、數據以明文傳輸及未採取任何認證或加密措施等)。為此802.11z標准專門就無線網路的安全性方面作了明確規定,加強了用戶身份認證制度,並對傳輸的數據進行加密。所使用的方法/演算法有:WEP(RC4-128預共享密鑰,WPA/WPA2(802.11 RADIUS集中式身份認證,使用TKIP與/或AES加密演算法)與WPA(預共享密鑰)
㈤ 計算機網路按傳輸帶寬怎樣分類
這種說法的確在網路界很常見。
例如,當10
mb/s乙太網升級到100
mb/s時,這種100
mb/s的乙太網就稱為快速乙太網,表明速率提高了。當數據機每秒能夠傳送更多的比特時就稱為高速數據機。當網路中的鏈路帶寬增加時,也常說成是鏈路的速率提高了。因此在計算機網路領域,「速率」和「帶寬」有時是代表同樣的意思。
但我們必須對網路的「速度」有正確的理解。。
我們早已在物理課程中學過,速率(或速度)的單位是「米/秒」。我們談到「高速火車」是指這種火車在單位時間內行駛的距離增大了。但「網路提速」並不是指信號在網路上傳播得更快了(更多的「米/秒」),而是說網路的傳輸速率(更多的「比特/秒」)提高了。
這里特別要注意,「傳播」(propagation或propagate)和「傳輸」(transmission或transmit)這兩個中文名詞僅一字之差,但意思卻差別很大。
傳播速率:信號比特在傳輸媒體上的傳播速率就是電磁波在單位時間內能夠在傳輸媒體上的走多少距離。這個速率大約只有電磁波在真空中的傳播速率的2/3左右。或者說,信號比特在傳輸媒體上1微秒可傳播200米左右的距離。
傳輸速率:計算機每秒鍾可以向所連接的媒體或網路注入(也就是發送)多少個比特則是傳輸速率。若計算機在單位時間內能夠發送更多的比特也就是「發送速率提高了」,但一定要弄清,這里的「速率」指的「比特/秒」而不是指「米/秒(傳播速率)」。
由此可見,當我們使用「速率」表示「比特/秒」時,就應當將其理解為主機向鏈路(或網路)發送比特的速率。這也就是比特進入鏈路(或網路)的速率。
同理,傳播時延和傳輸時延的意思也是完全不同的。由於傳輸時延很容易和傳播時延弄混,因此最好使用發送時延來代替傳輸時延這個名詞。請記住:
發送時延
=
傳輸時延
傳播時延
㈥ 乙太網交換機全雙工總帶寬計算公式是什麼
對於千兆乙太網來說,計算方法如下:1,000,000,000bps/8bit/(64+8+12)byte=1,488,095pps 說明:當乙太網幀為64byte時,需考慮8byte的幀頭和12byte的幀間隙的固定開銷。
㈦ 計算機網路的性能參數及指標主要有哪些
計算機網路的性能主要包括:
速率:b/s(bps)。如100M乙太網,實際是指100Mb/s。往往是指額定速率或標稱速率。
帶寬:數字信道所能傳送的最高速率。
吞吐量:單位時間內通過某個網路(或信道、介面)的數據量。其絕對上限值等於帶寬。
時延(delay或latency):數據(一個報文或分組,甚至比特)從網路(或鏈路)的一段傳送到另一端的時間。也稱延遲。
發送時延:主機或路由器發送數據幀所需的時間,也就是從發送數據幀的第一個比特算起,到該幀的最後一個比特發送完畢所需的時間。也成傳輸時延。
發送時延
=
數據幀長度(b)
/
信道帶寬(b/s)
傳播時延:電磁波在信道中傳輸一定距離所需劃分的時間。
傳播時間
=
信道長度(m)
/
傳輸速率(m/s)
處理時延:主機或路由器處理收到的分組所花費的時間。
排隊時延:分組在輸入隊列中等待處理的時間加上其在輸出隊列中等待轉發的時間。
總時延
=
發送時延
+
傳播時延
+
處理時延
+
排隊時延。對於高速網路鏈路,提高的是發送速率而不是傳播速率。
時延帶寬積:傳播時延
*
帶寬。表示鏈路的容量。
5.往返時間RTT:從發送方發送數據開始,到發送發收到接收方的確認為止,所花費的時間。
6.利用率:某信道有百分之幾是被利用的(有數據通過)。而信道或網路利用率過高會產生非常大的時延。
當前時延=空閑時時延/(1-利用率)
㈧ 計算機網路帶寬
這種說法的確在網路界很常見。
例如,當10 Mb/s乙太網升級到100 Mb/s時,這種100 Mb/s的乙太網就稱為快速乙太網,表明速率提高了。當數據機每秒能夠傳送更多的比特時就稱為高速數據機。當網路中的鏈路帶寬增加時,也常說成是鏈路的速率提高了。因此在計算機網路領域,「速率」和「帶寬」有時是代表同樣的意思。
但我們必須對網路的「速度」有正確的理解。。
我們早已在物理課程中學過,速率(或速度)的單位是「米/秒」。我們談到「高速火車」是指這種火車在單位時間內行駛的距離增大了。但「網路提速」並不是指信號在網路上傳播得更快了(更多的「米/秒」),而是說網路的傳輸速率(更多的「比特/秒」)提高了。
這里特別要注意,「傳播」(propagation或propagate)和「傳輸」(transmission或transmit)這兩個中文名詞僅一字之差,但意思卻差別很大。
傳播速率:信號比特在傳輸媒體上的傳播速率就是電磁波在單位時間內能夠在傳輸媒體上的走多少距離。這個速率大約只有電磁波在真空中的傳播速率的2/3左右。或者說,信號比特在傳輸媒體上1微秒可傳播200米左右的距離。
傳輸速率:計算機每秒鍾可以向所連接的媒體或網路注入(也就是發送)多少個比特則是傳輸速率。若計算機在單位時間內能夠發送更多的比特也就是「發送速率提高了」,但一定要弄清,這里的「速率」指的「比特/秒」而不是指「米/秒(傳播速率)」。
由此可見,當我們使用「速率」表示「比特/秒」時,就應當將其理解為主機向鏈路(或網路)發送比特的速率。這也就是比特進入鏈路(或網路)的速率。
同理,傳播時延和傳輸時延的意思也是完全不同的。由於傳輸時延很容易和傳播時延弄混,因此最好使用發送時延來代替傳輸時延這個名詞。請記住:
發送時延 = 傳輸時延 �8�2 傳播時延
㈨ 計算機網路有哪些常用的性能指標
計算機網路常用性能指標有:
1、速率:連接在計算機網路上的主機在數字信道上傳送數據的速率。
2、帶寬:網路通信線路傳送數據的能力。
3、吞吐量:單位時間內通過網路的數據量。
4、時延:數據從網路一端傳到另一端所需的時間。
5、時延帶寬積:傳播時延帶寬。
6、往返時間RTT:數據開始到結束所用時間。
7、利用率信道:數據通過信道時間。
(9)計算機網路中乙太網總帶寬和總容量擴展閱讀:
計算機網路中的時延是由一下幾個不同的部分組成的:
(1)發送時延
發送時延是主機或路由器發送數據幀所需要的時間,也就是從發送數據幀的第一個比特算起,到該幀的最後一個比特發送完畢所需的時間。因此發送時延也叫做傳輸時延。發送時延的計算公式是:
發送時延=數據幀長度(bit)/發送速率(bit/s)
(2)傳播時延
傳播時延是電磁波在信道中傳播一定的距離需要花費的時間。傳播時延的計算公式是:
傳播時延=信道長度(m)/電磁波在信道上大的傳播速率(m/s)
電磁波在自由空間的傳播速率是光速。即3.0*10^5km/s。
發送時延發生在機器內部的發送器中,與傳輸信道的長度沒有任何關系。傳播時延發生在機器外部的傳輸信道媒體上,而與信道的發送速率無關。信號傳送的距離越遠,傳播時延就越大
(3)處理時延
主機或路由器在收到分組時需要花費一定時間進行處理,例如分析分組的首部,從分組中提取數據部分、進行差錯檢驗或查找合適的路由等,這就產生了處理時延。
(4)排隊時延
分組在進行網路傳輸時,要經過許多路由器。但分組在進入路由器後要先在輸入隊列中排隊等待,在路由器確定了轉發介面後,還要在輸出隊列中排隊等待轉發。這就產生了排隊時延。排隊時延的長短取決於網路當時的通信量。當網路的通信量很大時會發生隊列溢出,使分組丟失,這相當於排隊時延無窮大。
這樣數據在網路中經歷的總時延就是以上四種時延之和:總時延=發送時延+傳播時延+處理時延+排隊時延。
一般來說,小時延的網路要優於大時延的網路。
㈩ 乙太網系統的組成和特點是什麼
乙太網系統組成:共享媒體和電纜、轉發器或集線器、網橋、交換機和乙太網協議。
區域網採用的最通用的通信協議標准。乙太網具有如下的一般特徵:
1)共享媒體:所有網路設備使用同一通信媒體。
2)廣播域:需要傳輸的幀被發送到所有節點,但只有定址到的節點才會接收到幀。
3) CSMA/CD:乙太網中利用載波監聽多路訪問/沖突檢測方法(Carrier Sense Multiple Access/Collision Detection)以防止兩個或更多節點同時發送。
4) MAC 地址:媒體訪問控制層的所有 Ethernet 網路介面卡(NIC)都採用48位網路地址。這種地址全球唯一。
(10)計算機網路中乙太網總帶寬和總容量擴展閱讀
交換式乙太網
乙太網的發展很快,從單根長電纜的典型乙太網結構開始演變。單根電纜存在的問題,比如找出斷裂或者松動位置等連接相關的問題,驅使人們開發出一種不同類型的布線模式。
在這種模式中,每個站都有一條專用電線連接到一個中央集線器。集線器只是在電氣上簡單地連接所有連接線,就像把它們焊接在一起。集線器不能增加容量,因為它們邏輯上等同於單根電纜的經典乙太網。隨著越來越多的站加入,每個站獲得的固定容量共享份額下降。最終,LAN將飽和。
還有另一條出路可以處理不斷增長的負載:即交換式乙太網。交換式乙太網的核心是一個交換機,它包含一塊連接所有埠的高速背板。從外面看交換機很像集線器,它們都是一個盒子,通常擁有4-48個埠,每個埠都有一個標準的RJ-45連接器用來連接雙絞電纜。
交換機只把幀輸出到該幀想去的埠。通過簡單的插入或者拔出電纜就能完成或者刪除一台機器,而且由於片狀電纜或者埠通常隻影響到一台機器,因此大多數錯誤都很容易被發現。
這種配置模式仍然存在一個共享組件出現故障的問題,即交換機本身的故障:如果所有站都失去了網路連接,則IT人員知道該怎麼解決這個問題:更換整個交換機。