當前位置:首頁 » 無線網路 » 網路光信號頻段
擴展閱讀
守護網路安全工作 2024-05-08 08:11:36
設置提升網路提速 2024-05-08 08:06:51

網路光信號頻段

發布時間: 2022-08-23 18:56:30

㈠ 寬頻光信號什麼

光信號是特指光纖寬頻所用的信號,一般是要連接光纖貓才可以的,光纖信號正常情況下,網路G或網路E燈會長亮,而LOS燈不亮

㈡ 光纖為什麼能傳送音樂,電視等信息

光纖傳輸 光纖,不僅可用來傳輸模擬信號和數字信號,而且不滿足視頻傳輸的需求。其數據傳輸率能達幾千Mbps。如果在不使用中繼器的情況下,傳輸范圍能達到6-8km。 綜觀近年來國內外配線系統的發展,我們可看出這樣三個階段:1、雙絞線階段。在這個階段語音同大規模數據通信不能混用也適應這樣的數據通信。2、同軸電纜 +雙絞線階段。它能滿足用戶的大量數據傳輸和視頻的需求,但需要更多的接入設備,造價相對提高許多,且不易今後的擴展需求。3、光纖階段。即我們所說的最終階段,在此時,各相應附屬設備更完善,數據處理能力更強,擴展性更好。近年來發展也特別快,接入設備價格目前有所調整,可以說這是一步到位的綜合通信階段。分析光纖中光的傳輸,可以用兩種理論:射線光學(即幾何光學)理論和波動光學理論。射線光學理論是用光射線去代替光能量傳輸路線的方法,這種理論對於光波長遠遠小於光波到尺寸的多模光纖是容易得到簡單而直觀的分析結果的,但對於復雜問題,射線光學只能給出比較粗糙的概念。
波動光學是把光纖中的光作為經典電磁場來處理,因此,光場必須服從麥克斯韋方程組及全部邊界條件。從波動方程和電磁場的邊界條件出發,可以得到全面、正確的解析或數字結果,給出波導中容許的場結構形式(即模式)
光纖通信技術應用迅速增長,自1977年光纖系統首次商用安裝以來,電話公司就開始使用光纖鏈路替代舊的銅線系統。今天的許多電話公司,在他們的系統中全面使用光纖作為干線結構和作為城市電話系統之間的長距離連接。提供商已開始用光纖/銅軸混合線路進行試驗。這種混合線路允許在領域之間集成光纖和同軸電纜,這種被稱為節點的位置,提供將光脈沖轉換為電信號的光接收機,然後信號再經過同軸電纜被傳送到各個家庭。近年來,作為一種通信信號傳輸的恰當手段,光纖穩步替代銅線是顯而易見的,這些光纜在本地電話系統之間跨越很長的距離並為許多網路系統提供干線連接。
光纖是一種採用玻璃作為波導,以光的形式將信息從一端傳送到另一端的技術。今天的低損耗玻璃光纖相對於早期發展的傳輸介質,幾乎不受帶寬限制並具有獨一無二的優勢,點到點的光學傳輸系統由三個基本部分構成:產生光信號的光發送機、攜帶光信號的光纜和接收光信號的光接收機。
1、光纖傳輸材料 :
綜合布線系統中使用的光纖為玻璃多模850nm波長的LED,傳輸率為100M/bps,有效范圍約20Km.其纖芯和包層由兩種光學性能不同的介質構成。內部的介質對光的折射率比環繞它的介質的折射率高。由物理學可知,在兩種介質的界面上,當光從折射率高的一側射入折射率高的一側時,只要入射角度大於一個臨界值,就會發生反射現象,能量將不受損失。這時包在外圍的覆蓋層就象不透明的物質一樣,防止了光線在穿插過程中從表面逸出。只有那些初始入射角偏小的光線才有折射發生,並且在很短距離內就被外層物質吸收干凈。
目前生產的光纖,無論是玻璃介質還是塑料介質,都可傳輸全部可見光和部分紅外光譜。用光纖做的光纜有多種結構形式。短距離用的光纜主要有兩種,一種層結構光纜是在中心加鋼絲或尼龍絲,外束有若干根光纖,外面在加一層塑料護套;另一種是高密度光纜,它有多層絲帶疊合而成,每一層絲帶上平行敷設了一排光纖。
用光纖做的光纜有多種結構形式。短距離用的光纜主要有兩種,一種層結構光纜是在中心加鋼絲或尼龍絲,外束有若干根光纖,外面在加一層塑料護套;另一種是高密度光纜,它有多層絲帶疊合而成,每一層絲帶上平行敷設了一排光纖。
2、光纖傳輸過程:
由發光二極體LED或注入型激光二極體ILD發出光信號沿光媒體傳播,在
另一端則有PIN或APD光電二極體作為檢波器接收信號。對光載波的調制為移
幅鍵控法,又稱亮度調制(IntensityMolation)。典型的做法是在給定的頻率下,以光的出現和消失來表示兩個二進制數字。發光二極體LED和注入型激光二極體ILD的信號都可以用這種方法調制,PIN和ILD檢波器直接響應亮度調制。
功率放大——將光放大器置於光發送端之前,以提高入纖的光功率。使整個
線路系統的光功率得到提高。在線中繼放大——建築群較大或樓間距離較遠時,可起中繼放大作用,提高光功率。前置放大——在接收端的光電檢測器之後將微信號進行放大,以提高接收能力。
3、光纖傳輸特性:
光纜不易分支,因為傳輸的是光信號,所以一般用於點到點的連接。光
的匯流排拓撲結構的實驗性多點系統已經建成,但是價格還太貴。原則上,由
光纖功率損失小、衰減少,有較大的帶寬潛力,因此,一般光纖能夠支持的
接頭數比雙絞線或同軸電纜多得多。目前低價可靠的發送器為0.85um波長
發光二極體LED,能支持100Mbps的傳輸率和1.5~2KM范圍內的區域網。
激光二極體的發送器成本較高,且不能滿足百萬小時壽命的要求。運行在0.85um波長的發光二極體檢波器PIN也是低價的接收器。雪崩光二極體
的信號增益比PIN大,但要用20~50V的電源,而PIN檢波器只需用5V電源。如果要達到更遠距離和更高速率,則可用1.3um波長的系統,這種系統衰減很小,但要比0.85um波長系統貴源。另外,與之配套的光纖連接器也很重要,要求每個連接器的連接損耗低於25dB,易於安裝,價格較低。光纖的芯子和孔徑愈大,從發光二極體LED接收的光愈多,其性能就愈好。芯子直徑為100um,包層直徑為140um 的光纖,可提供相當好的性能。其接收的光能比62.5/125um光纖的多4dB,比50/125um光纖多8.5dB。運行在0.8um波長的光纖衰減為6dB/Km,運行在1.3um波長的光纖衰減為4dB/Km。0.8um的光纖頻寬為150MHz/Km,1.3um的光纖頻寬為500MHz/Km。
綜合布線系統中,主幹線使用光纖做為傳輸介質是十分合適的,而且是必要的。
目前採用一種光波波分復用技術WDM(WAVELENGTH DIVISION MULTI-PLEXING),可以在一條線路上復用、發送、傳輸多個位,一般按一個位元組八位並行傳輸,對每個位流使用不同的波長,所以它所需的支持電路可在低速率下運行。WDM的光纖鏈路適合於位元組寬度的設備介面,是一種新的數據傳輸系統。
4、光纖傳輸的特點優勢及傳輸原理
光纜傳輸的實現與發展形成了它的幾個優點。相對於銅線每秒1.54MHZ的速率�光纖網路的運行速率達到了每秒2.5GB。從帶寬看,很大的優勢是:光纖具有較大的信息容量,這意味著能夠使用尺寸很小的電纜,將來就不用更新或增強傳輸光纜中信號。光纖電纜對諸如無線電、電機或其他相鄰電纜的電磁雜訊具有較大的阻抗,使其免於受電雜訊的干擾。從長遠維護角度來看,光纜最終的維護成本會非常低。光纖使用光脈沖沿光線路傳輸信息,以替代使用電脈沖沿電纜傳輸信息。在系統的一端是發射機,是信息到光纖線路的起始點。發射機接收到的已編碼電子脈沖信息來自於銅線電纜,然後將信息處理並轉換成等效的編碼光脈沖。使用發光二極體或注入式激光器產生光脈沖,同時採用透鏡,將光脈沖集中到光纖介質,使光脈沖沿線路在光纖介質中傳輸。由內部全反射原理可知,光脈沖很容易眼光纖線路運動,光纖內部全反射原理說明了當入射角超過臨界值時,光就不能從玻璃中溢出;相反,光纖會反射回玻璃內。應用這一原理製作光纖的多芯電纜,使得與光脈沖形式沿光線路傳輸信息成為可能。光纖傳輸具有衰減小、頻帶寬、抗干擾性強、安全性能高、體積小、重量輕等優點,所以在長距離傳輸和特殊環境等方面具有無法比擬的優勢。傳輸介質是決定傳輸損耗的重要因素,決定了傳輸信號所需中繼的距離,光纖作為光信號的傳輸介質具有低損耗的特點,光纖的頻帶可達到1.0GHz以上,一般圖像的帶寬只有8MHz,一個通道的圖象用一芯光纖傳輸綽綽有餘,在傳輸語音、控制信號或接點信號方面更為優勢t光纖傳輸中的載波是光波,光波是頻率極高的電磁波,遠遠比電波通訊中所使用的頻率高,所以不受干擾。且光纖採用的玻璃材質,不導電,不會因斷路、雷擊等原因產生火花,因此安全性強,在易燃,易爆等場合特別適用。
光纖傳輸系統主要由三部分組成:光源(又稱光發送機),傳輸介質、檢測器(又稱光接收機)。計算機網路之間的光纖傳輸中,光源和檢測器的工作一般都是用光纖收發器完成的,光纖收發器簡單的來說就是實現雙絞線與光纖連接的設備,其作用是將雙絞線所傳輸的信號轉換成能夠通過光纖傳輸的信號(光信號)。當然也是雙向的,同樣能將光纖傳輸的信號轉換能夠在雙絞線中傳輸的信號,實現網路間的數據傳輸。在普通的視、音頻、數據等傳輸過程中,光源和檢測器的工作一般都是由光端機完成的,光端機就是將多個E1信號變成光信號並傳輸的設備,所謂E1是一種中繼線路數據傳輸標准,我國和歐洲的標准速率為2.048Mbps,光端機的主要作用就是實現電一光、光一電的轉換。由其轉換信號分為模擬式光端機和數字式光端機。因此,光纖傳輸系統按傳輸信號可分為數字傳輸系統和模擬傳輸系統。模擬傳輸系統是把光強進行模擬調制,將輸入信號變為傳輸信號的振幅(頻率或相位)的連續變化。數字傳輸系統是把輸入的信號變換成「1」,「O」脈沖信號,並以其作為傳輸信號,在接受端再還原成原來的信號。當然,隨著光纖傳輸信號的不同所需要的設備有所不同。光纖作為傳輸介質,是光纖傳輸系統的重要因素。可按不同的方式進行分類:按照傳輸模式來劃分: 光線只沿光纖的內芯進行傳輸, 只傳輸主模我們稱之為單模光纖(Single—Mode)。有多個模式在光纖中傳輸,我們稱這種光纖為多模光纖(Multi-Mode)。
按照纖芯直徑來劃分:緩變型多模光纖、緩變增強型多模光纖和緩變型單模光纖按照光纖芯的折射率分布來劃分:階躍型光纖(Step index fiber),簡稱SIF;梯度型光纖(Graded index fiber),簡稱GIF;環形光纖(river fiber);W 型光纖。
光纜:點對點光纖傳輸系統之間的連接通過光纜。光纜含1根光纖(稱單纖),有2根光纖(稱雙纖),或者更多。
5、單、多模光纖傳輸設備的原理
光纖傳輸設備傳輸方式可簡單的分成:多模光纖傳輸設備和單模光纖傳輸設備。
1. 多模光纖傳輸設備所採用的光器件是LED,通常按波長可分為850nm和1300nm兩個波長,按輸出功率可分為普通LED和增強LED——ELED。多模光纖傳輸所用的光纖,有62.5mm和50mm兩種。
在多模光纖上傳輸決定傳輸距離的主要因素是光纖的帶寬和LED的工作波長,例如,如果採用工作波長1300nm的LED和50微米的光纖,其傳輸帶寬是 400MHz.km,鏈路衰減為0.7dB/km,如果基帶傳輸頻率F為150MHz,對於出纖功率為-18dBm,接收靈敏度為-25 dBm的光纖傳輸系統,其最大鏈路損耗為7 dB,則可計算:
ST連接器損耗:
2dB(兩個ST連接器)
光學損耗裕量:2
則理論傳輸距離:
L=(7 dB-2 dB-2 dB)/0.7dB/km=4.2 km
L為傳輸距離,而根據光纖的帶寬計算:
L=B/F=400MHz.km/150MHz=2.6km
其中 B為光纖帶寬,F為基帶傳輸頻率,那麼實際傳輸測試時,L£2.6km,由此可見,決定傳輸距離的主要因素是多模光纖的帶寬。
2. 單模傳輸設備所採用的光器件是LD,通常按波長可分為850nm和1300nm兩個波長,按輸出功率可分為普通LD、高功率LD、DFB-LD(分布反饋光器件)。單模光纖傳輸所用的光纖最普遍的是G.652,其線徑為9微米。
1310nm波長的光在G.652光纖上傳輸時,決定其傳輸距離限制的是衰減因數;因為在1310nm波長下,光纖的材料色散與結構色散相互抵消總的色散為0,在1310nm波長上有微小振幅的光信號能夠實現寬頻帶傳輸。
1550nm波長的光在G.652光纖上傳輸時衰減因數很小,單純從衰減因數考慮,1550nm波長的光在相同的光功率下傳輸的距離大於1310nm波長的光下的傳輸的距離,但是實際情況並非如此,單模光纖帶寬B與色散因數D的關系為:
B=132.5/(DlxDxL)GHz
其中L為光纖的長度,Dl為譜線寬度,對於1550nm波長的光,其色散因數如表3為20 ps/(nm.km),假設其光譜寬度等於1nm,傳輸距離為L=50公里,則有:
B=132.5/(DxL)GHz=132.5MHz
也就是說,對於模擬波形,採用1550nm波長的光,當傳輸距離為50公里時,傳輸帶寬已經小於132.5 MHz,如果基帶傳輸頻率F為150MHz,那麼傳輸距離已經小於50km,況且實際應用中,光源的譜線寬度往往大於1nm。
從上式可以看出,1550nm波長的光在G.652光纖上傳輸時決定其傳輸距離限制的主要是色散因數。
今天,人們使用光纖系統承載數字電視、語音和數字是很普通的一件事,在商用與工業領域,光纖已成為地面傳輸標准。在軍事和防禦領域,快速傳遞大量信息是大范圍更新換代光纖計劃的原動力。盡管光纖仍在初期發展階段,但總有一天光控飛行控制系統會用重量輕、直徑小又使用安全的光纜取代線控飛行系統。光導纖維與衛星和其他廣播媒體一起,代表著在航空電子學、機器人學、武器系統、感測器、交通運輸及其他高性能環境使用條件下的商用通信和專業應用的新的世界潮流。

㈢ 光傳輸中光的頻率和帶寬的關系

光傳輸中光的頻率也就是波長&最大的帶寬有什麼關系
光傳輸中光的頻率or波長和帶寬沒關系,光傳輸中光的頻率也就是波長和傳輸距離有關,光傳輸一般用850nm和1310nm,一般850nm波在多模光纖上傳輸,1313nm波長在單模光纖上傳輸,一般情況是單模光纖傳輸距離遠些,當然對換一下也可以傳輸但損耗很大傳輸距離變短且容易出現誤碼。目前這兩種波長都可以達到100Gbps的傳輸速度,在不同的光纖上傳輸距離不一樣而已

㈣ 通過光網訪問網際網路使用的是哪種波段的光

1、按系統傳輸的信號分
按照光纖通信系統中所傳信號的形式可將光纖通信系統分為模擬光纖通信系統和數字光纖通信系統兩類。
2、按光纖通信系統所用光纖分
光纖通信系統的主要傳輸介質為光纖,而目前在市場上主要有單模光纖和多模光纖兩種,所以按所用光纖可將光纖通信系統分為單模光纖系統和多模光纖系統兩類
3、按光源的調制方式分
通常光纖通信系統將待傳送的電信號調制到光源器件(激光器或發光管)上,變為光信號在光纖中傳送,按照信號對光源的調制方式,我們還可以將光纖通信系統分為直接調制光通信系統和間接調制光通信系統。
4、按拓撲結構分
光纖通信系統用來連接一些節點,這些節點通常可能是交換機、終端、計算機工作站等。光纖通信系統可分為三類:點對點系統、一點對多點系統以及網路。

㈤ 寬頻是什麼信號傳播的

電、光、電磁。

寬頻並沒有很嚴格的定義。從一般的角度理解,它是能夠滿足人們感觀所能感受到的各種媒體在網路上傳輸所需要的帶寬,因此它也是一個動態的、發展的概念。
FCC(Federal Communications Commission,美國聯邦通訊委員會)2015年1月7日做了年度寬頻進程報告,在報告中現任主席Tom Wheeler對"寬頻"進行了重新定義,原定的下行速度4Mbps調整成25Mbps,原定的上行速度1Mbps調整成3Mbps。
美國寬頻網新標准:25Mbps下行/3Mbps上行。
寬頻網路可以分為三大部分:傳輸網、交換網、接入網。寬頻網的相關技術也分為3類:傳輸技術、交換技術、接入技術。
寬頻傳輸網主要以SDH(同步數字系列)為基礎的大容量光纖網路;
寬頻交換網是採用ATM(非同步傳輸模式)技術的綜合業務數字網;
寬頻接入網主要有光纖接入、銅線接入、混合光纖/銅線接入、無線接入等。
傳統的電話線系統使用的是銅線的低頻部分(4kHz一下頻段)。而ADSL採用DMT(離散多音頻)技術,將原來電話線路okHz到1.1MHz頻段劃分成256個頻寬為4.3khz的子頻帶。其中,4khz以下頻段人用於傳送POTS(傳統電話業務),20KhZ到138KhZ的頻段用來傳送上行信號,138KhZ到1.1MHZ的頻段用來傳送下行信號。DMT技術可以根據線路的情況調整在每個信道上所調制的比特數,以便充分的地利用線路。一般來說,子信道的信噪比越大,在該信道上調制的比特數越多,如果某個子信道餓信噪比很差,則棄之不用。目前,ADSL可達到上行640kbps、下行8Mbps的數據傳輸率。
由上可以看到,對於原先的電話信號而言,仍使用原先的頻帶,而基於ADSL的業務,使用的是電話語音以外的頻帶。所以,原先的電話業務不受任何影響。

㈥ 家用網路光纖信號線的標準是多少

普通光纖這就是入戶的光纖(簡稱光皮線)標准值在-5~-28db之間是正常,光交接箱(就是街邊標著電信運營商的大箱子就是)出來的光信號會在+5~0db之間。

㈦ 光纖通信裡面傳輸的是什麼頻段的電磁波

一般用的波長是1550nm,對應頻率為193THz。波段范圍的話大致是1520nm-1570nm吧,其中按一定頻率(波長)間隔分了很多信道,這個和無線里原理是一樣的。激光器的頻帶寬度一般不大,從MHz到kHz都有,取決於激光器的類型。另外,把激光(載波)調制上信號後,當然帶寬就大了,主要取決於調制信號的頻率

㈧ 光纖傳輸信號頻率范圍

你問的是光纖傳輸的范圍么?
光纖有2種,一種是單模光纖,還有一種是多模光纖.
1000Mbps帶寬的單模光纖傳輸距離在550M~~~100KM,但是價格昂貴,多用與遠程網路;
1000Mbps帶寬的多模光纖傳輸距離在220M~~~550M之間。

補充點:Mbps和實際的M之間的轉換是,8Mbps=1M,所以實際中我們使用的1M、2M寬頻,CNC是把Mbps故意說成了M來迷惑大家,所以實際上1M的帶寬下載速度只有100多KB/M

㈨ 光纜傳輸信號的光的頻率是多少怎麼樣才能幹擾這個頻率的光

光纖裡面傳輸的光信號,一般使用波長1310nm或者1550nm這兩個波長的為主流。外界電磁波對它什麼影響,這也是光纖通信的一個優勢。