當前位置:首頁 » 網路連接 » 計算機網路技術基礎子網
擴展閱讀
Hoenr手機無線網路速度慢 2025-09-26 17:40:58

計算機網路技術基礎子網

發布時間: 2022-10-11 15:19:34

1. 計算機網路基礎知識有什麼 網路基礎知識講解

1、計算機網路基礎:對「計算機網路」這個概念的理解和定義,隨著計算機網路本身的發展,人們提出了各種不同的觀點。

早期的計算機系統是高度集中的,所有的設備安裝在單獨的大房間中,後來出現了批處理和分時系統,分時系統所連接的多個終端必須緊接著主計算機。50年代中後期,許多系統都將地理上分散的多個終端通過通信線路連接到一台中心計算機上,這樣就出現了第一代計算機網路。

2、第一代計算機網路是以單個計算機為中心的遠程聯機系統。典型應用是由一台計算機和全美范圍內2000多個終端組成的飛機定票系統。終端:一台計算機的外部設備包括CRT控制器和鍵盤,無GPU內存。隨著遠程終端的增多,在主機前增加了前端機FEP當時,人們把計算機網路定義為「以傳輸信息為目的而連接起來,實現遠程信息處理或近一步達到資源共享的系統」,但這樣的通信系統己具備了通信的雛形。

3、第二代計算機網路是以多個主機通過通信線路互聯起來,為用戶提供服務,興起於60年代後期,典型代表是美國國防部高級研究計劃局協助開發的ARPAnet。主機之間不是直接用線路相連,而是介面報文處理機IMP轉接後互聯的。IMP和它們之間互聯的通信線路一起負責主機間的通信任務,構成了通信子網。通信子網互聯的主機負責運行程序,提供資源共享,組成了資源子網。兩個主機間通信時對傳送信息內容的理解,信息表示形式以及各種情況下的應答信號都必須遵守一個共同的約定,稱為協議。

4、在ARPA網中,將協議按功能分成了若干層次,如何分層,以及各層中具體採用的協議的總和,稱為網路體系結構,體系結構是個抽象的概念,其具體實現是通過特定的硬體和軟體來完成的。70年代至80年代中第二代網路得到迅猛的發展。第二代網路以通信子網為中心。這個時期,網路概念為「以能夠相互共享資源為目的互聯起來的具有獨立功能的計算機之集合體」,形成了計算機網路的基本概念。第三代計算機網路是具有統一的網路體系結構並遵循國際標準的開放式和標准化的網路。

5、IS0在1984年頒布了0SI/RM,該模型分為七個層次,也稱為0SI七層模型,公認為新一代計算機網路體系結構的基礎。為普及區域網奠定了基礎。(^60090922a^1)70年代後,由於大規模集成電路出現,區域網由於投資少,方便靈活而得到了廣泛的應用和迅猛的發展,與廣域網相比有共性,如分層的體系結構,又有不同的特性,如區域網為節省費用而不採用存儲轉發的方式,而是由單個的廣播信道來連結網上計算機。

6、第四代計算機網路從80年代末開始,區域網技術發展成熟,出現光纖及高速網路技術,多媒體,智能網路,整個網路就像一個對用戶透明的大的計算機系統,發展為以Internet為代表的互聯網。計算機網路:將多個具有獨立工作能力的計算機系統通過通信設備和線路由功能完善的網路軟體實現資源共享和數據通信的系統。

7、從定義中看出涉及到三個方面的問題:至少兩台計算機互聯。

通信設備與線路介質。網路軟體,通信協議和NOS

2. 計算機網路的資源子網指的是什麼

在計算機網路中,資源子網的功能是:處理數據處理業務。

資源子網」主要負責全網的信息處理數據處理業務,向網路用戶提供各種網路資源和網路服務。為網路用戶提供網路服務和資源共享功能等。它主要包括網路中所有的主計算機、I/O設備和終端,各種網路協議、網路軟體和資料庫等。

就區域網而言,通訊子網由網卡、線纜、集線器、中繼器、網橋、路由器、交換機等設備和相關軟體組成。資源子網由連網的伺服器、工作站、共享的列印機和其它設備及相關軟體所組成。

在廣域網中,通訊子網由一些專用的通信處理機(即節點交換機)及其運行的軟體、集中器等設備和連接這些節點的通信鏈路組成。資源子網由上網的所有主機及其外部設備組成。通信子網的設備工作在TCP/IP協議的物理層、數據鏈路層、網路層和傳輸層,資源子網的設備工作在TCP/IP協議的應用層。

(2)計算機網路技術基礎子網擴展閱讀:

資源子網主體構成:用戶計算機(也稱工作站),網路存儲系統,網路列印機,獨立運行的網路數據設備,網路終端,伺服器,網路上運行的各種軟體資源,數據資源等。

主計算機系統簡稱主機(Host),它可以是大型機,中型機,小型機。主機是資源子網的主要組成單元,它通過高速通信線路與通信子網的通信控制處理機相連接。普通用戶終端通過主機連人網內。主機要為本地用戶訪問網路其他主機設備和資源提供服務,同時為遠程服務用戶共享本地資源提供服務。

終端(Terminal) 是用戶訪問網路的界面。終端可以是簡單的輸入、輸出終端,也可以是帶有微處理機的智能終端。終端可以通過主機連入網內,也可以通過終端控制器、報文分組組裝與拆卸裝置或通信控制處理機連人。

參考資料來源:網路—資源子網

3. 計算機網路可分為哪兩大子網它們各實現什麼功能

計算機網路的分類方式有很多種,可以按地理范圍、拓撲結構、傳輸速率和傳輸介質等分類。

⑴按按照計算機之間的距離和網路覆蓋面來分可分為
①區域網LAN(Local Area Network)

區域網地理范圍一般幾百米到10km之內,屬於小范圍內的連網。如一個建築物內、一個學校內、一個工廠的廠區內等。區域網的組建簡單、靈活,使用方便。

②城域網MAN(Metropolitan Area Network)

城域網地理范圍可從幾十公里到上百公里,可覆蓋一個城市或地區,是一種中等形式的網路。

③廣域網WAN(Wide Area Network)

廣域網地理范圍一般在幾千公里左右,屬於大范圍連網。如幾個城市,一個或幾個國家,是網路系統中的最大型的網路,能實現大范圍的資源共享,如國際性的Internet網路。

⑵按傳輸速率分類

網路的傳輸速率有快有慢,傳輸速率快的稱高速網,傳輸速率慢的稱低速網。傳輸速率的單位是b/s(每秒比特數,英文縮寫為bps)。一般將傳輸速率在Kb/s—Mb/s范圍的網路稱低速網,在Mb/s—Gb/s范圍的網稱高速網。也可以將Kb/s網稱低速網,將Mb/s網稱中速網,將Gb/s網稱高速網。

網路的傳輸速率與網路的帶寬有直接關系。帶寬是指傳輸信道的寬度,帶寬的單位是Hz(赫茲)。按照傳輸信道的寬度可分為窄帶網和寬頻網。一般將KHz—MHz帶寬的網稱為窄帶網,將MHz—GHz的網稱為寬頻網,也可以將kHz帶寬的網稱窄帶網,將MHz帶寬的網稱中帶網,將GHz帶寬的網稱寬頻網。通常情況下,高速網就是寬頻網,低速網就是窄帶網。

⑶按傳輸介質分類

傳輸介質是指數據傳輸系統中發送裝置和接受裝置間的物理媒體,按其物理形態可以劃分為有線和無線兩大類。

①有線網

傳輸介質採用有線介質連接的網路稱為有線網,常用的有線傳輸介質有雙絞線、同軸電纜和光導纖維。

●雙絞線是由兩根絕緣金屬線互相纏繞而成,這樣的一對線作為一條通信線路,由四對雙絞線構成雙絞線電纜。雙絞線點到點的通信距離一般不能超過100m。目前,計算機網路上使用的雙絞線按其傳輸速率分為三類線、五類線、六類線、七類線,傳輸速率在10Mbps到600Mbps之間,雙絞線電纜的連接器一般為RJ-45。

●同軸電纜由內、外兩個導體組成,內導體可以由單股或多股線組成,外導體一般由金屬編織網組成。內、外導體之間有絕緣材料,其阻抗為50Ω。同軸電纜分為粗纜和細纜,粗纜用DB-15連接器,細纜用BNC和T連接器。

●光纜由兩層折射率不同的材料組成。內層是具有高折射率的玻璃單根纖維體組成,外層包一層折射率較低的材料。光纜的傳輸形式分為單模傳輸和多模傳輸,單模傳輸性能優於多模傳輸。所以,光纜分為單模光纜和多模光纜,單模光纜傳送距離為幾十公里,多模光纜為幾公里。光纜的傳輸速率可達到每秒幾百兆位。光纜用ST或SC連接器。光纜的優點是不會受到電磁的干擾,傳輸的距離也比電纜遠,傳輸速率高。光纜的安裝和維護比較困難,需要專用的設備。

②無線網

採用無線介質連接的網路稱為無線網。目前無線網主要採用三種技術:微波通信,紅外線通信和激光通信。這三種技術都是以大氣為介質的。其中微波通信用途最廣,目前的衛星網就是一種特殊形式的微波通信,它利用地球同步衛星作中繼站來轉發微波信號,一個同步衛星可以覆蓋地球的三分之一以上表面,三個同步衛星就可以覆蓋地球上全部通信區域。

⑷按拓撲結構分類

計算機網路的物理連接形式叫做網路的物理拓撲結構。連接在網路上的計算機、大容量的外存、高速列印機等設備均可看作是網路上的一個節點,也稱為工作站。計算機網路中常用的拓撲結構有匯流排型、星型、環型等。

①匯流排拓撲結構

匯流排拓撲結構是一種共享通路的物理結構。這種結構中匯流排具有信息的雙向傳輸功能,普遍用於區域網的連接,匯流排一般採用同軸電纜或雙絞線。

匯流排拓撲結構的優點是:安裝容易,擴充或刪除一個節點很容易,不需停止網路的正常工作,節點的故障不會殃及系統。由於各個節點共用一個匯流排作為數據通路,信道的利用率高。但匯流排結構也有其缺點:由於信道共享,連接的節點不宜過多,並且匯流排自身的故障可以導致系統的崩潰。

②星型拓撲結構

星型拓撲結構是一種以中央節點為中心,把若干外圍節點連接起來的輻射式互聯結構。這種結構適用於區域網,特別是近年來連接的區域網大都採用這種連接方式。這種連接方式以雙絞線或同軸電纜作連接線路。

星型拓撲結構的特點是:安裝容易,結構簡單,費用低,通常以集線器(Hub)作為中央節點,便於維護和管理。中央節點的正常運行對網路系統來說是至關重要的。

③環型拓撲結構

環型拓撲結構是將網路節點連接成閉合結構。信號順著一個方向從一台設備傳到另一台設備,每一台設備都配有一個收發器,信息在每台設備上的延時時間是固定的。

這種結構特別適用於實時控制的區域網系統。

環型拓撲結構的特點是:安裝容易,費用較低,電纜故障容易查找和排除。有些網路系統為了提高通信效率和可靠性,採用了雙環結構,即在原有的單環上再套一個環,使每個節點都具有兩個接收通道。環型網路的弱點是,當節點發生故障時,整個網路就不能正常工作。

④樹型拓撲結構

樹型拓撲結構就像一棵「根」朝上的樹,與匯流排拓撲結構相比,主要區別在於匯流排拓撲結構中沒有「根」。這種拓撲結構的網路一般採用同軸電纜,用於軍事單位、政府部門等上、下界限相當嚴格和層次分明的部門。

樹型拓撲結構的特點:優點是容易擴展、故障也容易分離處理,缺點是整個網路對根的依賴性很大,一旦網路的根發生故障,整個系統就不能正常工作。

4. 計算機網路如何計運算元網掩碼

IP地址是以 網路號 和 主機 號來表示網路上的主機的,只有在一個網路號下的計算機之間才能「直接」互通,不同網路號的計算機要通過 網關 (Gateway)才能互通。但這樣的劃分在某些情況下顯得並不十分靈活。為此 IP網路 還允許劃分成更小的網路,稱為子網(Subnet),這樣就產生了 子網掩碼 。子網掩碼的作用就是用來判斷任意兩個IP地址是否屬於同一子網路,這時只有在同一子網的計算機才能"直接"互通。那麼怎樣確定子網掩碼呢?

前面講到IP地址分網路號和主機號,要將一個網路劃分為多個子網,因此網路號將要佔用原來的主機位,如對於一個C類地址,它用24位來標識網路號,要將其劃分為2個子網則需要佔用1位原來的主機標識位。此時 網路號 位變為25位, 主機 標示變為7位。同理借用2個主機位則可以將一個C類網路劃分為4個子網……那計算機是怎樣才知道這一網路是否劃分了子網呢?這就可以從子網掩碼中看出。子網掩碼和IP地址一樣有32bit,確定 子網掩碼 的方法是其與IP地址中標識網路號的所有對應位都用"1",而與主機號對應的位都是"0"。如分為2個子網的C類IP地址用25位來標識網路號,則其子網掩碼為:11111111 11111111 11111111 10000000即255.255.255.128。於是我們可以知道,A類地址的預設子網掩碼為255.0.0.0,B類為255.255.0.0,C類為255.255.255.0。下表是C類地址 子網劃分 及相關子網掩碼:

子網位數 子網掩碼 主機 數 可用主機數

1 255.255.255.128 128 126

2 255.255.255.192 64 62

3 255.255.255.224 32 30

4 255.255.255.240 16 14

5 255.255.255.248 8 6

6 255.255.255.252 4 2

你可能注意到上表分了 主機 數和可用主機數兩項,這是為什麼呢?因為當地址的所有主機位都為"0"時,這一地址為子網的網路地址,而當所有主機位都為"1"時為 廣播地址 。

同時我們還可以使用可變長 掩碼 (VLSM)就是指一個網路可以用不同的掩碼進行配置。這樣做的目的是為了使把一個網路劃分成多個子網更加方便。在沒有VLSM的情況下,一個網路只能使用一種 子網掩碼 ,這就限制了在給定的子網數目條件下主機的數目。例如你被分配了一個C類地址, 網路號 為192.168.10.0,而你現在需要將其劃分為三個子網,其中一個子網有100台 主機 ,其餘的兩個子網有50台主機。我們知道一個C類地址有254個可用地址,那麼你如何選擇子網掩碼呢?從上表中我們發現,當我們在所有子網中都使用一個子網掩碼時這一問題是無法解決的。此時VLSM就派上了用場,我們可以在100個主機的子網使用255.255.255.128這一 掩碼 ,它可以使用192.168.10.0到192.168.10.127這128個IP地址,其中可用主機號為126個。我們再把剩下的192.168.10.128到192.168.10.255這128個IP地址分成兩個子網, 子網掩碼 為255.255.255.192。其中一個子網的地址從192.168.10.128到192.168.10.191,另一子網的地址從192.168.10.192到192.168.10.255。子網掩碼為255.255.255.192每個子網的可用 主機地址 都為62個,這樣就達到了要求。可以看出合理使用子網掩碼,可以使IP地址更加便於管理和控制。

、、、、、、、、、、、、、、、、、、、、、、、、、

定義子網掩碼

用於子網掩碼的位數決定於可能的子網數目和每個子網的主機數目。在定義子網掩碼前,必須弄清楚本來使用的子網數和主機數目。

定義子網掩碼的步驟為:

A、確定哪些組地址歸我們使用。比如我們申請到的網路號為 「210.73.a.b」,該網路地址為c類IP地址,網路標識為「210.73.a」,主機標識為「b」。

B、根據我們所需的子網數以及將來可能擴充到的子網數,用宿主機的一些位來定義子網掩碼。比如我們需要12個子網,將來可能需要16個。用第四個位元組的前四位確定子網掩碼。前四位都置為「1」,即第四個位元組為「11110000」,這個數我們暫且稱作新的二進制子網掩碼。

C、把對應初始網路的各個位都置為「1」,即前三個位元組都置為「1」,則子網掩碼的間斷二進制形式為:「11111111.11111111.11111111.11110000」 。

D、把這個數轉化為間斷十進制形式為:「255.255.255.240」 。

計算方式

由於子網掩碼的位數決定於可能的子網數目和每個子網的 主機 數目。在定義子網掩碼前,必須弄清楚本來使用的 子網 數和 主機 數目。

根據子網數

利用子網數來計算

在求子網掩碼之前必須先搞清楚要劃分的子網數目,以及每個子網內的所需主機數目。

1)將子網數目轉化為 二進制 來表示

2)取得該 二進制 的位數,為 N

3)取得該IP地址的類子網掩碼,將其 主機地址 部分的前N位置1 即得出該IP地址劃分子網的子網掩碼。

如欲將B類IP地址168.195.0.0劃分成27個子網:

1)27=11011

2)該 二進制 為五位數,N = 5

3)將B類地址的子網掩碼255.255.0.0的 主機地址 前5位置1(B類地址的主機位包括後兩個位元組,所以這里要把第三個位元組的前5位置1),得到 255.255.248.0

即為劃分成27個子網的B類IP地址 168.195.0.0的子網掩碼(實際上是劃成了32-2=30個子網)。

這一段介紹的是舊標准下計算的方法,關於舊的標准後文在介紹,在新標准中則可以先將27減去1,因為計算機是從0開始計算的,從0到27實際上是有28個,所以說如果需要27個就需要將27減去1。

根據主機數

利用主機數來計算

1)將主機數目轉化為二進制來表示

2)如果主機數小於或等於254(注意去掉保留的兩個IP地址),則取得該主機的 二進制 位數,為 N,這里肯定N<8。如果大於254,則 N>8,這就是說 主機地址 將占據不止8位。

3)使用255.255.255.255來將該類IP地址的 主機地址 位數全部置1,然後從後向前的將N位全部置為 0,即為子網掩碼值。

如欲將B類IP地址168.195.0.0劃分成若乾子網,每個子網內有 主機 700台:

1) 700=1010111100

2)該 二進制 為十位數,N = 10

3)將該B類地址的子網掩碼255.255.0.0的 主機地址 全部置1,得到255.255.255.255

然後再從後向前將後10位置0,即為: 11111111.11111111.11111100.00000000

即255.255.252.0。這就是該欲劃分成 主機 為700台的B類IP地址168.195.0.0的子網掩碼。

子網掩碼最直接的作用是判斷IP地址與另一個IP地址是否在同一個網段內。

下面先簡單看一個電腦上IP的基本配置

IP地址:192.168.0.5

子網掩碼:255.255.255.0

默認網關:192.168.0.1

如上的例子,IP地址、子網掩碼、默認網關。假如現在上邊的電腦A(IP地址192.168.0.5)要給電腦B(IP地址為192.168.0.22)發送數據,首先A將數據發到路由器,路由器經過判斷B的地址和A的地址在同一個網段內,然後路由器就將數據直接發送給B。

路由器具體使用子網掩碼來判斷IP地址是先將這些IP地址和子網掩碼都換成二進制,然後按照子網掩碼的最長位數的1來比較。

第一步:轉換為二進制

A的IP地址:11000000,10101000,00000000,00000101

子網掩碼:11111111,11111111,11111111,00000000

B的IP地址:11000000,10101000,00000000,00010110

第二步:按照子網掩碼最長1來比較

看上邊的內容,子網掩碼在左邊一共有24位為1,那這樣的意思就是如果兩個IP地址的前24位都相同的話,那這兩個IP地址就是在同一個網段內,看到我紅色標記的A和B的地址都相同,那這就說明A和B在同一個網段內。

再看一個例子,如果還是A地址的數據發到C地址,C的IP地址為192.168.56.21

第一步:轉換為二進制

A的IP地址:11000000,10101000,00000000,00000101

子網掩碼:11111111,11111111,11111111,00000000

C的IP地址:11000000,10101000,00111000,00010101

第二步:按照子網掩碼最長1來比較

看上邊的A和C,按照子網掩碼的要求,如果C的前24位和A的前24位都相同的話,那麼A和C才是同一網段的,看上邊C的地址,我用藍色來標注不同的位數,這樣A 和C就不在同一個網段內,路由器就不能直接把A要發給C的數據直接經過一個路由器給發送過去,這樣路由器就要先將A的數據轉發到另外一個路由器(一個不行就繼續往下發),然後再發到C上。

問題擴展:

一:上邊的例子中子網掩碼為255.255.255.0,那麼能不能把子網掩碼給修改呢,完全可以。

在上邊A和C的例子中,如果把子網掩碼改成255.255.0.0,再看一下

A的IP地址:11000000,10101000,00000000,00000101

子網掩碼:11111111,11111111,00000000,00000000

C的IP地址:11000000,10101000,00111000,00010101

這樣A和C就在同一個網段內了

二:擴展子網

在一個公司或者學校內部,已經分配好了網路號,按照內部行政結構的不同,再將網路分配成子網路號。

舉例:如果一個公司主機已經分配好的網路按照255.255.0.0的子網掩碼來區分主機號,現在由於公司有兩個部門,想要按照部門來劃分成兩個子網路來,那麼可以簡單的用子網掩碼來劃分。現在來考慮,有兩個部門,按照二進制的做飯,那麼只要有一位的數字0和1來區分就可以了。

按照255.255.0.0(11111111,11111111,00000000,00000000)來劃分,前邊了16位是網路號,按照子網掩碼是按照最長1來匹配,那麼現在就在17位劃分位0和1來區分成兩個。那麼可以給一個部門的子網掩碼劃分為255.255.128.0,另一個劃分為255.255.0.0,用二進制來比較一下

255.255.0.0:11111111,11111111,00000000,00000000

255.255.128.0:11111111,11111111,10000000,00000000

這樣就簡單的將兩個部門來劃分開了

三:路由的時候選擇最長1來匹配

路由的時候為什麼選擇最長1來匹配,理由是這樣的:如果是在好幾個可以匹配的網段內(還是按照子網掩碼)選擇最長的那個,可以很快的找到匹配。如果是按照最短的,那麼需要匹配的主機就多,還有一種可能是一個路由器轉發不了,還要換另一個路由,很可能造成包在網路內循環,最後直至包被丟棄。

四:網關的概念

在開始的例子中提到默認網關的概念,先來看網關的概念。

網關實質上是一個網路通向其他網路的IP地址,網關的IP地址是具有路由功能的設備的IP地址,按照上邊的192.168.0.1網關的例子,網關就是有那麼一台機子或者是PC機或者是伺服器它的IP地址是192.168.0.0,這個設備有路由功能。按照這個理論,一個設備的IP必須和自己的網關在同一個網段內,這是必須的。

說完網關,再說默認網關,默認二字就沒有太多解釋的了,這里舉例說明:網關可能不止一個,有網關一、網關二等等,默認網關就是選擇其中之一做為默認值。

5. 計算機網路可以劃分為哪些二級子網結構

計算機網路可以劃分為由通信子網和資源子網組成的二級子網結構。

計算機網路首先是一個通信網路,各計算機之間通過通信媒體、通信設備進行數字通信,在此基礎上各計算機可以通過網路軟體共享其它計算機上的硬體資源、軟體資源和數據資源。從計算機網路各組成部件的功能來看,各部件主要完成兩種功能,即網路通信和資源共享。把計算機網路中實現網路通信功能的設備及其軟體的集合稱為網路的通信子網,而把網路中實現資源共享功能的設備及其軟體的集合稱為資源子網。
就區域網而言,通信子網由網卡、線纜、集線器、中繼器、網橋、路由器、交換機等設備和相關軟體組成。資源子網由連網的伺服器、工作站、共享的列印機和其它設備及相關軟體所組成。
在廣域網中,通信子網由一些專用的通信處理機(即節點交換機)及其運行的軟體、集中器等設備和連接這些節點的通信鏈路組成。資源子網由上網的所有主機及其外部設備組成。
而通信雙方必須共同遵守的規則和約定就稱為通信協議,它的存在與否是計算機網路與一般計算機互連系統的根本區別。

6. 計算機網路如何劃分子網

Internet組織機構定義了五種IP地址,用於主機的有A、B、C三類地址。其中A類網路有126個,每個A類網路可能有16,777,214台主機,它們處於同一廣播域。

而在同一廣播域中有這么多結點是不可能的,網路會因為廣播通信而飽和,結果造成16,777,214個地址大部分沒有分配出去,形成了浪費。而另一方面,隨著互連網應用的不斷擴大,IP地址資源越來越少。為了實現更小的廣播域並更好地利用主機地址中的每一位,可以把基於類的IP網路進一步分成更小的網路,每個子網由路由器界定並分配一個新的子網網路地址,子網地址是借用基於類的網路地址的主機部分創建的。

劃分子網後,通過使用掩碼,把子網隱藏起來,使得從外部看網路沒有變化,這就是子網掩碼。

7. 計算機網路一般包括資源子網和什麼

計算機網路通常由三個部分組成,它們是資源子網、通信子網和通信協議。
資源子網
資源子網: 從計算機網路各組成部件的功能來看,各部件主要完成兩種功能,即網路通信和資源共享。把計算機網路中實現網路通信功能的設備及其軟體的集合稱為網路的通信子網,而把網路中實現資源共享功能的設備及其軟體的集合稱為資源子網。
通信子網
通信子網:是指網路中實現網路通信功能的設備及其軟體的集合,通信設備、網路通信協議、通信控制軟體等屬於通信子網,是網路的內層,負責信息的傳輸。主要為用戶提供數據的傳輸,轉接,加工,變換等。
通信協議
通信協議是指雙方實體完成通信或服務所必須遵循的規則和約定。協議定義了數據單元使用的格式,信息單元應該包含的信息與含義,連接方式,信息發送和接收的時序,從而確保網路中數據順利地傳送到確定的地方。

拓展資料:
資源子網組成:
在區域網中,資源子網主要由網路的伺服器、工作站、共享的列印機和其他設備及相關軟體所組成。 資源子網的主體為網路資源設備,包括:
1.用戶計算機(也稱工作站);
2.網路存儲系統;
3.網路列印機;
4.獨立運行的網路數據設備;
5.網路終端;
6.伺服器;
7.網路上運行的各種軟體資源;
8.數據資源等。
通信子網組成:
中繼器、集線器、網橋、路由器、網關等硬體設備。

通信協議三要素:
通信協議主要由以下三個要素組成:
語法:即如何通信,包括數據的格式、編碼和信號等級(電平的高低)等。
語義:即通信內容,包括數據內容、含義以及控制信息等。
定時規則(時序):即何時通信,明確通信的順序、速率匹配和排序。