三層交換機與路由器的區別:
(1)工作層次不同:
交換機工作在OSI/RM開放體系結構的數據鏈路層,也就是第二層,而路由器工作在OSI模型的網路層。交換機的工作原理比較簡單,而路由器工作在OSI的第三層(網路層),可以得到更多的協議信息,路由器可以做出更加智能的轉發決策。
(2)數據轉發所依據的對象不同:
交換機是利用物理地址或者說MAC地址來確定轉發數據的目的地址。而路由器則是利用不同網路的ID號(即IP地址)來確定數據轉發的地址。IP地址是在軟體中實現的,描述的是設備所在的網路,有時這些第三虧耐層的地址也稱為協議地址或者網路地址。MAC地址通常是硬體自帶的,由網卡生產商來分配的,而且已經固化到了網卡中去,一般來說是不可更改的。而IP地址則通常由網路管理員或系統自動分配。
(3)路由器可以分割廣播域,交換機不能但可以分割沖突域:
交換機連接的網段屬於同一個廣播域,廣播數據包會在交換機連接的所有網段上傳播,在某些情況下會導致通信擁擠和安全漏洞。連接到路由器上的網段會被分配成不同的廣播域,廣播數據不銷緩春會穿過路由器。
(4)路由器提供了防火牆的服務:
路由器僅僅轉發特定地址的數據包,不傳送不支持路由協議的數據包傳送和未知目標網路數據包的傳送,從而可以防止廣播風暴。
交換機一般用於LAN-WAN的連接,交換機歸於網橋,是數據鏈路層的設哪核備,有些交換機也可實現第三層的交換。 路由器用於WAN-WAN之間的連接,可以解決異性網路之間轉發分組,作用於網路層。他們只是從一條線路上接受輸入分組,然後向另一條線路轉發。這兩條線路可能分屬於不同的網路,並採用不同協議。
相比較而言,路由器的功能較交換機要強大,但速度相對也慢,價格昂貴,第三層交換機既有交換機線速轉發報文能力,又有路由器良好的控制功能。
㈡ 路由器和交換機分別工作在哪一層
交換機工作在OSI的第層-數據鏈路層,路由器工作在OSI的第層-網路層。
交換機內部的CPU會在每個埠成功連接時,通過將MAC地址和埠對應,形成一張MAC表。在今後的通訊中,發往該MAC地址的數據包將僅送往其對應的尺沒廳埠,而不是所有的埠。因此,交換機可用於劃分數陵隱據鏈路層廣播,所以是在數據鏈路層工作。
(2)路由器的網路交換層次擴展閱讀:
光交換是人們正在研製的下一代交換技術。所有的交換技術都是基於電信號的,即使是光纖交換機也是先將光信號轉為電信號,經過交察雀換處理後,再轉回光信號發到另一根光纖。
由於光電轉換速率較低,同時電路的處理速度存在物理學上的瓶頸,因此人們希望設計出一種無需經過光電轉換的「光交換機」,其內部不是電路而是光路,邏輯原件不是開關電路而是開關光路。這樣將大大提高交換機的處理速率。
㈢ 交換機有幾層啊每層分別有什麼用
交換機一般分為二層交換機和三層交換機,具體作用如下:
1、二層交換機作用,二層交換機屬數據鏈路層設備,可以識別數據包中的MAC地址信息,根據MAC地址進行轉發,並將這些MAC地址與對應的埠記錄在自己內部的一個地址表中。
2、三層交換機作用, 三層交換機就是具有部分路由器功能的交換機,三層交換機的最重要目的是加快大型區域網內部的數據交換,所具有的路由功能也是為這目的服務的,能夠做到一次路由,多次轉發。對於數據包轉發等規律性的過程由硬體高速實現,而象路由信息更新、路由表維護、路由計算、路由確定等功能,由軟體實現。
(3)路由器的網路交換層次擴展閱讀
網路設備都是對應工作在OSI(開放系統互連參考模型)這一開放模型的一定層次上,工作的層次越高,說明其設備的技術性越高,性能也越好,檔次也就越高。最簡單的交換機就是工作在OSI的第二層上,而現在都已經發展到可以工作在第四層的交換機了。
在企業級的交換機方面,還有更多層次的交換機,如四層交換機、五層、六層、七層交換機,所面對的對象以及對應的OSI層不一樣。
㈣ 路由器是從哪個層次上實現了不同的網路的互聯路由器主要有那些功能
路由器通過路由實現了ip層的互聯,它主要功能是ip定址,交換,和分開鏈路層的廣播域。
㈤ 交換機和路由器分別工作在OSI的那一層
交換機工作在OSI的第2層-數據鏈路層,路由器工作在OSI的第3層-網路層。
交換機內部的CPU會在每個埠成功連接時,通過將MAC地址和埠對應,形成一張MAC表。在今後的通訊中,發往該MAC地址的數據包將僅送往其對應的埠,而不是所有的埠。因此,交換機可用於劃分數據鏈路層廣播,所以是在數據鏈路層工作。
路由器是一種多埠設備,它可以連接不同傳輸速率並運行於各種環境的區域網和廣域網,也可以採用不同的協議。路由器工作在OSI模型的第兄帶緩三層-網路層,指導從一個網段到另一行橡個網段的數據傳輸,也能指導從一種網路向另一種網路的數據傳輸。
(5)路由器的網路交換層次擴展閱讀
OSI七層協議的不同工作內容介紹:
物理層:將數據轉換為可通過物理介質傳送的電子信號相當於郵局中的搬運工人。
數據鏈路層:決定訪問網路介質的方式。在此層將數據分幀,並處理流控制。本層指定拓撲結構並提供硬體定址,相當於郵局中的裝拆箱工人。
網路層:使用權數據路由經過大型網路相當於郵局中的排序工人。
傳輸層:提供終端到終端的可靠連接相當於公司中跑郵局的送信職員。
會話層:允許用戶使用簡單易記的名稱建立連接相當於公司中收寄信、寫信封與拆羨模信封的秘書。
表示層:協商數據交換格式相當公司中簡報老闆、替老闆寫信的助理。
應用層:用戶的應用程序和網路之間的介面老闆。
㈥ 交換機,路由器,集線器分別屬於osi參考模型的哪個層次
交換機和集線器工作在第三層數據鏈路層,路由器是第二層網路層
㈦ 路由器、集線器、交換機分別工作在OSI七層協議模型的哪一層
路由器三層(網路層);
集線器一層(物理層);
普通交換機二層(數據鏈路層)。
現在也有工作在第三層的交換機。
OSI七層網路模型由下至上為1至7層,分別為物喊旦理層(Physical layer),數據鏈路層(Data link layer),網路層(Network layer),傳輸層(Transport layer),會話層(Session layer),表示層(Presentation layer),應用層(Application layer)。
應用層,很簡單,就是應用程序。這一層負責確定通信對象,並確保由足夠的資源用於通信,這些當然都是想要通信的應用程序乾的事情。
表示層,負責數據的編碼、轉化,確保應用層的正常工作。這一層,是將我們看到的界面與二進制間互相轉化的地方,就是我們的語言與機器語言間的轉化。數據的壓縮、解壓,加密、解密都發生在這一層。這一層根據不同的應用目的將數據處理為不同的格式,表現出來就是我們看到的各種各樣的文件擴展名。
會話層,負責建立、維護、控制會話,區分不同的會話,以及提供單工(Simplex)、半雙工(Half plex)、全雙工(Full plex)三種通信模式的服務。我們平時所知的NFS,RPC,X Windows等都工作在這一層。
傳輸層,負責分割、組合數據,實現端到端的邏輯連接。數據在上三層是整體的,到了這一層開始被分割,這一層分割後的數據被稱為段(Segment)。三次握手(Three-way handshake),面向連接(Connection-Oriented)或非面向連接(Connectionless-Oriented)的服務,流控(Flow control)等都發生在這一層。
網路層,負責管理網路地址,定位設備,決定路由。辯滾我們所熟知的IP地址和路由器就是工作在這一層。上層的數據段在這一層被分割,封裝後叫做包(Packet),包有兩種,一種叫做用戶數據包(Data packets),是上層傳下來的用戶數據;另一鄭灶擾種叫路由更新包(Route update packets),是直接由路由器發出來的,用來和其他路由器進行路由信息的交換。
數據鏈路層,負責准備物理傳輸,CRC校驗,錯誤通知,網路拓撲,流控等。我們所熟知的MAC地址和交換機都工作在這一層。上層傳下來的包在這一層被分割封裝後叫做幀(Frame)。
物理層,就是實實在在的物理鏈路,負責將數據以比特流的方式發送、接收。
㈧ 路由器工作在五層協議的什麼層
網路協議分層:
鏈路層:有時也稱作鏈路層或網路介面層,通常包括操作系統中的設備驅動程序和計算機中對應的網路介面卡。他們一起處理與電纜的物理介面細節。
網路層:有時也稱為互聯網層,處理分組在網路中的活動,例如分組的選路。在TCP/IP協議簇中,網路層協議包括IP協議,ICMP協返橡稿議(Internet互聯網控制報文協議)、以及IGMP協議(Internet組管理協議)(ps:分片是在網路成上發生的。)
傳輸層:主要為了兩台主機上的應用程序提供端到端的通信。在TCP/IP協議簇中,有兩個互不想通的傳輸協議,TCP(傳輸控制協議)UDP(用戶數據協議)TCP為兩台主機提供高可靠性的數據通信。它所做的工作包括把應用程序交給他的數據分成合適的大小塊交給下面的網路層,確認接收到的分組,設置發送最後確認分組的超時時鍾等。由於傳輸層提供了高可靠性的端到端的通信,因此應用層可以忽略所有的這些細節。UDP它只是把稱作數據的分組從一個主機發送到另一個主機,但並不保證該數據報能到達另一端。任何必需的可靠性必需由應用層來提供。(這一層也出出現分片的現象,正是傳輸層的分片使得網路層盡可能不出現分片的現象分片分段關系)
應用層:負責處理特定的應用程序細節。例如telnet 遠程登錄;FTP文件傳輸協議;SMTP簡單郵件傳輸協議;SNMP簡單網路管理協議。
簡而言之:鏈路層是i處理乙太網幀和物理傳輸媒介的關系漏孝;網路層處理上層數據的分組;傳輸層提供端到端的通信,提供用戶使用哪種協議。
在TCP/IP協議簇中,網路層IP提供的是一種不可靠的服務。也就是說,它只是盡可能快的把分組從源節點送到目的節點,但是並不提供任何可靠性保證。另一方面,TCP在不可靠的IP層上提供了一個可靠的傳輸層,為了提供這種可靠的服務,TCP採用了超時重傳、發送和接收端的確認分組等機制。傳輸層和網路層分別負責不同的功能。
ICMP是IP協議的附屬協議。IP層用它來與其他主機或路由器交換錯誤報文和其他重要信息。主要被IP使用,但也有直接使用此協議的,例如Ping和traceroute
IGMP是Internet組管理協議。它用來把一個UDP數據報多播到多個主機上。
當應用程序用TCP傳送數據時,數據被送入協議棧中,然後逐個通過每一層直到被當做一串比特流送入網路。其中每一層對收到的數據都要增加一些首部信息(有時還要增加尾部信息)。TCP傳給IP的數據單元稱作TCP報文段或簡稱TCP段(TCP segment)。IP傳給網路介面層的數據單元稱作IP數據報(IP datagram)。通過乙太網傳輸的比特流稱作幀(Frame).乙太網數據幀的物理特性是其長度必須在46~1500位元組之間。(這個數字是乙太網幀的負載。不包括乙太網棧的首位長度、間隙等)
IP和網路介面層之間傳送的數據單元應該是分組(packet).分組既可以是一個IP數據報,也可以是IP數據報的一個片(fragment)
由於TCP、UDP、ICMP和IGMP都要想IP傳送數據,因此IP必須在生成的IP首部中加入某種標志,以表明數據屬於那一層。因此,IP在首部中存入一個長度為8bit的數值,稱如銷為協議域。1表示ICMP協議,2表示IGMP協議,6表示為TCP協議,17為UDP協議。
telnet的TCP埠號為:23
tftp的埠號為:69
乙太網、令牌環網、點對點的鏈接和FDDI這些都是不同類型的物理網路。
網線、集線器 -----工作在物理層
網橋、網卡、交換機-----工作在數據鏈路層
路由器-----工作在網路層
從協議分層模型方面來講,TCP/IP由四個層次組成:數據鏈路層、網路層、傳輸層、應用層
㈨ 路由器的交換結構
路由器的交換結構是指將路由的輸入埠與輸出埠相連接的體系結構。
輸入埠、輸出埠和交換結構共同實現了轉發功能,並且總是用硬體實現。這些轉發功能有時總稱為路由器轉發平面。
交換結構位於一台路由器的核心部位。交換可以用多種方式進行,如經內存交換、經匯流排交換、經互聯網路交換。
在網路介面中,特定媒質介面完成所有的物理層和介質訪問子層的功能,交換結構介面完成IP交換的前期和後期工作。
在交換一個IP之前,先將IP包分成一些固定長度的信元,附上內部路由標識符或者標記優先順序等;而在交換後,則將接收到的一些具有相同標識符的信元重組為一個IP數據包。
(9)路由器的網路交換層次擴展閱讀:
與路由器交換結構有關的丟包原因:
1、假設輸入和輸出線路的速率都是 R,有 N 個輸入埠和 N 個輸出埠,交換結構的速率足夠快。每個線路上的分組都有相同的固定長度,分組以同步的方式到達輸入埠,且每個分組都被轉發到同一個輸出埠。
2、如果交換結構不能快到使所有到達的分組無時延地通過它傳送,則在輸入埠也將出現分組排隊。因為到達的分組必須加入輸入埠隊列中,以等待通過交換結構傳送到輸出埠。
參考資料來源:網路-路由交換設備
㈩ 集線器 路由器 交換機都屬於那一層
集線器、路由器、交換器分別屬於物理層、網路層、數據鏈路層。
集線器工作於OSI參考模型的物理層。物理層定義了電氣信號,符號,線的狀態和時鍾要求,數據編碼和數據傳輸用的連接器。因為集線器只對信號進行整形、放大後再重發,不進行編碼,所以是物理層的設備。
路由器屬於OSI參考模型模型的第網路層。路由器是一種多埠設備,它可以連接不同傳輸速率並運行於各種環境的區域網和廣域網,也可以採用不同的協議。指導從一個網段到另一個網段的數據傳輸,也能指導從一種網路向另一種網路的數據傳輸。
交換機屬於OSI的第二層數據鏈路層設備,它可以識別數據包中的MAC地址信息,根據MAC地址進行轉發,並將這些MAC地址與對應的埠記錄在自己內部的一個地址表中。
(10)路由器的網路交換層次擴展閱讀
在OSI參考模型中,當一台主機需要傳送用戶的數據(DATA)時,數據首先通過應用層的介面進入應用層。在應用層,用戶的數據被加上應用層的報頭(AH),形成應用層協議數據單元,然後通過應用層與表示層的介面數據單元,遞交到表示層。
表示層並不「關心」應用層的數據格式,而是把整個應用層遞交的數據報看成是一個整體進行封裝,即加上表示層的報頭(PH),然後遞交到會話層。