① 把別的QQ群里的人克隆到另外一個QQ群要怎麼做
把別的QQ群里的人克隆到另外一個QQ群的具體操作步驟如下:
1、首先我們打開QQ群列表選擇一個群,選擇升級QQ群功能。
② 脈沖神經網路的介紹
脈沖神經網路 (SNN-Spiking Neuron Networks) 經常被譽為第三代人工神經網路。其模擬神經元更加接近實際,除此之外,它把時間信息的影響也考慮其中。思路是這樣的,動態神經網路中的神經元不是在每一次迭代傳播中都被激活(而在典型的多層感知機網路中卻是),而是在它的膜電位達到某一個特定值才被激活。當一個神經元被激活,它會產生一個信號傳遞給其他神經元,提高或降低其膜電位。
③ 脈沖神經網路的分類
脈沖耦合神經網路(PCNN-Pulse Coupled Neural Network)與脈沖神經網路 (SNN-Spiking Neuron Networks) 容易混淆。脈沖耦合神經網路(PCNN)可以看做是脈沖神經網路(SNN)的一種,而脈沖神經網路(SNN)是更廣泛的分類。兩者其實無明顯差異,都是基於脈沖編碼(spike coding)。
④ 請介紹一下人工神經網路,和應用
一.一些基本常識和原理
[什麼叫神經網路?]
人的思維有邏輯性和直觀性兩種不同的基本方式。邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。
[人工神經網路的工作原理]
人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。
所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。
如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。
=================================================
關於一個神經網路模擬程序的下載
人工神經網路實驗系統(BP網路) V1.0 Beta 作者:沈琦
http://emuch.net/html/200506/de24132.html
作者關於此程序的說明:
從輸出結果可以看到,前3條"學習"指令,使"輸出"神經元收斂到了值 0.515974。而後3條"學習"指令,其收斂到了值0.520051。再看看處理4和11的指令結果 P *Out1: 0.520051看到了嗎? "大腦"識別出了4和11是屬於第二類的!怎麼樣?很神奇吧?再打show指令看看吧!"神經網路"已經形成了!你可以自己任意的設"模式"讓這個"大腦"學習分辯哦!只要樣本數據量充分(可含有誤差的樣本),如果能夠在out數據上收斂地話,那它就能分辨地很准哦!有時不是絕對精確,因為它具有"模糊處理"的特性.看Process輸出的值接近哪個Learning的值就是"大腦"作出的"模糊性"判別!
=================================================
人工神經網路論壇
http://www.youngfan.com/forum/index.php
http://www.youngfan.com/nn/index.html(舊版,楓舞推薦)
國際神經網路學會(INNS)(英文)
http://www.inns.org/
歐洲神經網路學會(ENNS)(英文)
http://www.snn.kun.nl/enns/
亞太神經網路學會(APNNA)(英文)
http://www.cse.cuhk.e.hk/~apnna
日本神經網路學會(JNNS)(日文)
http://www.jnns.org
國際電氣工程師協會神經網路分會
http://www.ieee-nns.org/
研學論壇神經網路
http://bbs.matwav.com/post/page?bid=8&sty=1&age=0
人工智慧研究者俱樂部
http://www.souwu.com/
2nsoft人工神經網路中文站
http://211.156.161.210:8888/2nsoft/index.jsp
=================================================
推薦部分書籍:
人工神經網路技術入門講稿(PDF)
http://www.youngfan.com/nn/ann.pdf
神經網路FAQ(英文)
http://www.youngfan.com/nn/FAQ/FAQ.html
數字神經網路系統(電子圖書)
http://www.youngfan.com/nn/nnbook/director.htm
神經網路導論(英文)
http://www.shef.ac.uk/psychology/gurney/notes/contents.html
===============================================
一份很有參考價值的講座
<前向網路的敏感性研究>
http://www.youngfan.com/nn/mgx.ppt
是Powerpoint文件,比較大,如果網速不夠最好用滑鼠右鍵下載另存.
=========================================================
已經努力的在給你提供條件資源哦~~
⑤ 脈沖神經網路的簡介
脈沖神經網路 (SNN-Spiking Neuron Networks) 經常被譽為第三代人工神經網路。第一代神經網路是感知器,它是一個簡單的神經元模型並且只能處理二進制數據。第二代神經網路包括比較廣泛,包括應用較多的BP神經網路。但是從本質來講,這些神經網路都是基於神經脈沖的頻率進行編碼( rate coded)。
脈沖神經網路,其模擬神經元更加接近實際,除此之外,把時間信息的影響也考慮其中。思路是這樣的,動態神經網路中的神經元不是在每一次迭代傳播中都被激活(而在典型的多層感知機網路中卻是),而是在它的膜電位達到某一個特定值才被激活。當一個神經元被激活,它會產生一個信號傳遞給其他神經元,提高或降低其膜電位。
在脈沖神經網路中,神經元的當前激活水平(被建模成某種微分方程)通常被認為是當前狀態,一個輸入脈沖會使當前這個值升高,持續一段時間,然後逐漸衰退。出現了很多編碼方式把這些輸出脈沖序列解釋為一個實際的數字,這些編碼方式會同時考慮到脈沖頻率和脈沖間隔時間。
藉助於神經科學的研究,人們可以精確的建立基於脈沖產生時間神經網路模型。這種新型的神經網路採用脈沖編碼(spike coding),通過獲得脈沖發生的精確時間,這種新型的神經網路可以進行獲得更多的信息和更強的計算能力。
⑥ 手機雷達晶元研製成功對於人工智慧的發展有什麼意義
2010 年以來, 由於大數據產業的發展, 數據量呈現爆炸性增長態勢,而傳統的計算架構又無法支撐深度學習的大規模並行計算需求, 於是研究界對AI晶元進行了新一輪的技術研發與應用研究。 AI 晶元是人工智慧時代的技術核心之一,決定了平台的基礎架構和發展生態。本期我們推薦清華大學的報告《 人工智慧晶元研究報告》,全面講解人工智慧晶元,系統梳理人工智慧晶元的發展現狀及趨勢。
⑦ 什麼是神經網路法
神經網路的介紹2006-10-23 14:58原文摘自:(http://www.cnweblog.com/alsan/articles/14621.html)
Introction
--------------------------------------------------------------------------------
神經網路是新技術領域中的一個時尚詞彙。很多人聽過這個詞,但很少人真正明白它是什麼。本文的目的是介紹所有關於神經網路的基本包括它的功能、一般結構、相關術語、類型及其應用。
「神經網路」這個詞實際是來自於生物學,而我們所指的神經網路正確的名稱應該是「人工神經網路(ANNs)」。在本文,我會同時使用這兩個互換的術語。
一個真正的神經網路是由數個至數十億個被稱為神經元的細胞(組成我們大腦的微小細胞)所組成,它們以不同方式連接而型成網路。人工神經網路就是嘗試模擬這種生物學上的體系結構及其操作。在這里有一個難題:我們對生物學上的神經網路知道的不多!因此,不同類型之間的神經網路體系結構有很大的不同,我們所知道的只是神經元基本的結構。
The neuron
--------------------------------------------------------------------------------
雖然已經確認在我們的大腦中有大約50至500種不同的神經元,但它們大部份都是基於基本神經元的特別細胞。基本神經元包含有synapses、soma、axon及dendrites。Synapses負責神經元之間的連接,它們不是直接物理上連接的,而是它們之間有一個很小的空隙允許電子訊號從一個神經元跳到另一個神經元。然後這些電子訊號會交給soma處理及以其內部電子訊號將處理結果傳遞給axon。而axon會將這些訊號分發給dendrites。最後,dendrites帶著這些訊號再交給其它的synapses,再繼續下一個循環。
如同生物學上的基本神經元,人工的神經網路也有基本的神經元。每個神經元有特定數量的輸入,也會為每個神經元設定權重(weight)。權重是對所輸入的資料的重要性的一個指標。然後,神經元會計算出權重合計值(net value),而權重合計值就是將所有輸入乘以它們的權重的合計。每個神經元都有它們各自的臨界值(threshold),而當權重合計值大於臨界值時,神經元會輸出1。相反,則輸出0。最後,輸出會被傳送給與該神經元連接的其它神經元繼續剩餘的計算。
Learning
--------------------------------------------------------------------------------
正如上述所寫,問題的核心是權重及臨界值是該如何設定的呢?世界上有很多不同的訓練方式,就如網路類型一樣多。但有些比較出名的包括back-propagation, delta rule及Kohonen訓練模式。
由於結構體系的不同,訓練的規則也不相同,但大部份的規則可以被分為二大類別 - 監管的及非監管的。監管方式的訓練規則需要「教師」告訴他們特定的輸入應該作出怎樣的輸出。然後訓練規則會調整所有需要的權重值(這是網路中是非常復雜的),而整個過程會重頭開始直至數據可以被網路正確的分析出來。監管方式的訓練模式包括有back-propagation及delta rule。非監管方式的規則無需教師,因為他們所產生的輸出會被進一步評估。
Architecture
--------------------------------------------------------------------------------
在神經網路中,遵守明確的規則一詞是最「模糊不清」的。因為有太多不同種類的網路,由簡單的布爾網路(Perceptrons),至復雜的自我調整網路(Kohonen),至熱動態性網路模型(Boltzmann machines)!而這些,都遵守一個網路體系結構的標准。
一個網路包括有多個神經元「層」,輸入層、隱蔽層及輸出層。輸入層負責接收輸入及分發到隱蔽層(因為用戶看不見這些層,所以見做隱蔽層)。這些隱蔽層負責所需的計算及輸出結果給輸出層,而用戶則可以看到最終結果。現在,為免混淆,不會在這里更深入的探討體系結構這一話題。對於不同神經網路的更多詳細資料可以看Generation5 essays
盡管我們討論過神經元、訓練及體系結構,但我們還不清楚神經網路實際做些什麼。
The Function of ANNs
--------------------------------------------------------------------------------
神經網路被設計為與圖案一起工作 - 它們可以被分為分類式或聯想式。分類式網路可以接受一組數,然後將其分類。例如ONR程序接受一個數字的影象而輸出這個數字。或者PPDA32程序接受一個坐標而將它分類成A類或B類(類別是由所提供的訓練決定的)。更多實際用途可以看Applications in the Military中的軍事雷達,該雷達可以分別出車輛或樹。
聯想模式接受一組數而輸出另一組。例如HIR程序接受一個『臟』圖像而輸出一個它所學過而最接近的一個圖像。聯想模式更可應用於復雜的應用程序,如簽名、面部、指紋識別等。
The Ups and Downs of Neural Networks
--------------------------------------------------------------------------------
神經網路在這個領域中有很多優點,使得它越來越流行。它在類型分類/識別方面非常出色。神經網路可以處理例外及不正常的輸入數據,這對於很多系統都很重要(例如雷達及聲波定位系統)。很多神經網路都是模仿生物神經網路的,即是他們仿照大腦的運作方式工作。神經網路也得助於神經系統科學的發展,使它可以像人類一樣准確地辨別物件而有電腦的速度!前途是光明的,但現在...
是的,神經網路也有些不好的地方。這通常都是因為缺乏足夠強大的硬體。神經網路的力量源自於以並行方式處理資訊,即是同時處理多項數據。因此,要一個串列的機器模擬並行處理是非常耗時的。
神經網路的另一個問題是對某一個問題構建網路所定義的條件不足 - 有太多因素需要考慮:訓練的演算法、體系結構、每層的神經元個數、有多少層、數據的表現等,還有其它更多因素。因此,隨著時間越來越重要,大部份公司不可能負擔重復的開發神經網路去有效地解決問題。
Conclusion
--------------------------------------------------------------------------------
希望您可以通過本文對神經網路有基本的認識。Generation5現在有很多關於神經網路的資料可以查閱,包括文章及程序。我們有Hopfield、perceptrons(2個)網路的例子,及一些back-propagation個案研究。
Glossary
--------------------------------------------------------------------------------
NN 神經網路,Neural Network
ANNs 人工神經網路,Artificial Neural Networks
neurons 神經元
synapses 神經鍵
self-organizing networks 自我調整網路
networks modelling thermodynamic properties 熱動態性網路模型
⑧ 神經網路計算機的特點是什麼
神經網路計算機具有模仿人的大腦判斷能力和適應能力,可並行處理多種數據功能的神經網路計算機,可以判斷對象的性質與狀態,並能採取相應的行動,而且可同時並行處理實時變化的大量數據,並引出結論。以往的信息處理系統只能處理條理清晰、經絡分明的數據。而人的大腦卻具有能處理支離破碎、含糊不清信息的靈活性,因而第六代計算機將在較大程度上類似人腦的智慧和靈活性。人腦有140億神經元及10億多神經鍵,人腦總體運行速度相當於每秒1000萬億次的電腦功能。用許多微處理機模仿人腦的神經元結構,採用大量的並行分布式網路就構成了神經電腦。
神經電腦除有許多處理器外,還有類似神經的節點,每個節點與許多點相連。若把每一步運算分配給每台微處理器,它們同時運算,其信息處理速度和智能會大大提高。神經電子計算機的信息不是存在存儲器中,而是存儲在神經元之間的聯絡網中。若有節點斷裂,電腦仍有重建資料的能力,它還具有聯想記憶、視覺和聲音識別能力。神經電子計算機將會廣泛應用於各領域。它能識別文字、符號、圖形、語言以及聲納和雷達收到的信號,判讀支票,對市場進行估計,分析新產品,進行醫學診斷,控制智能機器人,實現汽車自動駕駛和飛行器的自動駕駛,發現、識別軍事目標,進行智能決策和智能指揮等。
日本科學家開發的神經電子計算機用的大規模集成電路晶元,在1.5厘米正方的矽片上可設置400個神經元和40000個神經鍵,這種晶元能實現每秒2億次的運算速度。美國研究出由左腦和右腦兩個神經塊連接而成的神經電子計算機。右腦為經驗功能部分,有1萬多個神經元,適於圖像識別;左腦為識別功能部分,含有100萬個神經元,用於存儲單詞和語法規則。
⑨ 什麼叫神經網路
南搞小孩給出基本的概念: 一.一些基本常識和原理 [什麼叫神經網路?] 人的思維有邏輯性和直觀性兩種不同的基本方式。邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。 人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。 [人工神經網路的工作原理] 人工神經網路首先要以一定的學習准則進行學習,然後才能工作。現以人工神經網路對手寫「A」、「B」兩個字母的識別為例進行說明,規定當「A」輸入網路時,應該輸出「1」,而當輸入為「B」時,輸出為「0」。 所以網路學習的准則應該是:如果網路作出錯誤的的判決,則通過網路的學習,應使得網路減少下次犯同樣錯誤的可能性。首先,給網路的各連接權值賦予(0,1)區間內的隨機值,將「A」所對應的圖象模式輸入給網路,網路將輸入模式加權求和、與門限比較、再進行非線性運算,得到網路的輸出。在此情況下,網路輸出為「1」和「0」的概率各為50%,也就是說是完全隨機的。這時如果輸出為「1」(結果正確),則使連接權值增大,以便使網路再次遇到「A」模式輸入時,仍然能作出正確的判斷。 如果輸出為「0」(即結果錯誤),則把網路連接權值朝著減小綜合輸入加權值的方向調整,其目的在於使網路下次再遇到「A」模式輸入時,減小犯同樣錯誤的可能性。如此操作調整,當給網路輪番輸入若干個手寫字母「A」、「B」後,經過網路按以上學習方法進行若干次學習後,網路判斷的正確率將大大提高。這說明網路對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網路的各個連接權值上。當網路再次遇到其中任何一個模式時,能夠作出迅速、准確的判斷和識別。一般說來,網路中所含的神經元個數越多,則它能記憶、識別的模式也就越多。 南搞小孩一個小程序: 關於一個神經網路模擬程序的下載 人工神經網路實驗系統(BP網路) V1.0 Beta 作者:沈琦 http://emuch.net/html/200506/de24132.html 作者關於此程序的說明: 從輸出結果可以看到,前3條"學習"指令,使"輸出"神經元收斂到了值 0.515974。而後3條"學習"指令,其收斂到了值0.520051。再看看處理4和11的指令結果 P *Out1: 0.520051看到了嗎? "大腦"識別出了4和11是屬於第二類的!怎麼樣?很神奇吧?再打show指令看看吧!"神經網路"已經形成了!你可以自己任意的設"模式"讓這個"大腦"學習分辯哦!只要樣本數據量充分(可含有誤差的樣本),如果能夠在out數據上收斂地話,那它就能分辨地很准哦!有時不是絕對精確,因為它具有"模糊處理"的特性.看Process輸出的值接近哪個Learning的值就是"大腦"作出的"模糊性"判別! 南搞小孩神經網路研究社區: 人工神經網路論壇 http://www.youngfan.com/forum/index.php http://www.youngfan.com/nn/index.html(舊版,楓舞推薦) 國際神經網路學會(INNS)(英文) http://www.inns.org/ 歐洲神經網路學會(ENNS)(英文) http://www.snn.kun.nl/enns/ 亞太神經網路學會(APNNA)(英文) http://www.cse.cuhk.e.hk/~apnna 日本神經網路學會(JNNS)(日文) http://www.jnns.org 國際電氣工程師協會神經網路分會 http://www.ieee-nns.org/ 研學論壇神經網路 http://bbs.matwav.com/post/page?bid=8&sty=1&age=0 人工智慧研究者俱樂部 http://www.souwu.com/ 2nsoft人工神經網路中文站 http://211.156.161.210:8888/2nsoft/index.jsp =南搞小孩推薦部分書籍: 人工神經網路技術入門講稿(PDF) http://www.youngfan.com/nn/ann.pdf 神經網路FAQ(英文) http://www.youngfan.com/nn/FAQ/FAQ.html 數字神經網路系統(電子圖書) http://www.youngfan.com/nn/nnbook/director.htm 神經網路導論(英文) http://www.shef.ac.uk/psychology/gurney/notes/contents.html =南搞小孩還找到一份很有參考價值的講座 <前向網路的敏感性研究> http://www.youngfan.com/nn/mgx.ppt 是Powerpoint文件,比較大,如果網速不夠最好用滑鼠右鍵下載另存. 南搞小孩添言:很久之前,楓舞夢想智能機器人從自己手中誕生,SO在學專業的時候也有往這方面發展...考研的時候亦是朝著人工智慧的方向發展..但是很不幸的是楓舞考研失敗...SO 只好放棄這個美好的願望,為生活奔波.希望你能夠成為一個好的智能計算機工程師..楓舞已經努力的在給你提供條件資源哦~~
⑩ 神經網路演算法是什麼
Introction
--------------------------------------------------------------------------------
神經網路是新技術領域中的一個時尚詞彙。很多人聽過這個詞,但很少人真正明白它是什麼。本文的目的是介紹所有關於神經網路的基本包括它的功能、一般結構、相關術語、類型及其應用。
「神經網路」這個詞實際是來自於生物學,而我們所指的神經網路正確的名稱應該是「人工神經網路(ANNs)」。在本文,我會同時使用這兩個互換的術語。
一個真正的神經網路是由數個至數十億個被稱為神經元的細胞(組成我們大腦的微小細胞)所組成,它們以不同方式連接而型成網路。人工神經網路就是嘗試模擬這種生物學上的體系結構及其操作。在這里有一個難題:我們對生物學上的神經網路知道的不多!因此,不同類型之間的神經網路體系結構有很大的不同,我們所知道的只是神經元基本的結構。
The neuron
--------------------------------------------------------------------------------
雖然已經確認在我們的大腦中有大約50至500種不同的神經元,但它們大部份都是基於基本神經元的特別細胞。基本神經元包含有synapses、soma、axon及dendrites。Synapses負責神經元之間的連接,它們不是直接物理上連接的,而是它們之間有一個很小的空隙允許電子訊號從一個神經元跳到另一個神經元。然後這些電子訊號會交給soma處理及以其內部電子訊號將處理結果傳遞給axon。而axon會將這些訊號分發給dendrites。最後,dendrites帶著這些訊號再交給其它的synapses,再繼續下一個循環。
如同生物學上的基本神經元,人工的神經網路也有基本的神經元。每個神經元有特定數量的輸入,也會為每個神經元設定權重(weight)。權重是對所輸入的資料的重要性的一個指標。然後,神經元會計算出權重合計值(net value),而權重合計值就是將所有輸入乘以它們的權重的合計。每個神經元都有它們各自的臨界值(threshold),而當權重合計值大於臨界值時,神經元會輸出1。相反,則輸出0。最後,輸出會被傳送給與該神經元連接的其它神經元繼續剩餘的計算。
Learning
--------------------------------------------------------------------------------
正如上述所寫,問題的核心是權重及臨界值是該如何設定的呢?世界上有很多不同的訓練方式,就如網路類型一樣多。但有些比較出名的包括back-propagation, delta rule及Kohonen訓練模式。
由於結構體系的不同,訓練的規則也不相同,但大部份的規則可以被分為二大類別 - 監管的及非監管的。監管方式的訓練規則需要「教師」告訴他們特定的輸入應該作出怎樣的輸出。然後訓練規則會調整所有需要的權重值(這是網路中是非常復雜的),而整個過程會重頭開始直至數據可以被網路正確的分析出來。監管方式的訓練模式包括有back-propagation及delta rule。非監管方式的規則無需教師,因為他們所產生的輸出會被進一步評估。
Architecture
--------------------------------------------------------------------------------
在神經網路中,遵守明確的規則一詞是最「模糊不清」的。因為有太多不同種類的網路,由簡單的布爾網路(Perceptrons),至復雜的自我調整網路(Kohonen),至熱動態性網路模型(Boltzmann machines)!而這些,都遵守一個網路體系結構的標准。
一個網路包括有多個神經元「層」,輸入層、隱蔽層及輸出層。輸入層負責接收輸入及分發到隱蔽層(因為用戶看不見這些層,所以見做隱蔽層)。這些隱蔽層負責所需的計算及輸出結果給輸出層,而用戶則可以看到最終結果。現在,為免混淆,不會在這里更深入的探討體系結構這一話題。對於不同神經網路的更多詳細資料可以看Generation5 essays
盡管我們討論過神經元、訓練及體系結構,但我們還不清楚神經網路實際做些什麼。
The Function of ANNs
--------------------------------------------------------------------------------
神經網路被設計為與圖案一起工作 - 它們可以被分為分類式或聯想式。分類式網路可以接受一組數,然後將其分類。例如ONR程序接受一個數字的影象而輸出這個數字。或者PPDA32程序接受一個坐標而將它分類成A類或B類(類別是由所提供的訓練決定的)。更多實際用途可以看Applications in the Military中的軍事雷達,該雷達可以分別出車輛或樹。
聯想模式接受一組數而輸出另一組。例如HIR程序接受一個『臟』圖像而輸出一個它所學過而最接近的一個圖像。聯想模式更可應用於復雜的應用程序,如簽名、面部、指紋識別等。
The Ups and Downs of Neural Networks
--------------------------------------------------------------------------------
神經網路在這個領域中有很多優點,使得它越來越流行。它在類型分類/識別方面非常出色。神經網路可以處理例外及不正常的輸入數據,這對於很多系統都很重要(例如雷達及聲波定位系統)。很多神經網路都是模仿生物神經網路的,即是他們仿照大腦的運作方式工作。神經網路也得助於神經系統科學的發展,使它可以像人類一樣准確地辨別物件而有電腦的速度!前途是光明的,但現在...
是的,神經網路也有些不好的地方。這通常都是因為缺乏足夠強大的硬體。神經網路的力量源自於以並行方式處理資訊,即是同時處理多項數據。因此,要一個串列的機器模擬並行處理是非常耗時的。
神經網路的另一個問題是對某一個問題構建網路所定義的條件不足 - 有太多因素需要考慮:訓練的演算法、體系結構、每層的神經元個數、有多少層、數據的表現等,還有其它更多因素。因此,隨著時間越來越重要,大部份公司不可能負擔重復的開發神經網路去有效地解決問題。
NN 神經網路,Neural Network
ANNs 人工神經網路,Artificial Neural Networks
neurons 神經元
synapses 神經鍵
self-organizing networks 自我調整網路
networks modelling thermodynamic properties 熱動態性網路模型
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
網格演算法我沒聽說過
好像只有網格計算這個詞
網格計算是伴隨著互聯網技術而迅速發展起來的,專門針對復雜科學計算的新型計算模式。這種計算模式是利用互聯網把分散在不同地理位置的電腦組織成一個「虛擬的超級計算機」,其中每一台參與計算的計算機就是一個「節點」,而整個計算是由成千上萬個「節點」組成的「一張網格」, 所以這種計算方式叫網格計算。這樣組織起來的「虛擬的超級計算機」有兩個優勢,一個是數據處理能力超強;另一個是能充分利用網上的閑置處理能力。簡單地講,網格是把整個網路整合成一台巨大的超級計算機,實現計算資源、存儲資源、數據資源、信息資源、知識資源、專家資源的全面共享。