㈠ 計算機網路上下層是通過什麼實現功能調度的,對等層是通過什麼進行通信的
建議直接研讀謝希仁的《計算機網路》,這東西一兩句話說不清
簡單點說吧,上下層之間是通過服務實現的,而對等層之間是通過協議實現的
㈡ 對等層的概念
對等層(Peer Layers)是指在計算機網路協議層次中,將數據(即數據單元加上控制信息)直接(邏輯上)傳遞給對方的任何兩個同樣的層次。
Internet網路結構以TCP/IP協議層次模型為核心,
共分四層結構:應用層、傳輸層、網際層和網路介面層。TCP/IP的體系結構與ISO的OSI七層參考模型的對應關系如圖1-6所示。TCP/IP是Internet的核心,利用TCP/IP協議可以方便地實現各種網路的平滑、無縫連接。在TCP/IP四層模型中,作為最高層的應用層相當於OSI的5~7層,該層中包括了所有的高層協議,如常見的文件傳輸協議FTP(文件傳輸協議)、電子郵件SMTP,(簡單郵件傳送協議)、域名系統DNS(域名服務)、網路管理協議SNMP、訪問WWW的超文本傳輸協議HTTP、遠程終端訪問協議TELNET等。
TCP/IP的次高層為傳輸層,相當於OSI的傳輸層,該層負責在源主機和目的主機之間提供端到端的數據傳輸服務。這一層上主要定義了兩個協議:面向連接的傳輸控制協議TCP和無連接的用戶數據報協議UDP(UserDatagramProtocol)。
TCP/IP的第二層相當於OSI的網路層,該層負責將報文(數據包)獨立地從信源傳送到信宿,主要解決路由選擇、阻塞控制級網際互聯問題。這一層上定義了網際協議(InternetProtocol,IP協議)、地址轉換協議ARP(AddressResolutionProtocol)、反向地址轉換協議RARP(ReverseARP)和網際控制報文協議ICMP()等協議。
TCP/IP的最低層為網路介面層,該層負責將IP分組封裝成適合在物理網路上傳輸的幀格式並發送出去,或將從物理網路接收到的幀卸裝並遞交給高層。這一層與物理網路的具體實現有關,自身並無專用的協議。事實上,任何能傳輸IP報文的協議都可以運行。雖然該層一般不需要專門的TCP/IP協議,各物理網路可使用自己的數據鏈路層協議和物理層協議。
㈢ 計算機網路分層體系結構包含哪兩方面的含義
在OSI出現之前,計算機網路中存在眾多的體系結構,其中以IBM公司的SNA(系統網路體系結構)和DEC公司的DNA(Digital Network Architecture)數字網路體系結構最為著名。為了解決不同體系結構的網路的互聯問題,國際標准化組織ISO(注意不要與OSI搞混))於1981年制定了開放系統互連參考模型(Open System Interconnection Reference Model,OSI/RM)。這個模型把網路通信的工作分為7層,它們由低到高分別是物理層(Physical Layer),數據鏈路層(Data Link Layer),網路層(Network Layer),傳輸層(Transport Layer),會話層(Session Layer),表示層(Presen tation Layer)和應用層(Application Layer)。第一層到第三層屬於OSI參考模型的低三層,負責創建網路通信連接的鏈路;第四層到第七層為OSI參考模型的高四層,具體負責端到端的數據通信。每層完成一定的功能,每層都直接為其上層提供服務,並且所有層次都互相支持,而網路通信則可以自上而下(在發送端)或者自下而上(在接收端)雙向進行。當然並不是每一通信都需要經過OSI的全部七層,有的甚至只需要雙方對應的某一層即可。物理介面之間的轉接,以及中繼器與中繼器之間的連接就只需在物理層中進行即可;而路由器與路由器之間的連接則只需經過網路層以下的三層即可。總的來說,雙方的通信是在對等層次上進行的,不能在不對稱層次上進行通信。OSI 標准制定過程中採用的方法是將整個龐大而復雜的問題劃分為若干個容易處理的小問題,這就是分層的體系結構辦法。在OSI中,採用了三級抽象,既體系結構,服務定義,協議規格說明。ISO將整個通信功能劃分為七個層次,劃分層次的原則是:1、網中各節點都有相同的層次。2、不同節點的同等層次具有相同的功能。3、同一節點能相鄰層之間通過介面通信。4、每一層使用下層提供的服務,並向其上層提供服務。5、不同節點的同等層按照協議實現對等層之間的通信。第一層:物理層(PhysicalLayer),規定通信設備的機械的、電氣的、功能的和過程的特性,用以建立、維護和拆除物理鏈路連接。具體地講,機械特性規定了網路連接時所需接插件的規格尺寸、引腳數量和排列情況等;電氣特性規定了在物理連接上傳輸bit流時線路上信號電平的大小、阻抗匹配、傳輸速率距離限制等;功能特性是指對各個信號先分配確切的信號含義,即定義了DTE和DCE之間各個線路的功能;規程特性定義了利用信號線進行bit流傳輸的一組操作規程,是指在物理連接的建立、維護、交換信息是,DTE和DCE雙放在各電路上的動作系列。在這一層,數據的單位稱為比特(bit)。屬於物理層定義的典型規范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。第二層:數據鏈路層(DataLinkLayer):在物理層提供比特流服務的基礎上,建立相鄰結點之間的數據鏈路,通過差錯控制提供數據幀(Frame)在信道上無差錯的傳輸,並進行各電路上的動作系列。 數據鏈路層在不可靠的物理介質上提供可靠的傳輸。該層的作用包括:物理地址定址、數據的成幀、流量控制、數據的檢錯、重發等。在這一層,數據的單位稱為幀(frame)。數據鏈路層協議的代表包括:SDLC、HDLC、PPP、STP、幀中繼等。 第三層是網路層(Network layer)在計算機網路中進行通信的兩個計算機之間可能會經過很多個數據鏈路,也可能還要經過很多通信子網。網路層的任務就是選擇合適的網間路由和交換結點, 確保數據及時傳送。網路層將數據鏈路層提供的幀組成數據包,包中封裝有網路層包頭,其中含有邏輯地址信息- -源站點和目的站點地址的網路地址。 如果你在談論一個IP地址,那麼你是在處理第3層的問題,這是「數據包」問題,而不是第2層的「幀」。IP是第3層問題的一部分,此外還有一些路由協議和地址解析協議(ARP)。有關路由的一切事情都在第3層處理。地址解析和路由是3層的重要目的。網路層還可以實現擁塞控制、網際互連等功能。在這一層,數據
㈣ 計算機網路中,對等體是什麼
peer to peer
就是ISO/OSI七層模型中處於同一層的網路實體
㈤ 計算機網路中的對等層
對等層(Peer Layers)是指在計算機網路協議層次中,將數據(即數據單元加上控制信息)直接(邏輯上)傳遞給對方的任何兩個同樣的層次。
㈥ 計算機網路體系分為哪四層
1.、應用層
應用層對應於OSI參考模型的高層,為用戶提供所需要的各種服務,例如:FTP、Telnet、DNS、SMTP等.
2.、傳輸層
傳輸層對應於OSI參考模型的傳輸層,為應用層實體提供端到端的通信功能,保證了數據包的順序傳送及數據的完整性。該層定義了兩個主要的協議:傳輸控制協議(TCP)和用戶數據報協議(UDP).
TCP協議提供的是一種可靠的、通過「三次握手」來連接的數據傳輸服務;而UDP協議提供的則是不保證可靠的(並不是不可靠)、無連接的數據傳輸服務.
3.、網際互聯層
網際互聯層對應於OSI參考模型的網路層,主要解決主機到主機的通信問題。它所包含的協議設計數據包在整個網路上的邏輯傳輸。注重重新賦予主機一個IP地址來完成對主機的定址,它還負責數據包在多種網路中的路由。
該層有三個主要協議:網際協議(IP)、互聯網組管理協議(IGMP)和互聯網控制報文協議(ICMP)。
IP協議是網際互聯層最重要的協議,它提供的是一個可靠、無連接的數據報傳遞服務。
4.、網路接入層(即主機-網路層)
網路接入層與OSI參考模型中的物理層和數據鏈路層相對應。它負責監視數據在主機和網路之間的交換。事實上,TCP/IP本身並未定義該層的協議,而由參與互連的各網路使用自己的物理層和數據鏈路層協議,然後與TCP/IP的網路接入層進行連接。地址解析協議(ARP)工作在此層,即OSI參考模型的數據鏈路層。
(6)計算機網路中對等層擴展閱讀:
OSI將計算機網路體系結構(architecture)劃分為以下七層:
物理層: 將數據轉換為可通過物理介質傳送的電子信號相當於郵局中的搬運工人。
數據鏈路層: 決定訪問網路介質的方式。
在此層將數據分幀,並處理流控制。本層指定拓撲結構並提供硬體定址,相當於郵局中的裝拆箱工人。
網路層: 使用權數據路由經過大型網路 相當於郵局中的排序工人。
傳輸層: 提供終端到終端的可靠連接 相當於公司中跑郵局的送信職員。
會話層: 允許用戶使用簡單易記的名稱建立連接 相當於公司中收寄信、寫信封與拆信封的秘書。
表示層: 協商數據交換格式 相當公司中簡報老闆、替老闆寫信的助理。
應用層: 用戶的應用程序和網路之間的介面老闆。
㈦ 計算機網路中客戶伺服器方式和對等方式有什麼異同
1、網路結構不同:
伺服器-客戶機,即Client-Server(C/S)結構。C/S結構通常採取兩層結構。伺服器負責數據的管理,客戶機負責完成與用戶的交互任務。對等網路是一種網路結構的思想,與客戶端/伺服器(Client/Server)結構的一個本質區別是,整個網路結構中不存在中心節點(或中心伺服器)。
2、數據請求方式不同:
伺服器-客戶機方式中,客戶機通過區域網與伺服器相連,接受用戶的請求,並通過網路向伺服器提出請求,對資料庫進行操作。伺服器接受客戶機的請求,將數據提交給客戶機,客戶機將數據進行計算並將結果呈現給用戶。
對等方式網路中的每一台計算機既能充當網路服務的請求者,又對其它計算機的請求做出響應,提供資源、服務和內容。
3、去中心化能力不同:
網路中的資源和服務分散在所有節點上,信息的傳輸和服務的實現都直接在節點之間進行,可以無需中間環節和伺服器的介入,避免了可能的瓶頸。P2P的非中心化基本特點,帶來了其在可擴展性、健壯性等方面的優勢。
㈧ 什麼是計算機網路體系結構
計算機網路是一個復雜的具有綜合性技術的系統,為了允許不同系統實體互連和互操作,不同系統的實體在通信時都必須遵從相互均能接受的規則,這些規則的集合稱為協議(Protocol)。
1、系統指計算機、終端和各種設備。
2、實體指各種應用程序,文件傳輸軟體,資料庫管理系統,電子郵件系統等。
3、互連指不同計算機能夠通過通信子網互相連接起來進行數據通信。
4、互操作指不同的用戶能夠在通過通信子網連接的計算機上,使用相同的命令或操作,使用其它計算機中的資源與信息,就如同使用本地資源與信息一樣。
計算機網路體系結構可以從網路體系結構、網路組織、網路配置三個方面來描述,網路組織是從網路的物理結構和網路的實現兩方面來描述計算機網路,網路配置是從網路應用方面來描述計算機網路的布局,硬體、軟體和通信線路來描述計算機網路,網路體系結構是從功能上來描述計算機網路結構。
(8)計算機網路中對等層擴展閱讀:
計算機網路由多個互連的結點組成,結點之間要不斷地交換數據和控制信息,要做到有條不紊地交換數據,每個結點就必須遵守一整套合理而嚴謹的結構化管理體系·計算機網路就是按照高度結構化設計方法採用功能分層原理來實現的,即計算機網路體系結構的內容。
通常所說的計算機網路體系結構,即在世界范圍內統一協議,制定軟體標准和硬體標准,並將計算機網路及其部件所應完成的功能精確定義,從而使不同的計算機能夠在相同功能中進行信息對接。
一、計算機系統和終端
計算機系統和終端提供網路服務界面。地域集中的多個獨立終端可通過一個終端控制器連入網路。
二、通信處理機
通信處理機也叫通信控制器或前端處理機,是計算機網路中完成通信控制的專用計算機,通常由小型機、微機或帶有CPU的專用設備充當。在廣域網中,採用專門的計算機充當通信處理機:在區域網中,由於通信控制功能比較簡單,所以沒有專門的通信處理機,而是在計算機中插入一個網路適配器(網卡)來控制通信。
三、通信線路和通信設備
通信線路是連接各計算機系統終端的物理通路。通信設備的採用與線路類型有很大關系:如果是模擬線路,在線中兩端使用Modem(數據機);如果是有線介質,在計算機和介質之間就必須使用相應的介質連接部件。
四、操作系統
計算機連入網路後,還需要安裝操作系統軟體才能實現資源共享和管理網路資源。如:Windows 98、Windows 2000、Windows xp等。
五、網路協議
網路協議是規定在網路中進行相互通信時需遵守的規則,只有遵守這些規則才能實現網路通信。常見的協議有:TCP/IP協議、IPX/SPX協議、NetBEUI協議等。