當前位置:首頁 » 無線網路 » 無線網路結構組成
擴展閱讀
有什麼訂機票的網站 2025-09-14 18:20:30

無線網路結構組成

發布時間: 2022-08-29 06:59:07

無線網路一般由哪幾個部分組成

基站包括基站收發信機(BTS)和基站控制器(BSC)。一個基站控制器可以控制十幾以至數十個基站收發信機。而在WCDMA等系統中,類似的概念稱為NodeB和RNC。基站(BS)即公用移動通信基站是無線電台站的一種形式,是指在有限的無線電覆蓋區中,通過移動通信交換中心,與行動電話終端之間進行信息傳遞的無線電收發信電台。基站是移動通信中組成蜂窩小區的基本單元,完成移動通信網和移動通信用戶之間的通信和管理功能。

⑵ Wi-Fi的組成結構

一般架設無線網路的基本配備就是無線網卡及一台AP,如此便能以無線的模式,配合既有的有線架構來分享網路資源,架設費用和復雜程度遠遠低於傳統的有線網路。如果只是幾台電腦的對等網,也可不要AP,只需要每台電腦配備無線網卡。AP為Access Point簡稱,一般翻譯為「無線訪問接入點」,或「橋接器」。它主要在媒體存取控制層MAC中扮演無線工作站及有線區域網絡的橋梁。有了AP,就像一般有線網路的Hub一般,無線工作站可以快速且輕易地與網路相連。特別是對於寬頻的使用,無線保真更顯優勢,有線寬頻網路(ADSL、小區LAN等)到戶後,連接到一個AP,然後在電腦中安裝一塊無線網卡即可。普通的家庭有一個AP已經足夠,甚至用戶的鄰里得到授權後,則無需增加埠,也能以共享的方式上網。 隨著無線網路的不斷興起和發展,2010年無線網路模塊的應用領域相當廣泛!
但是無線保真模塊畢竟是一高頻性質的產品,它不象普通的消費類電子產品,生產設計的時候會有一些莫名其妙的現象和問題,讓一些沒有高頻設計經驗的工程師費勁心思,有相關經驗的從業人員,往往也是需要藉助昂貴的設備來協助分析。
對於無線網路部分的處理,有直接把無線保真部分Layout到PCB主板上去的設計,這種設計,需要勇氣和技術,因為本身模塊的價格不高,主板對應的產品價格不菲,當有無線保真部分產生的問題,調試更換比較麻煩,直接報廢可惜;所以很多設計都願意採用模塊化的無線保真部分,這樣可以直接讓Wi-Fi部分模塊化,處理起來方便,而且模塊可以直接拆卸,對於產品的設計風險和具體的耗損也有很大幫助。
具體的硬體設計應該和相關無線保真模塊咨詢時,要考慮清楚以下方面:
通信介面方面:2010年基本是採用USB介面形式,PCIE和SDIO的也有少部分,PCIE的市場份額應該不大,多合一的價格昂貴,而且實用性不強,集成的很多功能都不會使用,其實也是一種浪費。
供電方面:多數是用5V直接供電,有的也會利用主板設計中的電源共享,直接採用3.3V供電。
天線的處理形式:可以有內置的PCB板載天線或者陶瓷天線;也可以通過I-PEX接頭,連接天線延長線,然後讓天線外置。
規格尺寸方面:這個可以根據具體的設計要求,最小的有nano型號(可以直接做nano無線網卡);有可以做到迷你型的12*12左右(通常是外置天線方式採用);通常是25*12左右的設計多點(基本是板載天線和陶瓷天線多,也有外置天線接頭)。
跟主板連接的形式:可以直接SMT,也可以通過2.54的排針來做插件連接(這種組裝/維修方便)。
軟體的調試要結合具體的方案主控,畢竟無線保真部分僅僅是一個無線的收發而已。很多用戶在咨詢的時候,很容易混淆!可以說,2013年無線保真模塊應用最火爆的領域就是MID市場,同時傳統的一些網路領域應用市場也有滲透,比如一些工業控制領域/網路播放領域/甚至一些遙控領域也有在考慮的,基本上是能用到網路的部分都希望嘗試無線化! 一個無線保真聯接點網路成員和結構站點(Station),網路最基本的組成部分。
基本服務單元(Basic Service Set,BSS)是網路最基本的服務單元。最簡單的服務單元可以只由兩個站點組成。站點可以動態地聯結(Associate)到基本服務單元中。
分配系統(Distribution System,DS)。分配系統用於連接不同的基本服務單元。分配系統使用的媒介(Medium)邏輯上和基本服務單元使用的媒介是截然分開的,盡管它們物理上可能會是同一個媒介,例如同一個無線頻段。
接入點(Access Point,AP)。接入點既有普通站點的身份,又有接入到分配系統的功能。
擴展服務單元(Extended Service Set,ESS)。由分配系統和基本服務單元組合而成。這種組合是邏輯上,並非物理上的--不同的基本服務單元物有可能在地理位置相去甚遠。分配系統也可以使用各種各樣的技術。
關口(Portal),也是一個邏輯成分。用於將無線區域網和有線區域網或其它網路聯系起來。
這兒有3種媒介,站點使用的無線的媒介,分配系統使用的媒介,以及和無線區域網集成一起的其它區域網使用的媒介。物理上它們可能互相重疊。
IEEE802.11隻負責在站點使用的無線的媒介上的定址(Addressing)。分配系統和其它區域網的定址不屬無線區域網的范圍。
IEEE802.11沒有具體定義分配系統,只是定義了分配系統應該提供的服務(Service)。整個無線區域網定義了9種服務,
5種服務屬於分配系統的任務,分別為,聯接(Association),結束聯接(Diassociation),分配(Distribution),集成(Integration),再聯接(Reassociation)。
4種服務屬於站點的任務,分別為,鑒權(Authentication),結束鑒權(Deauthentication),隱私(Privacy), MAC數據傳輸(MSDU delivery)。

⑶ 無線區域網的兩種網路結構是什麼

無中心拓撲結構(對等網路)和有中心拓撲結構(結構化網路)。

無線區域網的基本結構可歸為兩種:無中心拓撲和有中心拓撲。無中心拓撲又稱為沒有基礎設施

的無線區域網,有中心拓撲也稱為有基礎設施的無線區域網。

⑷ 無線區域網有那些拓撲結構

。。無線區域網的拓撲結構,也只有AP、橋接、中繼模式了。

⑸ wlan的網路拓撲結構

WLAN是指無線區域網,WLAN有兩個主要類別,一個自我監管網路(一個點對點網路,通常稱為Ad-Hoc網路)和一個網路基礎設施(網路基礎設施)。
一、WLAN有兩種主要的拓撲結構,即自組織網路(也就是對等網路,即人們常稱的Ad-Hoc網路)和基礎結構網路(InfrastructureNetwork)。
二、 自組織型WLAN是一種對等模型的網路,它的建立是為了滿足暫時需求的服務。自組織網路是由一組有無線介面卡的無線終端,特別是移動電腦組成。這些無線終端以相同的工作組名、擴展服務集標識號(ESSID)和密碼等對等的方式相互直連,在WLAN的覆蓋范圍之內,進行點對點,或點對多點之間的通信。
三、基礎結構型WLAN利用了高速的有線或無線骨幹傳輸網路。在這種拓撲結構中,移動節點在基站(BS)的協調下接入到無線信道。 在基礎結構網路中,存在許多基站及基站覆蓋范圍下的移動節點形成的蜂窩小區。基站在小區內可以實現全網覆蓋。在目前的實際應用中,大部分無線WLAN都是基於基礎結構網路。

⑹ 無線區域網有哪兩種組網模式各有什麼特點

無線區域網有兩種組網模式,Ad-hoc模式(點對點無線網路)和Infrastructure模式(集中控制式網路)。

1、Ad-hoc模式(點對點無線網路)

點對點無線網路是一種點對點的對等式移動網路,沒有有線基礎設施的支持,網路中的節點均由移動主機構成。網路中不存在無線AP(無線接入點),通過多張無線網卡自由的組網實現通信。

2、Infrastructure模式(集中控制式網路)

集中控制式模式網路,是一種整合有線與無線區域網架構的應用模式。在這種模式中,無線網卡與無線AP進行無線連接,再通過無線AP與有線網路建立連接。實際上Infrastructure模式網路還可以分為兩種模式:一種是無線路由器+無線網卡建立連接的模式;一種是無線AP+無線網卡建立連接的模式。


(6)無線網路結構組成擴展閱讀:

WLAN的實現協議有很多,其中最為著名也是應用最為廣泛的當屬無線保真技術——Wi-Fi,它實際上提供了一種能夠將各種終端都使用無線進行互聯的技術,為用戶屏蔽了各種終端之間的差異性。

在實際應用中,WLAN的接入方式很簡單,以家庭WLAN為例,只需一個無線接入設備-路由器,一個具備無線功能的計算機或終端(手機或PAD),沒有無線功能的計算機只需外插一個無線網卡即可。

有了以上設備後,具體操作如下:使用路由器將熱點(其他已組建好且在接收范圍的無線網路)或有線網路接入家庭,按照網路服務商提供的說明書進行路由配置,

配置好後在家中覆蓋范圍內(WLAN穩定的覆蓋范圍大概在20 m~50 m之間)放置接收終端,打開終端的無線功能,輸入服務商給定的用戶名和密碼即可接入WLAN。

⑺ 常見的無線網路結構有哪些

無線網路的拓撲結構主要有: 無中心的分布對等方式、有中心的集中控制方式、以及上述方式的混合方式。 常見的無線網路協議: IEEE802.11 是第一代無線區域網標准之一。該標準定義了物理層和媒體訪問控制 (MAC) 協議的規范,允許無線區域網及無線設備製造商在一定范圍內建立互操作網路設備。 802.11 是 IEEE 最初制定的一個無線區域網標准,業務主要限於數據存取,速率最高只能達到 2Mbps 。 由於它在速率和傳輸距離上都不能滿足人們的需要,因此, IEEE 小組又相繼推出了 802.11b 和 802.11a 兩個新標准。 2003 年 IEEE 還通過了 802.11g 技術標准。 802.11b 標準是 IEEE 制定的無線區域網標准,它工作在 2.4GHz 免執照的 ISM 頻帶,物理層速率可達 11M ,傳輸層可達 5.5Mbps 。該標准採用 DSSS 直序擴頻技術。 802.11a 標準是 802.11b 的後續標准。它工作在 5GHz 頻帶 (5.2GHz,5.4GHz,5.8GHz) ,物理層速率可達 54M ,傳輸層可達 25Mbps 。採用正交頻分復用( OFDM )技術。 802.11g 標准結合了 802.11b 和 802.11a 兩種標準的優點,克服了它們的局限性。它工作在 2.4GHz 免執照的 ISM 頻帶,可以比工作在 5GHz 的 802.11a 覆蓋更大的區域,同時,採用正交頻分復用( OFDM )技術,物理層速率可達 54M ,傳輸層可達 25M ,傳輸速度比 802.11b 要快 5 倍左右。 802.11n 計劃採用 MIMO (多入多出技術)與 OFDM 相結合,使傳輸速率成倍提高。另外,新的天線技術及無線傳輸技術,使得無線區域網的傳輸距離大大增加。相對 802.11g 標准,新標准計劃在保障 100M 的傳輸速率下使傳輸距離增加 10 倍左右。 802.11n 標准對 802.11 標准做了多項修改,不僅涉及物理層標准,同時也採用新的高性能無線傳輸技術提升 MAC 層的性能,優化數據幀結構,提高網路的吞吐量性能。不過目前這類 MIMO 產品還相當稚嫩。實際性能在 100 米以內大約是 802.11g 產品的 2 倍,而超過 100 米後,其性能將非常接近 802.11g 產品。

⑻ 整個無線網路系統通常由哪幾個重要的部分組成

你好,無線網路系統是由通信網路、移動終端、服務平台三個部分組成的

⑼ 簡述wifi連接點的網路成員和結構

WiFi網路結構和工作原理 WiFi網路結構
* 站點(Station),網路最基本的組成部分。
* 基本服務單元(Basic Service Set,BSS)。網路最基本的服務單元。最簡單的服務單元可以只由兩個站點組成。站點可以動態的聯結(associate)到基本服務單元中。 * 分配系統(Distribution System,DS)。分配系統用於連接不同的基本服務單元。分配系統使用的媒介(Medium)邏輯上和基本服務單元使用的媒介是截然分開的,盡管它們 物理上可能會是同一個媒介,例如同一個無線頻段。
* 接入點(Access Point,AP)。接入點即有普通站點的身份,又有接入到分配系統的功能。 * 擴展服務單元(Extended Service Set,ESS)。由分配系統和基本服務單元組合而成。這種組合是邏輯上,並非物理上的──不同的基本服務單元物有可能在地理位置相去甚遠。分配系統也可 以使用各種各樣的技術。
* 關口(Portal),也是一個邏輯成分。用於將無線區域網和有線區域網或其它網路聯系起來。
這兒有3種媒介,站點使用的無線的媒介,分配系統使用的媒介,以及和無線區域網集成一起的其它區域網使用的媒介。物理上它們可能互相重迭。IEEE 802.11隻負責在站點使用的無線的媒介上的定址(Addressing)。分配系統和其它區域網的定址不屬無線區域網的范圍。 IEEE802.11沒有具體定義分配系統,只是定義了分配系統應該提供的服務(Service)。整個無線區域網定義了9種服務:
* 5種服務屬於分配系統的任務,分別為,聯接(Association)、結束聯接(Diassociation)、分配(Distribution)、集 成(Integration)、再聯接(Reassociation)。
* 4種服務屬於站點的任務,分別為,鑒權(Authentication)、結束鑒權(Deauthentication)、隱私(Privacy)、 MAC 數據傳輸(MSDU delivery)。 WiFi工作原理
WiFi 的設置至少需要一個Access Point(ap)和一個或一個以上的client(hi)。AP 每100ms將SSID(Service Set Identifier)經由beacons(信號台)封包廣播一次,beacons封包的傳輸速率是1 Mbit/s,並且長度相當的短,所以這個廣播動作對網路效能的影響不大。因為WiFi規定的最低傳輸速率是1 Mbit/s ,所以確保所有的WiFi client端都能收到這個SSID廣播封包,client 可以藉此決定是否要和這一個SSID的AP連線。使用者可以設定要連線到哪一個SSID。
中國電信提供最優質的網路通訊服務,目前安徽電信有活動,話費1折扣,9元打99元,建議直接通過安徽電信營業廳或者實體營業廳查詢。

⑽ 無線區域網的結構

無線區域網拓撲結構概述:基於IEEE802.11標準的無線區域網允許在區域網絡環境中使用可以不必授權的ISM頻段中的2.4GHz或5GHz射頻波段進行無線連接。它們被廣泛應用,從家庭到企業再到Internet接入熱點。
簡單的家庭無線WLAN:在家庭無線區域網最通用和最便宜的例子,如圖1所示,一台設備作為防火牆,路由器,交換機和無線接入點。這些無線路由器可以提供廣泛的功能,例如:保護家庭網路遠離外界的入侵。允許共享一個ISP(Internet服務提供商)的單一IP地址。可為4台計算機提供有線乙太網服務,但是也可以和另一個乙太網交換機或集線器進行擴展。為多個無線計算機作一個無線接入點。通常基本模塊提供2.4GHz802.11b/g操作的Wi-Fi,而更高端模塊將提供雙波段Wi-Fi或高速MIMO性能。
雙波段接入點提供2.4GHz802.11b/g/n和5.8GHz802.11a性能,而MIMO接入點在2.4GHz范圍中可使用多個射頻以提高性能。雙波段接入點本質上是兩個接入點為一體並可以同時提供兩個非干擾頻率,而更新的MIMO設備在2.4GHz范圍或更高的范圍提高了速度。2.4GHz范圍經常擁擠不堪而且由於成本問題,廠商避開了雙波段MIMO設備。雙波段設備不具有最高性能或范圍,但是允許你在相對不那麼擁擠的5.8GHz范圍操作,並且如果兩個設備在不同的波段,允許它們同時全速操作。家庭網路中的例子並不常見。該拓撲費用更高但是提供了更強的靈活性。路由器和無線設備可能不提供高級用戶希望的所有特性。在這個配置中,此類接入點的費用可能會超過一個相當的路由器和AP一體機的價格,歸因於市場中這種產品較少,因為多數人喜歡組合功能。一些人需要更高的終端路由器和交換機,因為這些設備具有諸如帶寬控制,千兆乙太網這樣的特性,以及具有允許他們擁有需要的靈活性的標准設計。 中等規模的企業傳統上使用一個簡單的設計,他們簡單地向所有需要無線覆蓋的設施提供多個接入點。這個特殊的方法可能是最通用的,因為它入口成本低,盡管一旦接入點的數量超過一定限度它就變得難以管理。大多數這類無線區域網允許你在接入點之間漫遊,因為它們配置在相同的以太子網和SSID中。從管理的角度看,每個接入點以及連接到它的介面都被分開管理。在更高級的支持多個虛擬SSID的操作中,VLAN通道被用來連接訪問點到多個子網,但需要乙太網連接具有可管理的交換埠。這種情況中的交換機需要進行配置,以在單一埠上支持多個VLAN。
盡管使用一個模板配置多個接入點是可能的,但是當固件和配置需要進行升級時,管理大量的接入點仍會變得困難。從安全的角度來看,每個接入點必須被配置為能夠處理其自己的接入控制和認證。RADIUS伺服器將這項任務變得更輕松,因為接入點可以將訪問控制和認證委派給中心化的RADIUS伺服器,這些伺服器可以輪流和諸如Windows活動目錄這樣的中央用戶資料庫進行連接。但是即使如此,仍需要在每個接入點和每個RADIUS伺服器之間建立一個RADIUS關聯,如果接入點的數量很多會變得很復雜。 交換無線區域網是無線連網最新的進展,簡化的接入點通過幾個中心化的無線控制器進行控制。數據通過Cisco,ArubaNetworks,Symbol和TrapezeNetworks這樣的製造商的中心化無線控制器進行傳輸和管理。這種情況下的接入點具有更簡單的設計,用來簡化復雜的操作系統,而且更復雜的邏輯被嵌入在無線控制器中。接入點通常沒有物理連接到無線控制器,但是它們邏輯上通過無線控制器交換和路由。要支持多個VLAN,數據以某種形式被封裝在隧道中,所以即使設備處在不同的子網中,但從接入點到無線控制器有一個直接的邏輯連接。從管理的角度來看,管理員只需要管理可以輪流控制數百接入點的無線區域網控制器。這些接入點可以使用某些自定義的DHCP屬性以判斷無線控制器在哪裡,並且自動連結到它成為控制器的一個擴充。這極大地改善了交換無線區域網的可伸縮性,因為額外接入點本質上是即插即用的。要支持多個VLAN,接入點不再在它連接的交換機上需要一個特殊的VLAN隧道埠,並且可以使用任何交換機甚至易於管理的集線器上的任何老式接入埠。VLAN數據被封裝並發送到中央無線控制器,它處理到核心網路交換機的單一高速多VLAN連接。安全管理也被加固了,因為所有訪問控制和認證在中心化控制器進行處理,而不是在每個接入點。只有中心化無線控制器需要連接到RADIUS伺服器,這些伺服器在圖6顯示的例子中輪流連接到活動目錄。
交換無線區域網的另一個好處是低延遲漫遊。這允許VoIP和Citrix這樣的對延遲敏感的應用。切換時間會發生在通常不明顯的大約50毫秒內。傳統的每個接入點被獨立配置的無線區域網有1000毫秒范圍內的切換時間,這會破壞電話呼叫並丟棄無線設備上的應用會話。交換無線區域網的主要缺點是由於無線控制器的附加費用而導致的額外成本。但是在大型無線區域網配置中,這些附加成本很容易被易管理性所抵消。