當前位置:首頁 » 網路連接 » 計算機網路的兩種常見體系結構是和模型
擴展閱讀
團支書用蘋果電腦 2025-07-05 09:39:20
雲電網路異常 2025-07-05 09:11:03

計算機網路的兩種常見體系結構是和模型

發布時間: 2022-07-17 20:51:06

A. 簡述計算機網路的OSI體系結構模型和TCP/IP體系結構模型的內容及其特點

OSI採用的是7層體系結構
而TCP/IP則將OSI的第5層的會話層和第6層的表示層全都劃分到期自身的第5層---應用層
而OSI則是將這三層獨立分開..
經歷很長一段制定周期,將OSI復雜煩瑣標准制定出來後,而TCP/IP卻已經在互聯網路上搶佔了相當大的范圍,而幾乎也找不出廠家生產出符合OSI標準的產品。
OSI只是取得了理論成果,但市場化方面完全失敗了。
大行其道的TCP/IP取得了市場的成功,至今開始流行。
在討論計算機網路基礎知識時候,可以將兩個協議對照參考...
OSI是基於硬體的分層,TCP/IP是邏輯上的劃分
osi是用於同種網路間的互聯,而tcp/ip是用於不同網路間的互聯,一開始兩者的定位就不同,
所以二者的應用范圍也不同,
OSI
Application
Layer
Presentation
Layer
Session
Layer
Transport
Layer
Network
Layer
Data
Link
Layer
Physical
Layer
TCP
/
IP
Application
Layer
Transport
Layer
Network
Layer
Data
Link
Layer
Host
to
network,
Physical
Layer
No
specific
protocol

B. 6什麼是計算機網路的體系結構為什麼要採用分層次的結構

計算機網路體系結構是指計算機網路層次結構模型,它是各層的協議以及層次之間的埠的集合。

目前廣泛採用的是國際標准化組織(ISO)1997年提出的開放系統互聯(Open
System Interconnection,OSI)參考模型,習慣上稱為ISO/OSI參考模型。

在OSI七層參考模型的體系結構中,由低層至高層分別稱為物理層、數據鏈路層、網路層、運輸層、會話層、表示層和應用層

原因:為把在一個網路結構下開發的系統與在另一個網路結構下開發的系統互聯起來,以實現更高一級的應用,使異種機之間的通信成為可能,便於網路結構標准化;

並且由於全球經濟的發展使得處在不同網路體系結構的用戶迫切要求能夠互相交換信息;

為此,國際標准化組織ISO成立了專門的機構研究該問題,並於1977年提出了一個試圖使各種計算機在世界范圍內互聯成網的標准框架,即著名的開放系統互連基本參考模型OSI/RM (Open System Interconnection Reference Model)。

(2)計算機網路的兩種常見體系結構是和模型擴展閱讀:

OSI模型體系結構:

物理層(Physical,PH)物理層的任務就是為上層提供一個物理的連接,以及該物理連接表現出來的機械、電氣、功能和過程特性,實現透明的比特流傳輸。

數據鏈路層(Data-link,D)實現的主要功能有:幀的同步、差錯控制、流量控制、定址、幀內定界、透明比特組合傳輸等。

網路層(Network,N)網路層的主要任務是為要傳輸的分組選擇一條合適的路徑,使發送分組能夠正確無誤地按照給定的目的地址找到目的主機,交付給目的主機的傳輸層。

傳輸層(Transport,T)傳輸層向上一層提供一個可靠的端到端的服務,使會話層不知道傳輸層以下的數據通信的細節

會話層(Session,S)提供包括訪問驗證和會話管理在內的建立以及維護應用之間的通信機制。如伺服器驗證用戶登錄便是由會話層完成的。

表示層(Presentation,P)數據的壓縮和解壓縮、加密和解密等工作都由表示層負責。

應用層(Application,A)應用層確定進程之間通信的性質以滿足用戶的需求,以及提供網路與用戶軟體之間的介面服務。

C. 什麼是網路體系結構簡述OSI參考模型和TCP/IP兩種體系結構的差別。

在計算機網路技術中,網路的體系結構指的是通信系統的整體設計,它的目的是為網路硬體、軟體、協議、存取控制和拓撲提供標准.現在廣泛採用的是開放系統互連OSI(Open
System
Interconnection)的參考模型,它是用物理層、數據鏈路層、網路層、傳送層、對話層、表示層和應用層七個層次描述網路的結構.你應該注意的是,網路體系結構的優劣將直接影響匯流排、介面和網路的性能.而網路體系結構的關鍵要素恰恰就是協議和拓撲。目前最常見的網路體系結構有FDDI、乙太網、令牌環網和快速乙太網等OSI
OSI當時是作為與IBM的SNA(SYSTEM
NETWORK
ARCHITECTURE
系統網路體系結構)的競
爭者出現的,為了防止IBM的SNA稱為世界標准,而被一個公司所控制。這樣做,可以讓一個中性組
織-ISO來管理。但是,在OSI當中,會話層對大多數應用程序都沒有用,表示層幾乎是空的,而與此
相比,數據鏈路層和網路層的功能太多,隨後又把它們分成了幾個子層。除此之外,OSI還有一些問題
如定址、流量控制和出錯控制在各層重復出現,而網路管理和數據加密也沒有出現在模型中。
最初標準的另一個缺點是完全忽略了無連接服務和連接協議。但是最嚴重的可能是:模型是由通信
方面的人主持制定的。計算機和通信的關系幾乎沒有提及,而某些決定對於計算機和軟體的工作方式
完全不合適。
由於OSI模型和協議太復雜了,因此最初的實現又大又笨拙,而且很慢。不久後人們就把「OSI」和
「低質量」聯系起來。雖然隨著時間的推移,產品有了改進,但它以前的印象還留在人門心裡。
TCP/IP
與之相反的是,TCP/IP模型第一次實現是做為UNIX的一部分而且非常好(更別提它是免費的)。
人們很快就開始使用它了,形成了一個龐大的用戶群,這又反過來推動了改進,然後使用的人越來越
多。但是TCP/IP也有缺點
該模型沒有明顯的區分服務、介面和協議的概念。這一點OSI非常小心的進行了處理,因此對於使
用新技術來設計網路,TCP/IP模型並不是一個太好的模板。
完全不是通用的,而且不適合描述除TCP/IP模型以外的任何協議棧。
主機網路層在分層協議中根本不是通常意義下的層。它是一個介面,處於網路層和數據鏈路層之
間。
TCP/IP模型不區分甚至不提及物理層和數據鏈路層。
最後,雖然IP和TCP協議都被很好的設計,並且很好的實現了,但很多其他協議卻很特別,通常是
由一些研究生來探索,直到他們覺得累了。未曾良好實現的協議就背免費發送,造成大量應用紮下根
來,因此很難背替換,現在就難堪了,比如TELNET,實際上背設計用於10字元每秒的機械式電傳終
端,它不支持圖形用戶界面和滑鼠,但是直到現在它還在被廣泛的使用。
總的來說,除了本身的一些問題以外,OSI模型(去掉會話層和表示層)對於討論計算機網路特別有
用。但是,OSI協議並沒流行。TCP/IP模型正好相反,模型實際上不存在,但協議被廣泛使用。

D. 計算機網路的體系結構是什麼

在計算機網路技術中,網路的體系結構指的是通信系統的整體設計,它的目的是為網路硬體、軟體、協議、存取控制和拓撲提供標准。現在廣泛採用的是開放系統互連OSI(Open System Interconnection)的參考模型,它是用物理層、數據鏈路層、網路層、傳送層、對話層、表示層和應用層七個層次描述網路的結構。你應該注意的是,網路體系結構的優劣將直接影響匯流排、介面和網路的性能。而網路體系結構的關鍵要素恰恰就是協議和拓撲。目前最常見的網路體系結構有FDDI、乙太網、令牌環網和快速乙太網等。

E. 何謂計算機網路的體系結構與網路協議

計算機協議及體系結構網路協議與層次結構

1.2.1網路體系結構

1.網路協議

通過通信信道和網路設備互聯起來的不同地理位置的多個計算機系統,要使其能協同工作實現信息交換和資源共享,它們之間必須具有共同的語言。交流什麼、怎樣交流及何時交流,都必須遵循某種互相都能接受的規則。

網路協議(Protocol)是為進行計算機網路中的數據交換而建立的規則、標准或約定的集

合。准確地說,它是對同等實體之間通信而制定的有關規則和約定的集合;

網路協議的三個要素: 、

l)語義(Semarlties)涉及用於協調與差錯處理的控制信息。

2)語法(Syntax)涉及數據及控制信息的格式、編碼及信號電平等。

3)定時(Timing)涉及速度匹配和定序等。

2.網路的體系結構及其劃分所遵循的原則計算機網路系統是一個十分復雜的系統。將一個復雜系統分解為若干個容

易處理的子系統。分層就是系統分解的最好方法之一。

在圖1-4所示的一般分層結構中,n層是n-l層的用戶,又是n+l層的服務提供者。n+1層雖然只直接使用了n層提供的服務,實際上它通過n層還間接地使用了n-1層以及以下所有各層的服務。、

層次結構的好處在於使每一層實現一種相對獨立的功能。分層結構還有利於交流、理解和標准化。

所謂網路的層次模型就是計算機網路各層次及其協議的 集合。層次結構一般以垂直分層模型來表示, 層次結構的要點:

1)除了在物理媒體上進行的是實通信之外,其餘各 對等實體間進行的都是虛通信。

2)對等層的虛通信必須遵循該層的協議。

3)n層的虛通信是通過n/n-l層間介面處n-l層提供的服務以及n-1層的通信(通常也

是虛通信)來實現的。

1.2.2網路體系結構

網路體系結構最常用的分為兩種:

OSI七層結構和TCP/IP(TramferControlProtocol/InternetProtocol,傳輸控制協議/網際協議)四層結構。TCP/IP協議是Internet的核心協議。

1.OSI/RM基本參考模型

開放系統互聯(OpenSystemIntercomectim)基本參考模型是由國際標准化組織(ISO)

制定的標准化開放式計算機網路層次結構模型,又稱ISO/OSI參考模型。"開放"這個詞表示能使任何兩個遵守參考模型和有關標準的系統可以進行互聯。

OSI/RM包括了體系結構、服務定義和協議規范三級抽象。OSI的體系結構定義了一個七層模型,用以進行進程間的通信,並作為一個框架來協調各層標準的制定gOSI的服務定義描述了各層所提供的服務,以及層與層之間的抽象介面和交互用的服務原語:OSI各層的協議規范,精確地定義了應當發送何種控制信息及何種過程來解釋該控制信息。

OSI/RM的七層參考模型結構包括:從下至上分別為物理層、數據鏈路層、網路層、傳輸層,

會話層、表示層和應用層。

2.Internet層次模型

Internet網路結構以TCP/IP協議層次模型為核心,

共分四層結構:應用層、傳輸層、網際層和網路介面層。TCP/IP的體系結構與ISO的OSI七層參考模型的對應關系如圖1-6所示。TCP/IP是Internet的核心,利用TCP/IP協議可以方便地實現各種網路的平滑、無縫連接。在TCP/IP四層模型中,作為最高層的應用層相當於OSI的5~7層,該層中包括了所有的高層協議,如常見的文件傳輸協議FTP(文件傳輸協議)、電子郵件SMTP,(簡單郵件傳送協議)、域名系統DNS(域名服務)、網路管理協議SNMP、訪問WWW的超文本傳輸協議HTTP、遠程終端訪問協議TELNET等。

TCP/IP的次高層為傳輸層,相當於OSI的傳輸層,該層負責在源主機和目的主機之間提供端到端的數據傳輸服務。這一層上主要定義了兩個協議:面向連接的傳輸控制協議TCP和無連接的用戶數據報協議UDP(UserDatagramProtocol)。

TCP/IP的第二層相當於OSI的網路層,該層負責將報文(數據包)獨立地從信源傳送到信宿,主要解決路由選擇、阻塞控制級網際互聯問題。這一層上定義了網際協議(InternetProtocol,IP協議)、地址轉換協議ARP(AddressResolutionProtocol)、反向地址轉換協議RARP(ReverseARP)和網際控制報文協議ICMP()等協議。

TCP/IP的最低層為網路介面層,該層負責將IP分組封裝成適合在物理網路上傳輸的幀格式並發送出去,或將從物理網路接收到的幀卸裝並遞交給高層。這一層與物理網路的具體實現有關,自身並無專用的協議。事實上,任何能傳輸IP報文的協議都可以運行。雖然該層一般不需要專門的TCP/IP協議,各物理網路可使用自己的數據鏈路層協議和物理層協議。

3.Internet主要協議

TCP/IP協議集的各層協議的總和亦稱作協議枝。給出了TCP/IP協議集與OSI參

考模型的對應關系。其中每一層都有著多種協議。一般來說,TCP提供傳輸層服務,而IP提供網路層服務。

(l)TCP/IP的數據鏈路層

數據鏈路層不是TCP/IP協議的一部分,但它是TCP/IP與各種通信網之間的介面。這些通信網包括多種廣域網和各種區域網。

一般情況下,各物理網路可以使用自己的數據鏈路層協議和物理層協議,不需要在數據鏈路層上設置專門的TCP/IP協議。但是,當使用串列線路連接主機與網路,或連接網路與網路時,例如用戶使用電話線接入網路肘,則需要在數據鏈路層運行專門的SLIP(SerialLineIP)協議的PPP(PointtoPointProtocol)協議。

(2)TCP/IP網路層

網路層最重要的協議是IP,它將多個網路聯成一個互聯網,可以把高層的數據以多個數據報的形式通過互聯網分發出去。

網路層的功能主要由IP來提供。除了提供端到端的報文分發功能外,IP還提供了很多擴充功能。例如:為了克服數據鏈路層對幀大小的限制,網路層提供了數據分塊和重組功能,這使得很大的IP數據報能以較小的報文在網上傳輸。

網路層的另一個重要服務是在互相獨立的區域網上建立互聯網路,即網際網。網間的報文來往根據它的目的IP地址通過路由器傳到另一網路。

IP的基本任務是通過互聯網傳送數據報,各個IP數據報之間是相互獨立的。主機上的IP層向傳輸層提供服務。IP從源傳輸實體取得數據,通過它的數據鏈路層服務傳給目的主機的IP層。IP不保證服務的可靠性,在主機資源不足的情況下,它可能丟棄某些數據報,同時IP也不檢查被數據鏈路層丟棄的報文。

在傳送時,高層協議將數據傳給IP層,IP層再將數據封裝為互聯網數據報,並交給數據鏈路層協議通過區域網傳送。若目的主機直接連在本區域網中,IP可直接通過網路將數據報傳給

目的主機;若目的主機在其他網路中,則IP路由器傳送數據報,而路由器則依次通過下一網路將數據報傳送到目的主機或再下一個路由器。即IP數據報是通過互聯網路逐步傳遞,直到終點 為止。

(3)TCP/IP傳輸層

TCP/IP在這一層提供了兩個主要的協議:傳輸控制協議(TCP)和用戶數據協議(UDP)。TCP提供的是一種可靠的數據流服務。當傳送有差錯數據,或網路故障,或網路負荷太

重不能正常工作時,就需要通過其他協議來保證通信的可靠。TCP就是這樣的協議,它對應於OSI模型的傳輸層,它在IP協議的基礎上,提供端到端的面向連接的可靠傳輸。

TCP採用"帶重傳的肯定確認"技術來實現傳輸的可靠性。簡單的"帶重傳的肯定確認"是指與發送方通信的接收者,每接收一次數據,就送回一個確認報文J發送者對每個發出去的

報文都留一份記錄,等到收到確認之後再發出下一報文。發送者發出報文時,啟動計時器,若計時器計數完畢,確認還未到達,則發送者重新發送該報文。

TCP通信建立在面向連接的基礎上,實現了一種"虛電路"的概念。雙方通信之前,先建立一條連接,然後雙方就可以在其上發送數據流。這種數據交換方式能提高效率,但事先建立連接和事後拆除連接需要開銷。

4.TCP/IP協議族中的其他協議

TCP/IP是網路中使用的基本的通信協議,是一系列協議和服務的總集。雖然從名字上看

τCP/IP包括兩個協議一一…傳輸控制協議(TCP)和網際協議(IP),但TCP/IP實際上是一組協議,包括了上百個各種功能的協議,如:遠程登錄、文件傳輸和電子郵件(PPP,ICMP,ARP/

RARP,UDP,FTP,HTTP,SMTP,SNMP,RIP,OSPF)等協議,而TCP協議和IP協議是保證數據完整傳輸的兩個最基本的重要協議。通常說TCP/IP是指TCP/IP協議族,而不單單是TCP和IP。TCP/IP依靠TCP和IP這兩個主要協議提供的服務,加上高層應用層的服務,共同實現了TCP/IP協議族的功能。

TCP/IP的最高層與OSI參考模型的上三層有較大區別,也沒有非常明確的層次劃分。其中FTP,TELNET,SMTP,DNS是幾種廣泛應用的協議,TCP/IP中還定義了許多別的高層協議。

(l)文件傳輸協議FTP

FTP(FileTransferProtocol):文件傳輸協議,允許用戶將遠程主機上的文件拷貝到自

己的計算機上。

文件傳輸協議是用於訪問遠程機器的專門協議,它使用戶可以在本地機與遠程機之間進行有關文件的操作。FTP工作時建立兩條TCP連接,條用於傳送文件,另一條用於傳送控制。

FTP採用客戶/伺服器模式,它包含FTP客戶端和FTP伺服器。客戶啟動傳送過程,而服 務器對其做出應答。客戶FTP大多有互動式界面,使客戶可以方便地上傳或下載文件。

(2)遠程終端訪問TELNET

Telnet(RemoteLogin):提供遠程登錄功能,用戶可以登錄到遠程的另一台計算機土,如同在遠程主機上直接操作一樣。

設備或終端進程交互的方訟,支持終端到終端的連接及進程到進程分布式計算的通信。

(3)域名服務DNS

DNS是一個域名服務的協議,提供域名到IP地址的轉換,允許對域名資源進行分散管理。(4)簡單郵件傳送協議SMTP

SMTP(SimpleMailTransferProtocol,簡單郵件傳輸協議),用於傳輸電子郵件。

互聯網標准中的電子郵件是基於文件的協議,用於可靠、有效的數據傳輸。SMTP作為應用層的服務,並不關心它下面採用的是何種傳輸服務,它可通過網路在TCP連接上傳送郵件, 或者簡單地在同一機器的進程之間通過進程通信的通道來傳送郵件。

郵件發送之前必須協商好發送者、接收者。SMTP服務進程同意為接收方發送郵件時,它將郵件直接交給接收方用戶或將郵件經過若干段網路傳輸,直到郵件交給接收方用戶。在郵件傳輸過程中,所經過的路由被記錄下來。這樣,當郵件不能正常傳輸時可按原路由找到發送者。

13網路互聯基礎

1.3.1IP地址

IP地址和域名是Internet使用的、符合TCP/IP協議規定的地址方案。這種地址方案與日常生活中涉及的電話號碼和通信地址相似,涉及到Internet服務的每一環節。IP協議要求所有Internet的網路節點要有統一規定格式的地址,簡稱IP地址。IP地址是運行TCP/IP協議的唯一標識符。TCP/IP協議是上層協議,無論下層是何種拓撲結構的網路,均應統一在上層IP地址上。任何網路接入Internet,均應使用IP地址。

IP地址是唯一的、全球識別的InterIEt網路地址,採用32位二進制(即4位元組)的格式。

在Internet上,每台計算機或網路設備都被分配一個IP地址,這個IP地址在整個InterIIet網路中是唯一的,保證了Internet成為全球開放互聯的網路系統。

1.3.2IP地址的格式和分類

IP地址可表達為二進制格式和十進制格式。二進制的IP地址為32位,分為4個8位二進制數。為書寫方便起見,常將每個位元組作為一段並以十進制數來表示,每段間用"."分隔,每段取值為0~255,。例如:135.111.5.27(二進制格式:10000111.01101111.00000101.00011011)就是合怯的IP地址。

IP地址由網路標識和主機標識兩部分組成。常用的IP地址有ATB,C三類,每類均規定

了網路標識和主機標識在32位中所佔的位數。這三類IP地址的格式表示範圍分別為:

A類地址:0.0.0.O~127.255.255.255

B類地址:128.0.0.O~191.255.255.255

C類地址:192.0.0.O~233.255.255.255

A類IP地址一般用於主機數多達160餘萬台的大型網路,前8位代表網路號,後3個8

位代表主機號。32位的最高位為Og十進制的第一組數值范圍為000~127。IP地址范圍為:001.x.y.z~126.x.y.z。

B類IP地址一般用於中等規模的各地區網管中心,前兩個8位二進制代表網路號,後兩個8位代表主機號。32位的最高兩位為10;十進制的第一組數值范圍為128~191。IP地址范圍為:128.x.y.Z~191.x.y.z。

C類地址一般用於規模較小的本地網路,如校園網、企業網、政府機構網等。前三個8位代表網路號,最後8位代表主機號。32位的最高3位為110,十進制第一組數值范圍為192~223。IP地址范圍為:192.x.y.z~223.x.y.z。一個C類地址可連接256個主機。

A類地址一般分配給具有大量主機的網路使用,B類地址通常分配給規模中等的網路使用,C類地址通常分配給小型區域網使用。為了確保唯→性,IP地址由世界各大地區的權威機構InterNIC()管理和分配。

1.3.3子網的劃分與掩碼

在Internet中,如果每個物理網路就要佔用一個網路號,是不夠用的。另外,如果每個單位增添新的物理網路(例如新建樓房或新部門中新建的網路)就要向Internet的NIC申請新網路號,也太麻煩,並且不便於IP地址的分配管理。

,
在IP地址的某個網路標識中,可以包含大量的主機(如A類地址的主機標識域為24位,B類地址的主機標識域為16位),而在實際應用中不可能將這么多的主機連接到單一的網路中, 這將給網路定址和管理帶來不便。為解決這個問題,可以在網路中引入"子網"的概念。

注意:這里的子網與前面所說的通信子網是兩個完全不同的概念。將主機標識域進一步劃分為子網標識和子網主機標識,通過靈活定義子網標識域的位數,可以控制每個子網的規模。將一個大型網路劃分為若干個既相對獨立又相互聯系的子網後,網路內部各子網便可獨立定址和管理,各子網間通過跨子網的路由器連接,這樣也提高了網路的安全性。

利用子網掩碼可以判斷兩台主機是否在同一子網中。子網掩碼與IP地址一樣也是32位二進制數,不同的是它的子網主機標識部分為全"。"。若兩台主機的IP地址分別與它們的子網掩碼相"與"後的結果相同,則說明這兩台主機在同一網中。

1.子網劃分

為使多個物理網路共用一個IP地址,可以採取把IP地址中主機號部分進一步劃分為子網號和主機號兩部分。例如:一個B類IP地址,可以把第三個位元組作為子網號,第四個位元組作為子網(物理網路)上主機號。

2.子網掩碼

IP路由選擇演算法是根據IP數據報報頭中目的地址的網路號,查找它的路由表,找到一個表項的目的網路號能與它匹配,然後用匹配上表項的中繼IP地址作為發送該數據報到達目的主機的下一個路由器地址。IP數據報報頭中目的地址的網路號是根據該地址最高位值來決定它是哪一類IP地址,網路號應佔用多少位。

劃分了子網後,就不能從地址的最高位值來判斷網路號佔用的位數了,用戶可以自行決定子網號佔用的位數。為了解決這個問題,必須使用子網掩碼(mask)子網掩碼是一個32位的數,其中取值為1的位,對應網路號或子&網號:取值為0的位,對應主機號。

F. 計算機網路的組成和體系結構

一、計算機網路的基本組成

計算機網路是一個很復雜的系統,它由許多計算機軟體、硬體和通信設備組合而成。下面對一個計算機網路所需的主要部分,即伺服器、工作站、外圍設備、網路軟體作簡要介紹。

1.伺服器(Server)

在計算機網路中,伺服器是整個網路系統的核心,一般是指分散在不同地點擔負一定數據處理任務和提供資源的計算機,它為網路用戶提供服務並管理整個網路,它影響著網路的整體性能。一般在大型網路中採用大型機、中型機和小型機作為網路伺服器,可保證網路的可靠性。對於網點不多,網路通信量不大,數據安全性要求不太高的網路,可以選用高檔微機作網路伺服器。根據伺服器在網路中擔負的網路功能的不同,又可分為文件伺服器、通信伺服器和列印伺服器等。在小型區域網中,最常用的是文件伺服器。一般來說網路越大、用戶越多、伺服器負荷越大,對伺服器性能要求越高。

2.工作站(Workstation)

工作站有時也稱為「節點」或「客戶機(Client)」,是指通過網路適配器和線纜連接到網路上的計算機,是網路用戶進行信息處理的個人計算機。它和伺服器不同,伺服器是為整個網路提供服務並管理整個網路,而工作站只是一個接入網路的設備,它保持原有計算機的功能,作為獨立的計算機為用戶服務,同時又可按一定的許可權訪問伺服器,享用網路資源。

工作站通常都是普通的個人計算機,有時為了節約經費,不配軟、硬碟,稱為「無盤工作站」。

3.網路外圍設備

是指連接伺服器和工作站的一些連線或連接設備,如同軸電纜、雙絞線、光纖等傳輸介質,網卡(NIC)、中繼器(Repeater)、集線器(Hub)、交換機(Switch)、網橋(Bridge)等,又如用於廣域網的設備:數據機(Modem)、路由器(Router)、網關(Gateway)等,介面設備:T型頭、BNC連接器、終端匹配器、RJ45頭、ST頭、SC頭、FC頭等。

4.網路軟體

前面介紹的都是網路硬體設備。要想網路能很好地運行,還必須有網路軟體。

通常網路軟體包括網路操作系統(NOS)、網路協議軟體和網路通信軟體等。其中,網路操作系統是為了使計算機具備正常運行和連接上網的能力,常見的網路操作系統有UNIX、Linux、Novell Netware、Windows NT、Windows 2000 Server、Windows XP等;網路協議軟體是為了各台計算能使用統一的協議,可以看成是計算機之間相互會話使用的語言;而運用協議進行實際的通信則是由通信軟體完成的。

網路軟體功能的強弱直接影響到網路的性能,因為網路中的資源共享、相互通信、訪問控制和文件管理等都是通過網路軟體實現的。

二、計算機網路的拓撲結構

所謂計算機網路的拓撲結構是指網路中各結點(包括連接到網路中的設備、計算機)的地理分布和互連關系的幾何構形,即網路中結點的互連模式。

網路的拓撲結構影響著整個網路的設計、功能、可靠性和通信費用等指標,常見的網路拓撲結構有匯流排型、星型、環型等,通過使用路由器和交換機等互連設備,可在此基礎上構建一個更大網路。

1.匯流排型

在匯流排型結構中,將所有的入網計算機接入到一條通信傳輸線上,為防止信號反射,一般在匯流排兩端連有終端匹配器如圖6-1(a)。匯流排型結構的優點是信道利用率高,可擴充性好,結構簡單,價格便宜。當數據在匯流排上傳遞時,會不斷地「廣播」,第一節點均可收到此信息,各節點會對比數據送達的地址與自己的地址是否相同,若相同,則接收該數據,否則不必理會該數據。缺點是同一時刻只能有兩個網路結點在相互通信,網路延伸距離有限,網路容納的節點數有限。在匯流排上只要有一個結點連接出現問題,會影響整個網路運行,且不易找到故障點。

圖6-1 網路拓撲結構

2.星型

在星型結構中,以中央結點為中心,其他結點都與中央結點相連。每台計算機通過單獨的通信線路連接到中央結點,由該中央結點向目的結點傳送信息,如圖6-1(b),因此,中央結點必須有較強的功能和較高的可靠性。

在已實現的網路拓撲結構中,這是最流行的一種。跟匯流排型拓撲結構相比,它的主要的優勢是一旦某一個電纜線段被損壞了,只有連接到那個電纜段的主機才會受到影響,結構簡單,建網容易,便於管理。缺點是該拓撲是以點對點方式布線的,故所需線材較多,成本相對較高,此外中央結點易成為系統的「瓶頸」,且一旦發生故障,將導致全網癱瘓。

3.環型

在環型結構中,如圖6-1(c)所示,各網路結點連成封閉環路,數據只能是單向傳遞,每個收到數據包的結點都向它的下一結點轉發該數據包,環游一圈後由發送結點回收。當數據包經過目標結點時,目標結點根據數據包中的目標地址判斷出是自己接收,並把該數據包拷貝到自己的接收緩沖中。

環型拓撲結構的優點是:結構簡單,網路管理比較簡單,實時性強。缺點是:成本較高,可靠性差,網路擴充復雜,網路中若有任一結點發生故障都會使整個網路癱瘓。

三、計算機網路的體系結構

要弄清網路的體系結構,需先弄清網路協議是什麼。

網路協議是兩台網路上的計算機進行通信時使用的語言,是通信的規則和約定。為了在網路上傳輸數據,網路協議定義了數據應該如何被打成包、並且定義了在接收數據時接收計算機如何解包。在同一網路中的兩台計算機為了相互通信,必須運行同一協議,就如同兩個人交談時,必須採用對方聽得懂的語言和語速。

由於網路結點之間的連接可能是很復雜的,因此,為了減少協議設計的復雜性,在制定協議時,一般把復雜成分分解成一些簡單成分,再將它們復合起來,而大多數網路都按層來組織,並且規定:(1)一般是將用戶應用程序作為最高層,把物理通信線路作為最低層,將其間再分為若干層,規定每層處理的任務,也規定每層的介面標准;(2)每一層向上一層提供服務,而與再上一層不發生關系;(3)每一層可以調用下一層的服務傳輸信息,而與再下一層不發生關系。(4)相鄰兩層有明顯的介面。

除最低層可水平通信外,其他層只能垂直通信。

層和協議的集合被稱為網路的體系結構。為了幫助大家理解,我們從現實生活中的一個例子來理解網路的層次關系。假如一個只懂得法語的法國文學家和一個只懂得中文的中國文學家要進行學術交流,那麼他們可將論文翻譯成英語或某一種中間語言,然後交給各自的秘書選一種通信方式發給對方,如圖6-2所示。

圖6-2 中法文學家學術交流方式

下面介紹兩個重要的網路體系結構:OSI參考模型和TCP/IP參考模型。

1.OSI參考模型

由於世界各大型計算機廠商推出各自的網路體系結構,不同計算機廠商的設備相互通信困難。為建立更大范圍內的計算機網路,必然要解決異構網路的互連,因而國際標准化組織ISO於1977年提出「開放系統互連參考模型」,即著名的OSI(Open system interconnection/Reference Model)。它將計算機網路規定為物理層、數據鏈路層、網路層、傳輸層、會話層、表示層、應用層等七層,受到計算機界和通信界的極大關注。

2.TCP/IP參考模型

TCP/IP(Transmission Control Protocol/Internet protocol)協議是Internet使用的通信協議,由ARPANET研究中心開發。TCP/IP是一組協議集(Internet protocol suite),而TCP、IP是該協議中最重要最普遍使用的兩個協議,所以用TCP/IP來泛指該組協議。

TCP/IP協議的體系結構被分為四層:

(1)網路介面層 是該模型的最低層,其作用是負責接收IP數據報,並通過網路發送出去,或者從網路上接收網路幀,分離IP數據報。

(2)網路層 IP協議被定義駐留在這一層中,它負責將信息從一台主機傳到指定接收的另一台主機。主要功能是:定址、打包和路由選擇。

(3)傳輸層 提供了兩個協議用於數據傳輸,即傳輸控制協議TCP和通用數據協議UDP,負責提供准確可靠和高效的數據傳送服務。

(4)應用層 位於TCP/IP最高層,為用戶提供一組常用的應用程序協議。例如:簡單郵件傳輸協議SMTP、文件傳協議FTP、遠程登錄協議Telnet、超文本傳輸協議HTTP(該協議是後來擴充的)等。隨著Internet的發展,又開發了許多實用的應用層協議。

圖6-3是TCP/IP模型和OSI模型的簡單比較:

圖6-3 TCP/IP模型和OSI模型的對比

G. 計算機網路的結構有哪些參考模型說明OSI模型的組成。

計算機網路結構主要有TCP/IP和OSI參考模型。

網路的拓撲結構是拋開網路物理連接來討論網路系統的連接形式,網路中各站點相互連接的方法和形式稱為網路拓撲。拓撲圖給出網路伺服器、工作站的網路配置和相互間的連接,它的結構主要有星型結構、匯流排結構、樹型結構、網狀結構、蜂窩狀結構、分布式結構等。

星型結構

星型結構是指各工作站以星型方式連接成網。網路有中央節點,其他節點(工作站、伺服器)都與中央節點直接相連,這種結構以中央節點為中心,因此又稱為集中式網路。它具有如下特點:結構簡單,便於管理;控制簡單,便於建網;網路延遲時間較小,傳輸誤差較低。但缺點也是明顯的:成本高、可靠性較低、資源共享能力也較差。

環型結構

環型結構由網路中若干節點通過點到點的鏈路首尾相連形成一個閉合的環,這種結構使公共傳輸電纜組成環型連接,數據在環路中沿著一個方向在各個節點間傳輸,信息從一個節點傳到另一個節點。

環型結構具有如下特點:信息流在網中是沿著固定方向流動的,兩個節點僅有一條道路,故簡化了路徑選擇的控制;環路上各節點都是自舉控制,故控制軟體簡單;由於信息源在環路中是串列地穿過各個節點,當環中節點過多時,勢必影響信息傳輸速率,使網路的響應時間延長;環路是封閉的,不便於擴充;可靠性低,一個節點故障,將會造成全網癱瘓;維護難,對分支節點故障定位較難。

匯流排型結構

匯流排結構是指各工作站和伺服器均掛在一條匯流排上,各工作站地位平等,無中心節點控制,公用匯流排上的信息多以基帶形式串列傳遞,其傳遞方向總是從發送信息的節點開始向兩端擴散,如同廣播電台發射的信息一樣,因此又稱廣播式計算機網路。各節點在接受信息時都進行地址檢查,看是否與自己的工作站地址相符,相符則接收網上的信息。

匯流排型結構的網路特點如下:結構簡單,可擴充性好。當需要增加節點時,只需要在匯流排上增加一個分支介面便可與分支節點相連,當匯流排負載不允許時還可以擴充匯流排;使用的電纜少,且安裝容易;使用的設備相對簡單,可靠性高;維護難,分支節點故障查找難。

分布式結構

分布式結構的網路是將分布在不同地點的計算機通過線路互連起來的一種網路形式,分布式結構的網路具有如下特點:由於採用分散控制,即使整個網路中的某個局部出現故障,也不會影響全網的操作,因而具有很高的可靠性;網中的路徑選擇最短路徑演算法,故網上延遲時間少,傳輸速率高,但控制復雜;各個節點間均可以直接建立數據鏈路,信息流程最短;便於全網范圍內的資源共享。缺點為連接線路用電纜長,造價高;網路管理軟體復雜;報文分組交換、路徑選擇、流向控制復雜;在一般區域網中不採用這種結構。

樹型結構

樹型結構是分級的集中控制式網路,與星型相比,它的通信線路總長度短,成本較低,節點易於擴充,尋找路徑比較方便,但除了葉節點及其相連的線路外,任一節點或其相連的線路故障都會使系統受到影響。

網狀拓撲結構

在網狀拓撲結構中,網路的每台設備之間均有點到點的鏈路連接,這種連接不經濟,只有每個站點都要頻繁發送信息時才使用這種方法。它的安裝也復雜,但系統可靠性高,容錯能力強。有時也稱為分布式結構。

蜂窩拓撲結構

蜂窩拓撲結構是無線區域網中常用的結構。它以無線傳輸介質(微波、衛星、紅外等)點到點和多點傳輸為特徵,是一種無線網,適用於城市網、校園網、企業網。

在計算機網路中還有其他類型的拓撲結構,如匯流排型與星型混合。匯流排型與環型混合連接的網路。在區域網中,使用最多的是匯流排型和星型結構。

OSI七層模型介紹
OSI是一個開放性的通行系統互連參考模型,他是一個定義的非常好的協議規范。OSI模型有7層結構,每層都可以有幾個子層。下面我簡單的介紹一下這7層及其功能。

OSI的7層從上到下分別是

7 應用層
6 表示層
5 會話層
4 傳輸層
3 網路層
2 數據鏈路層
1 物理層

其中高層,既7、6、5、4層定義了應用程序的功能,下面3層,既3、2、1層主要面向通過網路的端到端的數據流。下面我給大家介紹一下這7層的功能:

(1)應用層:與其他計算機進行通訊的一個應用,它是對應應用程序的通信服務的。例如,一個沒有通信功能的字處理程序就不能執行通信的代碼,從事字處理工作的程序員也不關心OSI的第7層。但是,如果添加了一個傳輸文件的選項,那麼字處理器的程序員就需要實現OSI的第7層。示例:telnet,HTTP,FTP,WWW,NFS,SMTP等。

(2)表示層:這一層的主要功能是定義數據格式及加密。例如,FTP允許你選擇以二進制或ASII格式傳輸。如果選擇二進制,那麼發送方和接收方不改變文件的內容。如果選擇ASII格式,發送方將把文本從發送方的字元集轉換成標準的ASII後發送數據。在接收方將標準的ASII轉換成接收方計算機的字元集。示例:加密,ASII等。

(3)會話層:他定義了如何開始、控制和結束一個會話,包括對多個雙向小時的控制和管理,以便在只完成連續消息的一部分時可以通知應用,從而使表示層看到的數據是連續的,在某些情況下,如果表示層收到了所有的數據,則用數據代表表示層。示例:RPC,SQL等。

(4)傳輸層:這層的功能包括是否選擇差錯恢復協議還是無差錯恢復協議,及在同一主機上對不同應用的數據流的輸入進行復用,還包括對收到的順序不對的數據包的重新排序功能。示例:TCP,UDP,SPX。

(5)網路層:這層對端到端的包傳輸進行定義,他定義了能夠標識所有結點的邏輯地址,還定義了路由實現的方式和學習的方式。為了適應最大傳輸單元長度小於包長度的傳輸介質,網路層還定義了如何將一個包分解成更小的包的分段方法。示例:IP,IPX等。

(6)數據鏈路層:他定義了在單個鏈路上如何傳輸數據。這些協議與被討論的歌種介質有關。示例:ATM,FDDI等。

(7)物理層:OSI的物理層規范是有關傳輸介質的特性標准,這些規范通常也參考了其他組織制定的標准。連接頭、針、針的使用、電流、電流、編碼及光調制等都屬於各種物理層規范中的內容。物理層常用多個規范完成對所有細節的定義。示例:Rj45,802.3等。

H. 計算機網路結構分幾種哪幾種

計算機網路的分類方式有很多種,可以按地理范圍、拓撲結構、傳輸速率和傳輸介質等分類。

⑴按地理范圍分類

①區域網LAN(Local Area Network)

區域網地理范圍一般幾百米到10km之內,屬於小范圍內的連網。如一個建築物內、一個學校內、一個工廠的廠區內等。區域網的組建簡單、靈活,使用方便。

②城域網MAN(Metropolitan Area Network)

城域網地理范圍可從幾十公里到上百公里,可覆蓋一個城市或地區,是一種中等形式的網路。

③廣域網WAN(Wide Area Network)

廣域網地理范圍一般在幾千公里左右,屬於大范圍連網。如幾個城市,一個或幾個國家,是網路系統中的最大型的網路,能實現大范圍的資源共享,如國際性的Internet網路。

⑵按傳輸速率分類

網路的傳輸速率有快有慢,傳輸速率快的稱高速網,傳輸速率慢的稱低速網。傳輸速率的單位是b/s(每秒比特數,英文縮寫為bps)。一般將傳輸速率在Kb/s—Mb/s范圍的網路稱低速網,在Mb/s—Gb/s范圍的網稱高速網。也可以將Kb/s網稱低速網,將Mb/s網稱中速網,將Gb/s網稱高速網。

網路的傳輸速率與網路的帶寬有直接關系。帶寬是指傳輸信道的寬度,帶寬的單位是Hz(赫茲)。按照傳輸信道的寬度可分為窄帶網和寬頻網。一般將KHz—MHz帶寬的網稱為窄帶網,將MHz—GHz的網稱為寬頻網,也可以將kHz帶寬的網稱窄帶網,將MHz帶寬的網稱中帶網,將GHz帶寬的網稱寬頻網。通常情況下,高速網就是寬頻網,低速網就是窄帶網。

⑶按傳輸介質分類

傳輸介質是指數據傳輸系統中發送裝置和接受裝置間的物理媒體,按其物理形態可以劃分為有線和無線兩大類。

①有線網

傳輸介質採用有線介質連接的網路稱為有線網,常用的有線傳輸介質有雙絞線、同軸電纜和光導纖維。

●雙絞線是由兩根絕緣金屬線互相纏繞而成,這樣的一對線作為一條通信線路,由四對雙絞線構成雙絞線電纜。雙絞線點到點的通信距離一般不能超過100m。目前,計算機網路上使用的雙絞線按其傳輸速率分為三類線、五類線、六類線、七類線,傳輸速率在10Mbps到600Mbps之間,雙絞線電纜的連接器一般為RJ-45。

●同軸電纜由內、外兩個導體組成,內導體可以由單股或多股線組成,外導體一般由金屬編織網組成。內、外導體之間有絕緣材料,其阻抗為50Ω。同軸電纜分為粗纜和細纜,粗纜用DB-15連接器,細纜用BNC和T連接器。

●光纜由兩層折射率不同的材料組成。內層是具有高折射率的玻璃單根纖維體組成,外層包一層折射率較低的材料。光纜的傳輸形式分為單模傳輸和多模傳輸,單模傳輸性能優於多模傳輸。所以,光纜分為單模光纜和多模光纜,單模光纜傳送距離為幾十公里,多模光纜為幾公里。光纜的傳輸速率可達到每秒幾百兆位。光纜用ST或SC連接器。光纜的優點是不會受到電磁的干擾,傳輸的距離也比電纜遠,傳輸速率高。光纜的安裝和維護比較困難,需要專用的設備。

②無線網

採用無線介質連接的網路稱為無線網。目前無線網主要採用三種技術:微波通信,紅外線通信和激光通信。這三種技術都是以大氣為介質的。其中微波通信用途最廣,目前的衛星網就是一種特殊形式的微波通信,它利用地球同步衛星作中繼站來轉發微波信號,一個同步衛星可以覆蓋地球的三分之一以上表面,三個同步衛星就可以覆蓋地球上全部通信區域。

⑷按拓撲結構分類

計算機網路的物理連接形式叫做網路的物理拓撲結構。連接在網路上的計算機、大容量的外存、高速列印機等設備均可看作是網路上的一個節點,也稱為工作站。計算機網路中常用的拓撲結構有匯流排型、星型、環型等。

①匯流排拓撲結構

匯流排拓撲結構是一種共享通路的物理結構。這種結構中匯流排具有信息的雙向傳輸功能,普遍用於區域網的連接,匯流排一般採用同軸電纜或雙絞線。

匯流排拓撲結構的優點是:安裝容易,擴充或刪除一個節點很容易,不需停止網路的正常工作,節點的故障不會殃及系統。由於各個節點共用一個匯流排作為數據通路,信道的利用率高。但匯流排結構也有其缺點:由於信道共享,連接的節點不宜過多,並且匯流排自身的故障可以導致系統的崩潰。

②星型拓撲結構

星型拓撲結構是一種以中央節點為中心,把若干外圍節點連接起來的輻射式互聯結構。這種結構適用於區域網,特別是近年來連接的區域網大都採用這種連接方式。這種連接方式以雙絞線或同軸電纜作連接線路。

星型拓撲結構的特點是:安裝容易,結構簡單,費用低,通常以集線器(Hub)作為中央節點,便於維護和管理。中央節點的正常運行對網路系統來說是至關重要的。

③環型拓撲結構

環型拓撲結構是將網路節點連接成閉合結構。信號順著一個方向從一台設備傳到另一台設備,每一台設備都配有一個收發器,信息在每台設備上的延時時間是固定的。

這種結構特別適用於實時控制的區域網系統。

環型拓撲結構的特點是:安裝容易,費用較低,電纜故障容易查找和排除。有些網路系統為了提高通信效率和可靠性,採用了雙環結構,即在原有的單環上再套一個環,使每個節點都具有兩個接收通道。環型網路的弱點是,當節點發生故障時,整個網路就不能正常工作。

④樹型拓撲結構

樹型拓撲結構就像一棵「根」朝上的樹,與匯流排拓撲結構相比,主要區別在於匯流排拓撲結構中沒有「根」。這種拓撲結構的網路一般採用同軸電纜,用於軍事單位、政府部門等上、下界限相當嚴格和層次分明的部門。

樹型拓撲結構的特點:優點是容易擴展、故障也容易分離處理,缺點是整個網路對根的依賴性很大,一旦網路的根發生故障,整個系統就不能正常工作。

I. 什麼是計算機網路體系結構

計算機網路體系結構:是指計算機網路層次結構模型和各層協議的集合。它廣泛採用的是國際標准化組織(ISO)在1979年提出的開放系統互連(OSI-Open System Interconnection)的參考模型。OSI參考模型用物理層、數據鏈路層、網路層、傳送層、對話層、表示層和應用層七個層次描述網路的結構,它的規范對所有的廠商是開放的,具有知道國際網路結構和開放系統走向的作用。它直接影響匯流排、介面和網路的性能。目前常見的網路體系結構有FDDI、乙太網、令牌環網和快速乙太網等。從網路互連的角度看,網路體系結構的關鍵要素是協議和拓撲。

J. 計算機網路結構體系有哪些

計算機網路體系結構:是指計算機網路層次結構模型和各層協議的集合。它廣泛採用的是國際標准化組織(ISO)在1979年提出的開放系統互連(OSI-Open System Interconnection)的參考模型。OSI參考模型用物理層、數據鏈路層、網路層、傳送層、對話層、表示層和應用層七個層次描述網路的結構,它的規范對所有的廠商是開放的,具有知道國際網路結構和開放系統走向的作用。它直接影響匯流排、介面和網路的性能。目前常見的網路體系結構有FDDI、乙太網、令牌環網和快速乙太網等。從網路互連的角度看,網路體系結構的關鍵要素是協議和拓撲。