當前位置:首頁 » 無線網路 » cmac無線網路收費嗎
擴展閱讀
中國人網路分級設置 2025-06-26 22:28:40
手機交易古幣軟體 2025-06-26 22:27:23
酷航平板電腦怎麼安裝 2025-06-26 22:26:27

cmac無線網路收費嗎

發布時間: 2022-08-14 22:29:10

① 神經網路控制的書籍目錄

第1章神經網路和自動控制的基礎知識
1.1人工神經網路的發展史
1.1.120世紀40年代——神經元模型的誕生
1.1.220世紀50年代——從單神經元到單層網路,形成第一次熱潮
1.1.320世紀60年代——學習多樣化和AN2的急劇冷落
1.1.420世紀70年代——在低迷中頑強地發展
1.1.520世紀80年代——AN2研究熱潮再度興起
1.1.620世紀90年代——再現熱潮,產生許多邊緣交叉學科
1.1.7進入21世紀——實現機器智能的道路漫長而又艱難
1.2生物神經元和人工神經元
1.2.1生物神經元
1.2.2人工神經元
1.3生物神經網路和人工神經網路
1.3.1生物神經網路
1.3.2人工神經網路
1.4自動控制的發展史
1.4.1從傳統控制理論到智能控制
1.4.2智能控制的產生與基本特徵
1.4.3智能控制系統
1.5模糊集與模糊控制概述
1.5.1模糊集
1.5.2模糊隸屬函數
1.5.3模糊控制
1.6從生物神經控制到人工神經控制
1.6.1生物神經控制的智能特徵
1.6.2人工神經控制的模擬范圍
1.7小結
習題與思考題
第2章神經計算基礎
2.1線性空間與范數
2.1.1矢量空間
2.1.2范數
2.1.3賦范線性空間
2.1.4L1范數和L2范數
2.2迭代演算法
2.2.1迭代演算法的終止准則
2.2.2梯度下降法
2.2.3最優步長選擇
2.3逼近論
2.3.1Banach空間和逼近的定義
2.3.2L2逼近和最優一致逼近
2.3.3離散點集上的最小二乘逼近
2.4神經網路在線迭代學習演算法
2.5Z變換
2.5.1Z變換的定義和求取
2.5.2Z變換的性質
2.5.3Z反變換
2.6李雅普諾夫意義下的穩定性
2.6.1非線性時變系統的穩定性問題
2.6.2李雅普諾夫意義下的漸進穩定
2.6.3李雅普諾夫第二法
2.6.4非線性系統的穩定性分析
2.7小結
習題與思考題
第3章神經網路模型
3.1人工神經網路建模
3.1.1MP模型
3.1.2Hebb學習法則
3.2感知器
3.2.1單層感知器
3.2.2多層感知器
3.3BP網路與BP演算法
3.3.1BP網路的基本結構
3.3.2BP演算法及步長調整
3.4自適應線性神經網路
3.5自組織競爭型神經網路
3.5.1自組織競爭型神經網路的基本結構
3.5.2自組織競爭型神經網路的學習演算法
3.6小腦模型神經網路
3.6.1CMAC的基本結構
3.6.2CMAC的工作原理
3.6.3CMAC的學習演算法與訓練
3.7遞歸型神經網路
3.7.1DTRNN的網路結構
3.7.2實時遞歸學習演算法
3.8霍普菲爾德(Hopfield)神經網路
3.8.1離散型Hopfield神經網路
3.8.2連續型Hopfield神經網路
3.8.3求解TSP問題
3.9小結
習題與思考題
第4章神經控制中的系統辨識
4.1系統辨識基本原理
4.1.1辨識系統的基本結構
4.1.2辨識模型
4.1.3辨識系統的輸入和輸出
4.2系統辨識過程中神經網路的作用
4.2.1神經網路辨識原理
4.2.2多層前向網路的辨識能力
4.2.3辨識系統中的非線性模型
4.3非線性動態系統辨識
4.3.1非線性動態系統的神經網路辨識
4.3.2單輸入單輸出非線性動態系統的BP網路辨識
4.4多層前向網路辨識中的快速演算法
4.5非線性模型的預報誤差神經網路辨識
4.5.1非動態模型建模,
4.5.2遞推預報誤差演算法
4.6非線性系統逆模型的神經網路辨識
4.6.1系統分析逆過程的存在性
4.6.2非線性系統的逆模型
4.6.3基於多層感知器的逆模型辨識
4.7線性連續動態系統辨識的參數估計
4.7.1Hopfield網路用於辨識
4.7.2Hopfield網路辨識原理
4.8利用神經網路聯想功能的辨識系統
4.8.1二階系統的性能指標
4.8.2系統辨識器基本結構
4.8.3訓練與辨識操作
4.9小結
習題與思考題
第5章人工神經元控制系統
5.1人工神經元的PID調節功能
5.1.1人工神經元PID動態結構
5.1.2人工神經元閉環系統動態結構
5.2人工神經元PID調節器
5.2.1比例調節元
5.2.2積分調節元
5.2.3微分調節元
5.3人工神經元閉環調節系統
5.3.1系統描述
5.3.2Lyapunov穩定性分析
5.4人工神經元自適應控制系統
5.4.1人工神經元自適應控制系統的基本結構
5.4.2人工神經元自適應控制系統的學習演算法
5.5人工神經元控制系統的穩定性
5.6小結
習題與思考題
第6章神經控制系統
6.1神經控制系統概述
6.1.1神經控制系統的基本結構
6.1.2神經網路在神經控制系統中的作用
6.2神經控制器的設計方法
6.2.1模型參考自適應方法
6.2.2自校正方法
6.2.3內模方法
6.2.4常規控制方法
6.2.5神經網路智能方法
6.2.6神經網路優化設計方法
6.3神經辨識器的設計方法
6.4PID神經控制系統
6.4.1PID神經控制系統框圖
6.4.2PID神經調節器的參數整定
6.5模型參考自適應神經控制系統
6.5.1兩種不同的自適應控制方式
6.5.2間接設計模型參考自適應神經控制系統
6.5.3直接設計模型參考自適應神經控制系統
6.6預測神經控制系統
6.6.1預測控制的基本特徵
6.6.2神經網路預測演算法
6.6.3單神經元預測器
6.6.4多層前向網路預測器
6.6.5輻射基函數網路預測器
6.6.6Hopfield網路預測器
6.7自校正神經控制系統
6.7.1自校正神經控制系統的基本結構
6.7.2神經自校正控制演算法
6.7.3神經網路逼近
6.8內模神經控制系統
6.8.1線性內模控制方式
6.8.2內模控制系統
6.8.3內模神經控制器
6.8.4神經網路內部模型
6.9小腦模型神經控制系統
6.9.1CMAC控制系統的基本結構
6.9.2CMAC控制器設計
6.9.3CMAC控制系統實例
6.10小結
習題與思考題
第7章模糊神經控制系統
7.1模糊控制與神經網路的結合
7.1.1模糊控制的時間復雜性
7.1.2神經控制的空間復雜性
7.1.3模糊神經系統的產生
7.2模糊控制和神經網路的異同點
7.2.1模糊控制和神經網路的共同點
7.2.2模糊控制和神經網路的不同點
7.3模糊神經系統的典型結構
7.4模糊神經系統的結構分類
7.4.1鬆散結合
7.4.2互補結合
7.4.3主從結合
7.4.4串列結合
7.4.5網路學習結合
7.4.6模糊等價結合
7.5模糊等價結合中的模糊神經控制器
7.5.1偏差P和偏差變化率Δe的獲取
7.5.2隸屬函數的神經網路表達
7.6幾種常見的模糊神經網路
7.6.1模糊聯想記憶網路
7.6.2模糊認知映射網路
7.7小結
習題與思考題
第8章神經控制中的遺傳進化訓練
8.1生物的遺傳與進化
8.1.1生物進化論的基本觀點
8.1.2進化計算
8.2遺傳演算法概述
8.2.1遺傳演算法中遇到的基本術語
8.2.2遺傳演算法的運算特徵
8.2.3遺傳演算法中的概率計算公式
8.3遺傳演算法中的模式定理
8.3.1模式定義和模式的階
8.3.2模式定理(Schema)
8.4遺傳演算法中的編碼操作
8.4.1遺傳演算法設計流程
8.4.2遺傳演算法中的編碼規則
8.4.3一維染色體的編碼方法
8.4.4二維染色體編碼
8.5遺傳演算法中的適應度函數
8.5.1將目標函數轉換成適應度函數
8.5.2標定適應度函數
8.6遺傳演算法與優化解
8.6.1適應度函數的確定
8.6.2線性分級策略
8.6.3演算法流程
8.7遺傳演算法與預測控制
8.8遺傳演算法與神經網路
8.9神經網路的遺傳進化訓練
8.9.1遺傳進化訓練的實現方法
8.9.2BP網路的遺傳進化訓練
8.10小結
習題與思考題
附錄常用神經控制術語漢英對照
參考文獻
……

什麼是徑向基函數 神經網路 mlp

RBF網路能夠逼近任意的非線性函數,可以處理系統內的難以解析的規律性,具有良好的泛化能力,並有很快的學習收斂速度,已成功應用於非線性函數逼近、時間序列分析、數據分類、模式識別、信息處理、圖像處理、系統建模、控制和故障診斷等。

簡單說明一下為什麼RBF網路學習收斂得比較快。當網路的一個或多個可調參數(權值或閾值)對任何一個輸出都有影響時,這樣的網路稱為全局逼近網路。由於對於每次輸入,網路上的每一個權值都要調整,從而導致全局逼近網路的學習速度很慢。BP網路就是一個典型的例子。

如果對於輸入空間的某個局部區域只有少數幾個連接權值影響輸出,則該網路稱為局部逼近網路。常見的局部逼近網路有RBF網路、小腦模型(CMAC)網路、B樣條網路等。

③ 用c語言編寫RBF神經網路程序

RBF網路能夠逼近任意的非線性函數,可以處理系統內的難以解析的規律性,具有良好的泛化能力,並有很快的學習收斂速度,已成功應用於非線性函數逼近、時間序列分析、數據分類、模式識別、信息處理、圖像處理、系統建模、控制和故障診斷等。

簡單說明一下為什麼RBF網路學習收斂得比較快。當網路的一個或多個可調參數(權值或閾值)對任何一個輸出都有影響時,這樣的網路稱為全局逼近網路。由於對於每次輸入,網路上的每一個權值都要調整,從而導致全局逼近網路的學習速度很慢。BP網路就是一個典型的例子。

如果對於輸入空間的某個局部區域只有少數幾個連接權值影響輸出,則該網路稱為局部逼近網路。常見的局部逼近網路有RBF網路、小腦模型(CMAC)網路、B樣條網路等。


附件是RBF神經網路的C++源碼。

④ rbf神經網路中的訓練函數是什麼

RBF (Radial Basis Function)可以看作是一個高維空間中的曲面擬合(逼近)問題,學習是為了在多維空間中尋找一個能夠最佳匹配訓練數據的曲面,然後來一批新的數據,用剛才訓練的那個曲面來處理(比如分類、回歸)。RBF的本質思想是反向傳播學習演算法應用遞歸技術,這種技術在統計學中被稱為隨機逼近。RBF里的basis function(徑向基函數里的基函數)就是在神經網路的隱單元里提供了提供了一個函數集,該函數集在輸入模式(向量)擴展至隱空間時,為其構建了一個任意的「基」。這個函數集中的函數就被稱為徑向基函數。
如果對於輸入空間的某個局部區域只有少數幾個連接權值影響輸出,則該網路稱為局部逼近網路。常見的局部逼近網路有RBF網路、小腦模型(CMAC)網路、B樣條網路等。

徑向基函數解決插值問題

完全內插法要求插值函數經過每個樣本點,即。樣本點總共有P個。

RBF的方法是要選擇P個基函數,每個基函數對應一個訓練數據,各基函數形式為,由於距離是徑向同性的,因此稱為徑向基函數。||X-Xp||表示差向量的模,或者叫2范數

如何在matlab建立cmac神經網路模塊

昨天花了一天的時間查怎麼寫程序,但是費了半天勁,不能運行,網路知道里倒是有一個,可以運行的,先貼著做標本

% 生成訓練樣本集
clear all;
clc;
P=[110 0.807 240 0.2 15 1 18 2 1.5;
110 2.865 240 0.1 15 2 12 1 2;
110 2.59 240 0.1 12 4 24 1 1.5;
220 0.6 240 0.3 12 3 18 2 1;
220 3 240 0.3 25 3 21 1 1.5;
110 1.562 240 0.3 15 3 18 1 1.5;
110 0.547 240 0.3 15 1 9 2 1.5];
0 1.318 300 0.1 15 2 18 1 2];
T=[54248 162787 168380 314797;
28614 63958 69637 82898;
86002 402710 644415 328084;
230802 445102 362823 335913;
60257 127892 76753 73541;
34615 93532 80762 110049;
56783 172907 164548 144040];
@907 117437 120368 130179];
m=max(max(P));
n=max(max(T));
P=P'/m;
T=T'/n;
%-------------------------------------------------------------------------%
pr(1:9,1)=0; %輸入矢量的取值范圍矩陣
pr(1:9,2)=1;
bpnet=newff(pr,[12 4],{'logsig', 'logsig'}, 'traingdx', 'learngdm');
%建立BP神經網路, 12個隱層神經元,4個輸出神經元
%tranferFcn屬性 'logsig' 隱層採用Sigmoid傳輸函數
%tranferFcn屬性 'logsig' 輸出層採用Sigmoid傳輸函數
%trainFcn屬性 'traingdx' 自適應調整學習速率附加動量因子梯度下降反向傳播演算法訓練函數
%learn屬性 'learngdm' 附加動量因子的梯度下降學習函數
net.trainParam.epochs=1000;%允許最大訓練步數2000步
net.trainParam.goal=0.001; %訓練目標最小誤差0.001
net.trainParam.show=10; %每間隔100步顯示一次訓練結果
net.trainParam.lr=0.05; %學習速率0.05
bpnet=train(bpnet,P,T);
%-------------------------------------------------------------------------
p=[110 1.318 300 0.1 15 2 18 1 2];
p=p'/m;
r=sim(bpnet,p);
R=r'*n;
display(R);

運行的結果是出現這樣的界面

點擊performance,training state,以及regression分別出現下面的界面

再搜索,發現可以通過神經網路工具箱來創建神經網路,比較友好的GUI界面,在輸入命令裡面輸入nntool,就可以開始了。

點擊import之後就出現下面的具體的設置神經網路參數的對話界面,
這是輸入輸出數據的對話窗

首先是訓練數據的輸入

然後點擊new,創建一個新的神經網路network1,並設置其輸入輸出數據,包括名稱,神經網路的類型以及隱含層的層數和節點數,還有隱含層及輸出層的訓練函數等