❶ 光伏發電,逆變器無線怎麼連接手機連接
光伏發電,逆變器連接手機的方法是:取下無線網路接收器,手機下載APP,掃描接收器上的二維碼,就可以手機連接。
❷ 有誰知道無線感測器工作原理是什麼
長沙盛恩自動化設備;無線感測器工作原理:
WSN一般都包括一台主機或者「網關」,其通過一個無線電通信鏈路與大量無線感測器進行通信。數據收集工作在無線感測器節點完成,被壓縮後,直接傳輸給網關,或者如果有要求,也可以利用其他無線感測器節點來將數據傳遞給網關。之後,網關保證該數據是系統的輸入數據。
每個無線感測器都被看作一個節點,擁有無線通信能力,同時還具有一定的信號處理與網路數據的智能。根據應用的類型,每個節點都可以有一個指定的地址。下圖顯示了某個節點的通用結構圖。它一般會包括一個感測裝置、一個數據處理微控制器,以及一個無線連接RF模塊。根據不同的網路定義,RF模塊可以起到一個簡單發射器或者收發器(TX/RX)的作用。進行節點設計時,注意電流消耗和處理能力非常的重要。微控制器的內存非常依賴於所使用的軟體棧。
❸ 典型的無線感測器網路節點有哪些
無線感測器網路是大量的靜止或移動的感測器以自組織和多跳的方式構成的無線網路,其目的是協作地感知、採集、處理和傳輸網路覆蓋地理區域內感知對象的監測信息,並報告給用戶。
它的英文是Wireless
Sensor
Network,
簡稱WSN。
大量的感測器節點將探測數據,通過匯聚節點經其它網路發送給了用戶。
在這個定義中,感測器網路實現了數據採集、處理和傳輸的三種功能,而這正對應著現代信息技術的三大基礎技術,即感測器技術、計算機技術和通信技術。
典型的無線感測器網路一般包括三個節點:感測器節點(Sensor
node)、匯聚節點(Sink
node)和任務管理節點。
詳細內容可以去飛瑞敖論壇查找。
❹ 無限感測器網路節點一般通過什麼供電
無線感測器網路節點的供電通常用電池,或者可充電池+太陽能電池板。
❺ 無線感測器網路中的結點是固定不變
無線感測器網路中的結點基本上是固定不變的,這點和移動自組網路有很大的區別。無線感測器網路主要的應用領域就是組成各種物聯網IoT (Intemnet of Things)。下面是物聯網的一些舉例:
(1)環境監測與保護(如洪水預報、動物棲息的監控);
(2)戰爭中對敵情的偵查和對兵力、裝備、物資等的監控;
(3)醫療中對病房的監測和對患者的護理;
(4)在危險的工業環境(如礦井、核電站等)中的安全監測;
(5)城市交通管理、建築內的溫度/照明/安全控制等。
順便指出,移動自組網路和移動IP並不相同。移動IP技術使漫遊的主機可以用多種方式連接到互聯網。漫遊的主機可以直接連接到或通過無線鏈路連接到固定網路上的另一個子網。支持這種形式的主機移動性需要地址管理和增加協議的互操作性,但移動IP的核心網路功能仍然是基於在固定互聯網中一直在使用的各種路由選擇協議。但移動自組網路是把移動性擴展到無線領域中的自治系統,它具有自己特定的路由選擇協議,並且可以不和互聯網相連。即使在和互聯網相連時,移動自組網路也是以殘樁網路(stubnetwork)方式工作的。所謂「殘樁網路」就是通信量可以進入殘樁網路,也可以從殘樁網路發出,但不允許外部的通信量穿越殘樁網路。最後需要弄清在文獻中經常要遇到的、與接入有關的幾個名詞。固定接入(fixed access)一在作為網路用戶期間,用戶設置的地理位置保持不變。移動接入(mobility access)-用戶設備能夠以車輛速度(一般取為每小時120公里)移動時進行網路通信。當發生切換(即用戶移動到不同蜂窩小區)時,通信仍然是連續的。便攜接入(portable access)--一在受限的網路覆蓋面積中,用戶設備能夠在以步行速度移動時進行網路通信,提供有限的切換能力。游牧接入(nomadic access)一一用戶設備的地理位置至少在進行網路通信時保持不變。如果用戶設備移動了位置(改變了蜂窩小區),那麼再次進行通信時可能還要尋找最佳的基站。也有的文獻把便攜接入和游牧接入當作一樣的,定義為可以在通信時以步行速度移動。這點在閱讀文獻時應加以注意。
❻ 5、無線感測器網路的睡眠調度目的
一 無線感測器網路簡介
短距離無線通信特點:通信距離短,覆蓋距離一般為10~200m。無線發射器的發射功率較低,發射功率一般小於100mW。工作頻率多為免付費、免申請的全球通用的工業、科學、醫療頻段。
短距離無線通信技術的概念:指集信息採集、信息傳輸、信息處理於一體的綜合型智能信息系統,並且其傳輸距離限制在一個較短的范圍內。
低成本、低功耗和對等通信是短距離無線通信技術的三個重要特徵和優勢。
常見的無線通信技術有IrDA技術、藍牙技術、WIFI技術、RFID技術、UWB技術、Zigbee技術。
以數據傳輸為主要功能的無線網路技術稱為無線數據網路。
ALOHA協議是一種使用無線廣播技術的分組交換計算機網路協議,也是最早最基本的無線數據通信協議。
ALOHA協議分為純ALOHA和時隙ALOHA兩種。
ALOHA技術的特點:原理非常簡單,特別便於無線設備實現。
無線區域網是在各工作站和設備之間,不再使用通信電纜,而採用無線的通信方式連接的區域網。
無線區域網的傳輸媒體主要有兩種:無線電波和紅外線。
根據調制的方式不同,無線電波方式可分為擴展頻譜方式和窄帶調制方式。
擴展頻譜方式是指用來傳輸信息的射頻帶寬遠大於信息本身帶寬的一種通信方式,它雖然犧牲了頻帶帶寬,卻提高了通信系統的抗干擾能力和安全性。
窄帶調制方式是指數據基帶信號的頻譜不做任何擴展即被直接搬移到射頻發射出去,與擴展頻譜方式相比,窄帶調制方式佔用頻帶少,頻帶利用率高,但是通信可靠性較差。
紅外線方式最大的有限是不受無線電干擾,且紅外線的使用不受國家無線電管理委員會限制,但是紅外線對非透明物體的透過性較差,傳輸距離受限。
無線個域網是一種與無線廣域網、無線城域網、無線區域網並列但覆蓋范圍較小的無線網路,是為了實現活動半徑小、業務類型豐富、面向特定群體、無線無縫的連接而提出的新興無線通信網路技術。
無線自組織網路是一個由幾十到上百個節點組成的、採用無線通信方式的、動態組的多跳的移動性對等網路。其目的是通過動態路由和移動管理技術傳輸具有服務質量要求的多媒體信息流。
無線感測器網路的主要組成部分是集成有感測器、數據處理單元和通信模塊的節點,各節點通過協議自組成一個分布式網路,再將採集來的數據通過優化後經無線電波傳輸給信息處理中心。
感測器網路的特點:
大規模網路
自組織網路
多跳路由
動態性網路
以數據為中心的網路
兼容性應用的網路
感測器節點的限制
電源能量有限
通信能量有限
計算和存儲能力有限
拓撲控制是無線感測器網路研究的核心技術之一。
感測器網路中的拓撲控制按照研究方向可分為:節點功率控制和層次型拓撲結構組織。
無線感測器網路最基本的安全機制:機密性、點到點的消息認證、完整性鑒別、新鮮性、認證廣播和安全管理。
時間同步是需要協同工作的感測器網路系統的一個關鍵機制。
三個基本的時間同步機制:RBS、TINY/MINI-SYNC和TPSN。
RBS機制是基於接收者-接收者的時鍾同步一個節點廣播時鍾參考分組,廣播域內的兩個節點分別採用本地時鍾記錄參考分組的到達時間,通過交換記錄時間來實現它們之間的時鍾同步。
TINY/MINI-SYNC是簡單的輕量級的同步機制:假設節點的時鍾漂移遵循線性變化,那麼兩個節點之間的時間偏移也是線性的,可通過減緩時標分組來估計兩個節點之間最優匹配偏移量。
❼ 無限感測器網路定位的作用是什麼
在許多場合下,感測器節點被隨機部署在某個區域,節點事先無法知道自身的位置,因此需要在部署後通過定位技術來獲取自身的位置信息。目前最常見的定位技術就是GPS(Global Positioning System)了,它能夠通過衛星對節點進行定位,並且能夠達到比較高的精度。因此要想對感測器節點進行定位,最容易想到的方法就是給每個節點配備一個GPS接收器,但是這種方法不適用於感測器網路,主要原因有以下幾點:
1)GPS接收器通常能耗高,而對於無線感測器網路中的節點來說,一般能耗很有限,給每個節點配備一個GPS接收器會大大縮短網路壽命;
2)GPS接收器成本比較高,給無線感測器網路中的每個節點配備一個GPS接收器,需要投入很大成本,尤其對於大規模的無線感測器網路來說不是很適合;
因此有必要研究適合無線感測器網路的定位技術。下面分兩個部分來介紹節點定位的相關研究:1)節點定位的基本概念;2)節點定位的基本思路;3)常見演算法。望採納
❽ 智能電網重大科技產業化工程「十二五」專項規劃的重點任務
風電機組/光伏組件隨風速或輻照強度的出力特性、出力波動特性與概率分布;風電場、光伏電站集群出力的時空分布和出力特性;風電場、光伏電站集群控制系統;大型風電基地或大型光伏發電基地的集群控制平台系統示範工程。
大規模間歇式能源發電實時監測技術、出力特性及其對調度計劃的影響;大規模間歇式能源發電日前與日內調度策略與模型;省級、區域、國家級范圍內逐級間歇式能源消納的框架體系;多時空尺度間歇式能源發電協調調度策略模型及系統示範工程。
大型風電場接入的柔性直流輸電系統分析與建模技術;柔性直流輸電系統數字物理混合模擬平台;交/直流混合接入的控制方法;柔性直流輸電系統故障分析與保護策略;輸電工程關鍵技術及樣機;核心裝備研製與示範工程。
間歇式電源基礎數據、模型及參數辨識技術;間歇式電源與電網的協調規劃技術;間歇式電源並網全過程模擬分析技術;間歇式電源接入電網安全性、可靠性、經濟性分析評估理論和方法。
適應高滲透率間隙性電源接入電網的綜合規劃方法;提高區域電網接納間歇性電源能力的關鍵技術;時空互補的區域電網間歇性電源優化調度方法和協調控制策略;風、光、儲、水等多種電源多點接入互補運行技術;含高滲透率間歇性電源的區域電網防災技術、應急機制、數字模擬平台和示範應用。
區域性高密度、多接入點光伏系統並網及其與配電網協調關鍵技術,重點研究屋頂、建築幕牆與光伏一體化技術,並探索並網運營的商業模式;功率可調節光伏系統與儲能系統穩定控制技術、區域性高密度、多接入點光伏系統的電能質量綜合調節技術、新型孤島檢測與保護技術、能量管理技術;不同儲能系統的高效率智能化雙向變流器、新型集中與分散孤島檢測裝置、分散計量測控系統和中央測控系統等關鍵設備。
微網的規劃設計理論、方法、綜合性能評價指標體系、規劃設計支持系統、運行控制技術;微網動態模擬實驗平台和微網中央運行管理系統;具有多種能源綜合利用的微網示範工程。
大容量儲能與間歇式電源發電出力互補機制,儲能系統與間歇式電源容量配置技術及優化方法;儲能電站提高間歇式電源接入能力應用控制與能量管理技術;儲能電站的多點布局方法及廣域協調優化控制技術。
多種類型新能源發電集中綜合消納在規劃、分析、調度運行、繼電保護、安穩控制、防災應急等領域的關鍵技術。考慮到我國風光資源豐富區域的電網結構薄弱的特點,發展電源電網綜合規劃方法,提出時空互補的優化調度方法和協調控制策略,研究高可靠性繼電保護與安全穩定協調控制系統,發展防災技術和應急機制。
不同類型系統故障引起的大型風電場群連鎖故障現象,抑制大型風電場群發生連鎖故障技術方案,大型風電場群參與系統穩定控制的技術方案,包含系統級的大型風電場群故障穿越綜合解決方案及其在大型風電基地上的示範應用。
風電機組、光伏發電系統先進控制技術;新能源發電設備監測與信息化技術;新能源電站的智能協調控制技術與協調控制系統。
含風光儲的分布式發電接入配電網控制保護及可靠供電技術、信息化技術;含風光儲分布式發電接入配電網的電能質量問題;包含風光儲的分布式發電接入配電網示範工程。
綜合利用多種技術手段,突破小水電群大規模接入電網的技術瓶頸,減少其對電網安全穩定運行的影響。研究提高小水電群接入消納能力的電網優化方法和柔性交流、柔性直流輸電技術,小水電發電能力預測技術,小水電監測與模擬平台集成技術,小水電與大中型水電站群系統多時空協調控制方法,小水電與風電、火電系統多時空協調控制,提高小水電群接入消納能力的區域穩定控制理論、控制方法和控制系統。
間歇式能源發電出力的概率分布規律並建立相應的模型,間歇式能源網源協調控制技術,間歇式能源發電系統故障穿越技術,間歇式能源發電系統電氣故障診斷及自愈技術。
「風電+抽蓄」的運營模式。設計風電抽蓄聯合運行模式,建立包括聯合優化模型、聯合模擬、安全校核、模擬交易等在內的支撐系統,形成完整的風電抽蓄聯合運行管理系統框架。
間歇式電源功率波動特性及其對電網的影響;廣域有功功率及頻率控制、分層分級無功功率及電壓控制技術,電力系統動態穩定性分析及控制技術;機組-場群-電網分級分散協同控制技術;嚴重故障下新能源電力系統故障演化機理及安全防禦策略,考慮交直流外送等方式下的間歇式電源緊急控制、輸電系統緊急控制以及其他安控措施的協調控制技術。
含大規模間歇式電源的交直流互聯大電網的協調優化運行技術,廣域協調阻尼控制技術,狀態監測與信息集成技術,實時風險評估技術,智能優化調度和安全防禦技術。 電動汽車電池更換站運行特性,更換站作為分布式儲能單元接入電網的關鍵技術和控制策略;電池梯次利用的篩選原則、成組方法和系統方案;更換站多用途變流裝置;更換站與儲能站一體化監控系統;更換站與儲能站一體化示範工程。
電動汽車充電需求特性和規模化電動汽車充電對電網的影響;電動汽車有序充電控制管理系統;電動汽車有序充電試驗系統。
電動汽車與電網互動的控制策略和關鍵技術;電動汽車智能充放電機、智能車載終端和電動汽車與電網互動協調控制系統;電動汽車與電網互動實驗驗證系統;電動汽車充放電設施檢驗檢測技術。
電動汽車新型充放電技術;電動汽車智能充放電控制策略及檢測技術;充電設施與電網互動運行的關鍵技術。
規模化電動汽車電池更換技術、計量計費、資產管理技術;充電設施運營的商業模式;基於物聯網的智能充換電服務網路的運營管理系統建設方案。 基於鋰電池儲能裝置的大容量化技術,包括電池成組動態均衡、電池組模塊化、基於電池組模塊的儲能規模放大、電池系統管理監控及保護等技術;電池儲能系統規模化集成技術,包括大功率儲能裝置及儲能規模化集成設計方法、大容量儲能系統的監控及保護技術、儲能系統冗餘及擴容方法、儲能電站監控平台。
多類型儲能系統的協調控制技術;多類型儲能系統容量配置、優化選擇准則以及優化協調控制理論體系;基於多類型儲能系統的應用工程示範。
單體鈉硫電池產品化和規模製備自動化中的關鍵問題以及集成應用中的核心技術,先進的鈉硫電池產業化制備技術,MW級鈉硫電池儲能電站的集成應用技術。
MW以上級液流電池儲能關鍵技術,5MW/10MWh全釩液流儲能電池系統在風力發電中的應用示範,國際領先、自主知識產權的液流電池產業化技術平台。
鋰離子電池的模塊化成組技術;電池儲能系統熱量管理技術、狀態監控及均衡技術、儲能電池檢測和評價技術;模塊化儲能變流技術,及各種不同型式的儲能材料與功率變換器的配合原則;基於變流器模塊的電池儲能規模化系統集成技術,及儲能系統電站化技術。
儲能系統的特性檢測技術;儲能系統的應用依據和評估規范;儲能系統並網性能評價技術,涵蓋電力儲能系統的研究、製造、測試、設計、安裝、驗收、運行、檢修和回收全過程的技術標准和應用規范。 智能配電網自愈控制框架、模型、模式和技術支撐體系;含分布式電源/微網/儲能裝置的配電網系統分析、模擬與試驗技術;考慮安全性、可靠性、經濟性和電能質量的智能配電網評估指標體系;含分布式電源/微網/儲能裝置的配電網在線風險評估及安全預警方法、故障定位、網路重構、災害預案和黑啟動技術;智能配電單元統一支撐平台技術;智能配電網自愈控制保護設備和自愈控制系統;智能配電網自愈控制示範工程。
靈活互動的智能用電技術體系架構;智能用電高級量測體系標准、系統及終端技術;用戶用電環境(特別是城市微氣象)與用電模式的相互影響,不同條件下的負荷特性以及對用電交互終端、家庭用電控制設備的影響;智能用電雙向互動運行模式及支撐技術。
智能配用電示範園區規劃優化和供電模式優化方法。配電一次設備與智能配電終端的融合與集成技術;配電自動化系統與智能用電信息支撐平台及智能配電網自愈控制系統的集成技術;用電信息採集系統與高級量測系統、智能用電互動平台的集成技術;智能用電小區用戶能效管理系統與智能家居的集成技術;智能樓宇自動化系統與建築用電管理系統的集成技術;分布式儲能系統優化配置方法和運行控制技術;提高配電網接納間歇式電源能力的分布式儲能系統優化配置方法和運行控制技術,分布式儲能系統參與配電網負荷管理的優化調度方法,配電網分布式儲能系統的綜合能量管理技術;智能配用電示範園區。
主動配電網的網路結構及其信息控制策略,主動配電網對間歇式能源的多級分層消納模式,主動配電網與間歇式能源的協調控制技術。
智能配電網下新型保護、量測的原理和演算法;智能配用電高性能通信網技術;智能配電網廣域測量、自適應保護及重合閘等關鍵技術;開發智能配電網新型量測、通信、保護成套設備,智能配電網新型量測、通信、保護成套設備的產業化。
智能配電網的優化調度模式、優化調度技術,面向分布式電源、配電網路以及多樣性負荷的優化調度方法;包括優化調度系統以及新能源管控設備等關鍵裝備;智能配電網運行狀態的安全、可靠、經濟、優質等指標評價技術。
鋼鐵企業等大型工業企業電網的智能配用電集成技術。配電自動化系統與智能用電信息支撐平台及智能配電網自愈控制系統的集成技術;用電信息採集系統與高級量測系統、智能用電互動平台的集成技術;分布式儲能系統優化配置方法和運行控制技術。
適於島嶼、油田群的能源高效利用的智能配網集成技術,包括信息支撐平台、自愈控制、用電信息採集、高級量測、用電互動、能效管理、儲能系統優化配置和運行控制,建設配網綜合示範工程。
高效自治微網群的規劃設計及評價體系,穩態運行與多維能量管理技術,多空間尺度微網群自治運行控制器樣機,統一調度平台軟體,多空間尺度高效自治微網群的示範應用。
孤島型微電網的頻率穩定機理與負荷-頻率控制方法,孤島型微電網的電壓穩定機理與動態電壓穩定控制方法,大規模可再生能源接入孤島型微電網的技術,孤島型微電網系統的示範工程建設及現場運行測試與實證性研究。 電網智能調度一體化支撐關鍵技術;大電網運行狀態感知、整體建模、風險評估與故障診斷技術;多級多維協調的節能優化調度關鍵技術等。
在線安全分析並行計算平台的協調優化調度技術,復雜形態下在線安全穩定運行綜合安全指標、評價方法和實現架構;大電源集中外送系統阻尼控制技術,次同步諧振/次同步振盪的在線監測分析預警及阻尼控制技術;基於廣域信息的大電網交直流智能協調控制和緊急控制技術等。 感測器介面及植入技術,電子式互感器(EVT/ECT)的集成設計技術,智能開關設備的技術標准體系及智能化實施方案;具備測量、控制、監測、計量、保護等功能的智能組件技術及其與智能開關設備的有機集成技術;適用於氣體介質的壓力與微水、高抗振性能的位移、紅外定位溫度、聲學、局部放電信號等感測器及介面技術,各類感測器的可靠性設計技術和檢驗標准;開關設備運行、控制和可靠性等狀態的智能評測和預報技術,智能開關設備與調控系統的信息互動技術,開關設備的程序化和選相合閘控制技術等。
高壓設備基於RFID、GPS及狀態感測器的一體化識別、定位、跟蹤和監控的智能監測模型,輸變電設備智能測量體系下的全景狀態信息模型;具有數據存儲能力、計算能力、聯網能力、信息交換和自治協同能力的一體化智能監測裝置;基於IEC標準的全站設備狀態信息通訊模型和介面體系構架,輸變電設備狀態信息和自動化信息的集成關鍵技術,標准化全站設備狀態採集和集成設備關鍵技術;輸變電高壓設備智能監測與診斷技術,輸變電區域內多站的分層分布式狀態監測、採集和一體化數據集成、存儲、分析應用系統。 智能配用電信息及通信體系與建模方法;智能配用電系統海量信息處理技術;智能配用電信息集成架構及互操作技術;復雜配用電系統統一數據採集技術;智能配用電業務信息集成與交互技術;智能配用電信息安全技術;智能配用電高性能通信網技術等。
電力通信網路技術體制的安全機理與屬性;通信安全對智能電網安全穩定運行的影響;保障智能電網各個環節的通信安全技術與組網模式;廣域電網實時通信業務可靠傳輸技術、支持多重故障恢復的通信網自愈與重構技術;電力通信網路的安全監測及防衛防護技術;電力通信網路安全性能優化技術;電力通信網路安全評價體系;智能電網通信網路綜合管理與網路智能分析技術,電力通信網綜合模擬與測試平台,電力通信智能化網路管理示範工程。
實用的新型電力參量感測器,以及多參量感知集成的無線感測器網路技術、多測點多參量的光纖感測網路技術;多種感測裝置的融合技術;電力感測網綜合信息接入與傳輸平台技術;電力物聯網編碼技術、海量數據存儲、過濾、挖掘和信息聚合技術;新一代高性能電力線載波(寬頻/窄帶)關鍵通信技術;電力新型特種光纜及試點工程,新型特種光纜設計、製造、試驗、施工、運維等配套支撐技術及基本技術框架,新型特種光纜的應用模式和技術方案;智能電網統一通信的應用模式、部署方式和網路架構,統一通信在支撐調度、應急、用電管理等各環節的應用和解決方案。
智能電網統一信息模型及信息化總體框架;電網海量信息的存儲結構、索引技術、混合壓縮技術、數據並發處理、磁碟緩存管理、虛擬化存儲和安全可靠存儲機制等信息存儲技術;基於計算機集群系統的並行資料庫統一視圖和介面、並行查優、海量負載平衡和海量並行數據的備份和恢復技術;海量實時數據與非實時數據的整合檢索和利用技術;雲計算在海量數據處理中的應用技術;海量實時資料庫管理系統;高效存儲及實時處理智能信息服務平台示範工程。
電網可視信息的模式識別、圖形分析、虛擬現實等技術,可視化支撐技術架構;智能監控系統架構,計算機視覺感知方法、智能行為識別與處理演算法等關鍵技術;智能電網雙向互動的信息服務平台技術,桌面終端、移動終端、互動大屏幕等多信息展現渠道;智能電網雙向互動的信息服務平台示範工程。 靜止同步串聯補償器、統一潮流控制器的關鍵技術,包括主電路拓撲、模擬分析技術、關鍵組件的設計製造技術、控制保護技術、試驗測試技術,開發工業裝置並示範應用;利用柔性交流輸電設備的潮流控制和靈活調度技術。
高性能、低成本、安裝運維方便的高壓大容量新型固態短路限流器,包括新型固態限流裝置分析建模與模擬技術、固態限流器主電路設計技術、固態限流器的控制與保護策略,工程化的高壓大容量新型固態限流裝置研製。
面向輸電系統應用的高溫超導限流器的核心關鍵技術,包括超導限流裝置的限流機理、主電路拓撲、建模和模擬分析、優化設計方法、控制策略、保護系統、試驗測試技術,220kV高溫超導限流器示範裝置研製。
高壓直流輸電系統用高壓直流斷路器分斷原理理論分析、模型與模擬、直流斷路器總體方案、成套電氣與結構、關鍵零部件、系統集成化、成套試驗方法、SF6斷路器電弧特性等,15kV級直流斷路器樣機研製及示範工程。
高壓輸電系統用高壓直流陸上和海底電纜的絕緣結構型式、機械和電學特性、絕緣、結構和導電材料選擇、成型工藝、相關測試和試驗方法、可靠性試驗,±320kV級陸上和海底電纜的研製及相關試驗測試。
直流輸電系統中的直流電流和電壓測量方法和技術,直流輸電系統直流電流和電壓測試系統方法和技術路線,直流輸電系統測量裝置計量和標定方法,高電位直流電流和直流電壓測試系統,全光直流電流互感器和全學直流電壓互感器,滿足特高壓直流輸電和柔性直流輸電需求的樣機及相關試驗、認證和示範應用。
換流器拓撲結構和主迴路優化、多端柔性直流供電系統分析、計算和模擬;多端直流供電系統與交流供電系統的相互影響和運行方式,研究多端直流供電系統的控制保護系統架構、電壓、潮流和電能質量控制方法;緊湊型、模塊化換流站設備及其控制保護系統,它們在城市供電中的示範應用。
直流配電網拓撲結構、基本模型、控制保護方案,直流配網模擬模型和技術,直流配電網設計技術,直流配電網換流站關鍵裝備,直流配電網經濟安全指標體系和評估方法,考慮各類分布式電源接入和電動汽車充換電設備與電網互動情況下的直流配電網建設和優化運行方案,直流配電網管理和控制系統,直流配電網示範工程及相關技術、裝置和系統的有效驗證。 在一個相對獨立的地域范圍,建立一個涵蓋發電、輸電、配電、用電、儲能的智能電網綜合集成示範工程,實現智能電網多個領域技術的綜合測試、實驗和示範,並研究智能電網的可行商業運營模式,形成對未來智能電網形態的整體展示,體現低碳、高效、兼容接入、互動靈活的特點。
智能電網集成綜合示範的技術領域包括:
大規模接入間歇式能源並網技術;
與電動汽車充電設施協調運行電網技術;
大規模儲能系統;
高密度多點分布式供能系統;
智能配用電系統;
用戶與電網的互動技術;
智能電網信息及通信技術。
❾ 無線感測網路的問題
涉及的內容是挺多的,
1.硬體方面的(目前處除了軍用,或其他一些特定應用外,我們國家很多感測器晶元用的還都是國外的,沒有過硬的技術啊)。
2.無線感測器網路協議研究。根據感測器網路自身的特點,結合應用,量身打造更合適的通信協議。
3.軟體方面的。目前有系統級別的Tiny OS,編程語言nesC,針對特定應用編寫輕量級程序。
4.無線感測器數據管理層面。可以研究網路數據流挖掘之類的。
哪個最有前景?1最有發展空間,但難度大。3是基礎,最容易上手,想有突破很難。2和4,自己想吧。
以上都是個人粗淺見解,做個參考。
❿ 簡述無線感測網發展歷史的階段劃分和各階段的技術特點
無線感測器
無線感測器的組成模塊封裝在一個外殼內,在工作時它將由電池或振動發電機提供電源,構成無線感測器網路節點。它可以採集設備的數字信號通過無線感測器網路傳輸到監控中心的無線網關,直接送入計算機,進行分析處理。如果需要,無線感測器也可以實時傳輸採集的整個時間歷程信號。
發展歷程
早在上世紀70年代,就出現了將傳統感測器採用點對點傳輸、連接感測控制器而構成感測器網路雛形,我們把它歸之為第一代感測器網路。隨著相關學科的的不斷發展和進步,感測器網路同時還具有了獲取多種信息信號的綜合處理能力,並通過與感測控制器的相聯,組成了有信息綜合和處理能力的感測器網路,這是第二代感測器網路。而從上世紀末開始,現場匯流排技術開始應用於感測器網路,人們用其組建智能化感測器網路,大量多功能感測器被運用,並使用無線技術連接CONTROLENGINEERING China版權所有,無線感測器網路逐漸形成。
無線感測器網路是新一代的感測器網路,具有非常廣泛的應用前景,其發展和應用,將會給人類的生活和生產的各個領域帶來深遠影響。發達國家如美國,非常重視無線感測器網路的發展CONTROLENGINEERING China版權所有,IEEE正在努力推進無線感測器網路的應用和發展,波士頓大學(BostonUnversity)還於最近創辦了感測器網路協會(Sensor Network Consortium),期望能促進感測器聯網技術開發。除了波士頓大學,該協會還包括BP、霍尼韋爾(Honeywell)、Inetco Systems、Invensys、L-3Communications、Millennial Net、Radianse、Sensicast Systems及Textron Systems。美國的《技術評論》雜志在論述未來新興十大技術時,更是將無線感測器網路列為第一項未來新興技術,《商業周刊》預測的未來四大新技術中,無線感測器網路也列入其中。可以預計,無線感測器網路的廣泛是一種必然趨勢,它的出現將會給人類社會帶來極大的變革。
應用現狀
雖然無線感測器網路的大規模商業應用CONTROLENGINEERING China版權所有,由於技術等方面的制約還有待時日,但是最近幾年,隨著計算成本的下降以及微處理器體積越來越小,已經為數不少的無線感測器網路開始投入使用。目前無線感測器網路的應用主要集中在以下領域:
1 環境的監測和保護
隨著人們對於環境問題的關注程度越來越高,需要採集的環境數據也越來越多,無線感測器網路的出現為隨機性的研究數據獲取提供了便利,並且還可以避免傳統數據收集方式給環境帶來的侵入式破壞。比如,英特爾研究實驗室研究人員曾經將32個小型感測器連進互聯網,以讀出緬因州"大鴨島"上的氣候,用來評價一種海燕巢的條件。無線感測器網路還可以跟蹤候鳥和昆蟲的遷移,研究環境變化對農作物的影響,監測海洋、大氣和土壤的成分等。此外,它也可以應用在精細農業中控制工程網版權所有,來監測農作物中的害蟲、土壤的酸鹼度和施肥狀況等。