㈠ 大数据时代企业需要安全互联
大数据时代企业需要安全互联
随着大数据时代的到来,海量数据所衍生出来的新的需求让IT应接不暇。而企业传统的网络安全防护能力在大数据面前显得脆弱不堪。如今,互联网上的安全风险越来越多,每周平均产生469000个恶意软件样本,同时有83%的企业遭受过APT攻击,到2015年通过网络进行通信的设备将达150亿,以及业界还有超过135家的安全厂商。安全架构的复杂性,以及我们需要面对的各种新兴威胁越来越多,企业需要更深度的防御,在这样的架构下,如果没有安全互联,企业相互独立的、分割的防护系统已经无法有效应对了。
▲安全的困境……
来自迈克菲的资深信息安全专家程智力在接受我们的采访时表示,“可以想象,如果没有安全互联,攻击者只要不断的尝试你的每一个系统就可以了,由于数据量的巨大,每一个分割的防护系统在攻击者尝试的过程中并不能形成一个报警,从而使得攻击者可以不断的去尝试你的安全漏洞。而安全互联可以帮助企业形成一个整体的报警,攻击者无论尝试任何一个系统都会形成报警,安全互联使攻击者没有办法不断的尝试,这是安全互联的目标也是基础。”
为什么需要安全互联?
大数据时代的安全需求
大数据时代的安全需要迈向实时化,也只有实时化的响应才是最有效的。而要形成这样实时化的响应相当于要在面对无边界的企业网络时能够持续的向上反映。首先是可视,我需要了解你的网络里有什么,需要类似于监视器和摄像头的东西;二是做及时的响应,面对这样的问题,需要实时有效的响应;最后是持续的管理和响应,这是最困难的,简单的做到一次和短时间内的可视和响应很简单,但是难的是在大数据的情况下要做到持续的安全管理和响应,这就需要我们付出很多。
如果只是用人工流程来做,这对企业来说是一个非常沉重的负担,所以我们需要的是基于技术手段和平台来做,而要想做到这一点最基础的就是安全互联。
㈡ 大数据时代,谁能保障互联网安全
大数据时代,谁能保障互联网安全
网络安全事件近期频发,网络安全警钟再次响起。互联网企业应如何保护数据安全?
5月27日下午到夜间,很多用户发现自己的支付软件无法登陆,故障2.5个小时;28日,国内最大的旅游在线预定网站也出了问题,故障时间长达12小时。两家企业均是互联网行业中的佼佼者,出现如此问题,显示出网络安全和稳定遭遇严峻挑战,在当下“互联网+”热潮中,网络安全和稳定更应该引起高度重视。随着这几年互联网、移动互联网的发展,我们每个人都实实在在的感受到了方便快捷的互联网的服务,但是这几天的事情告诉我们,在方便背后是黑色危机。
互联网与生活
对大多数人而言,用手机查看账单,看看水、煤、电缴费,看看信用卡还款情况,看看理财账户的收益,都是方便快捷的方式。而在数千里之外的一次施工,就可以让一切中断。隐私暂且不说,软件托管的资金、理财都是真金白银。网络出点问题也好,服务器有点麻烦也罢,你的钱就会成为一笔糊涂账,这是很可怕的。
同样,现在很多人都依靠网上预订行程。出行从订机票、出发车辆送机场,到落地对方城市车辆接到酒店,再到酒店住宿,返程机票,车辆接送,几乎拥有一整套服务。然而网络出现问题,很多预订了行程的客人就会出现各种问题,因为网络或者服务器的问题,机票没出,车辆没订,酒店没订,或者时间拖延,出行者就会遇到大麻烦。
我们的生活已经与互联网,移动互联网紧紧联系在了一起,互联网就像空气一样必不可少。具有行业主导地位的互联网公司对于个人的重要性不亚于银行、电信这些关系到国计民生的国企。他们出点问题,就会是社会性的大问题。
如果用一句话来总结:此次事件损失是惨重的,教训是深刻的。如何对此类事件有所防范,成为各大互联网企业与用户共同面对的问题。有个生僻词从今天开始就会成为热门词汇—灾备。
什么是灾备?
一般来说,灾备可以分为数据级、应用级和业务级三个级别,可能大多数人对这三种级别的灾备都不是很了解,那么下面我们就来具体的了解一下这三种灾备。
数据级灾备主要关注的就是数据,就是在灾难发生之后,可以确保数据不受到损坏。对于级别较低的数据级灾备来说,可以将需要备份的数据通过人工的方式保存到异地实现。如将备份的磁带(盘或光盘)定时运送到异地保存就是方法之一。而较高级的数据灾备方案则依靠基于网络的数据复制工具,实现生产中心不同备份设备之间或是生产中心与灾备中心之间的异步/同步的数据传输,如采用基于磁盘阵列的数据复制功能。
应用级灾备是建立在数据级灾备的基础上的,对应用系统进行复制,也就是在异地灾备中心再构建一套应用支撑系统。支撑系统包括数据备份系统、备用数据处理系统、备用网络系统等部分。应用级灾备能提供应用系统接管能力,即在生产中心发生故障的情况下,灾备中心便能够接管应用,从而尽量减少系统停机时间,提高业务连续性。
业务级灾备是最高级别的灾备系统。它包括非IT系统,所以当发生大的灾难时,用户的办公场所可能会被损坏,用户除了需要原来的数据以外,还需要工作人员在一个备份的工作场所能够正常地开展业务。
金融业的信息系统标准一直有明确的监管要求,而且严于其他行业。我国金融行业标准中的《银行业信息系统灾难恢复管理规范》对灾难分级、恢复时间有详细规定。中国银监会印发的《商业银行数据中心监管指引》也已经明确,总资产规模一千亿元人民币以上且跨省设立分支机构的法人商业银行,以及省级农村信用联合社,应设立异地模式灾备中心。
选择具有灾备系统的互联网公司
据记者采访的多位网络安全技术专家介绍,目前,不少普通的互联网企业并没有灾难备份,对用户而言,选择具有灾备系统的互联网公司显得尤为重要。
江淮云信易通公司则表示,通过云计算技术可以低成本地实现多个数据备份及快速恢复,并进行更严格的云上权限管理。如果没有完善的数据可靠性机制保障和安全防御能力,对互联网公司而言意味着致命性打击。
据了解,信易通是一家数据公司,和中国金融电子化公司(中国人民银行软件开发中心)签订灾备协议,为中小企业制定数据灾备方案,所有的数据由中国人民银行电子化公司备份传输到北京,提供数据级和业务级的灾备,安全性很高。
以前,自建灾备中心往往需要建设基础设施和全部的应用系统的硬件软件,覆盖全部应用系统数据的实时数据传输,应用管理,这个建设周期很长,而且成本高、见效慢。
相比之下,信易通的云灾备中心基础设施可以共享中小金融机构灾备服务中心的机房,网络可以实时通信,网络安全设备监控设备共享,数据层面可以共享虚拟化云存储,应用层可以根据每个金融机构不同需求在平时的时候可以分配一定的计算资源、存储资源。这样对比下来,采用云灾备服务中心最明显的特点就是投入成本更少而见效更快了。
以上是小编为大家分享的关于大数据时代,谁能保障互联网安全的相关内容,更多信息可以关注环球青藤分享更多干货
㈢ 大数据安全问题及应对思路研究
大数据安全问题及应对思路研究
随着互联网、物联网、云计算等技术的快速发展,全球数据量出现爆炸式增长。与此同时,云计算为这些海量的多样化数据提供了存储和运算平台,分布式计算等数据挖掘技术又使得大数据分析规律、研判趋势的能力大大增强。在大数据不断向各个行业渗透、深刻影响国家的政治、经济、民生和国防的同时,其安全问题也将对个人隐私、社会稳定和国家安全带来巨大的潜在威胁,如何应对面临巨大挑战。
一、大数据安全关键问题
随着数字化进程不断深入,大数据逐步渗透至金融、汽车、制造、医疗等各个传统行业,甚至到社会生活的每个角落,大数据安全问题影响也日益增大。
(一)国家数据资源大量流失。互联网海量数据的跨境流动,加剧了大数据作为国家战略资源的大量流失,全世界的各类海量数据正在不断汇总到美国,短期内还看不到转变的迹象。随着未来大数据的广泛应用,涉及国家安全的政府和公用事业领域的大量数据资源也将进一步开放,但目前由于相关配套法律法规和监管机制尚不健全,极有可能造成国家关键数据资源的流失。
(二)大数据环境下用户隐私安全威胁严重。随着大数据挖掘分析技术的不断发展,个人隐私保护和数据安全变得非常紧迫。一是大数据环境下人们对个人信息的控制权明显下降,导致个人数据能够被广泛、详实的收集和分析。二是大数据被应用于攻击手段,黑客可最大限度地收集更多有用信息,为发起攻击做准备,大数据分析让黑客的攻击更精准。三是随着大数据技术发展,更多信息可以用于个人身份识别,个人身份识别信息的范围界定困难,隐私保护的数据范围变得模糊。四是以往建立在“目的明确、事先同意、使用限制”等原则之上的个人信息保护制度,在大数据场景下变得越来越难以操作。
(三)基于大数据挖掘技术的国家安全威胁日益严重。大数据时代美国情报机构已抢占先机,美国通过遍布在全球的国安局监听机构如地面卫星站、国内监听站、海外监听站等采集各种信息,对采集到的海量数据进行快速预处理、解密还原、分析比对、深度挖掘,并生成相关情报,供上层决策。2013年6月底,美中情局前雇员斯诺登爆料,美国情报机关通过思科路由器对中国内地移动运营商、中国教育和科研计算机网等骨干网络实施长达4年之久的长期监控,以获取网内海量短信数据和流量数据。
(四)基础设施安全防护能力不足引发数据资产失控。一是基础通信网络关键产品缺乏自主可控,成为大数据安全缺口。我国运营企业网络中,国外厂商设备的现网存量很大,国外产品存在原生性后门等隐患,一旦被远程利用,大量数据信息存在被窃取的安全风险。二是我国大数据安全保障体系不健全,防御手段能力建设处于起步阶段,尚未建立起针对境外网络数据和流量的监测分析机制,对棱镜监听等深层次、复杂、高隐蔽性的安全威胁难以有效防御、发现和处置。
二、国外大数据安全相关举措及我国应对思路
目前世界各国均通过出台国家战略、促进数据融合与开放、加大资金投入等推动大数据应用。相比之下,各国在涉及大数据安全方面的保障举措则起刚刚起步,主要集中在通过立法加强对隐私数据的保护。德国在2009年对《联邦数据保护法》进行修改并生效,约束范围包括互联网等电子通信领域,旨在防止因个人信息泄露导致的侵犯隐私行为;印度在2012年批准国家数据共享和开放政策的同时,通过拟定非共享数据清单以保护涉及国家安全、公民隐私、商业秘密和知识产权等数据信息;美国在2014年5月发布《大数据:把握机遇,守护价值》白皮书表示,在大数据发挥正面价值的同时,应该警惕大数据应用对隐私、公平等长远价值带来的负面影响,建议推进消费者隐私法案、通过全国数据泄露立法、修订电子通信隐私法案等。
我国在布局、鼓励和推动大数据发展应用的同时,也应提早谋划、积极应对大数据带来的安全挑战,从战略制定、法律法规、基础设施防护等方面应对大数据安全问题。
(一)将大数据资源保护上升为国家战略,建立分级分类安全管理机制。一是把数据资源视为国家战略资源,将大数据资源保护纳入到国家网络空间安全战略框架中,构建大数据环境下的信息安全体系,提高应急处置能力和安全防范能力,提升服务能力和运作效率。二是通过国家层面的战略布局,明确大数据资源保护的整体规划和近远期重点工作。三是对国内大数据资源按实施分级分类安全保护思路,保障数据安全、可靠,积极开展大数据安全风险评估工作,针对不同级别大数据特点加强安全防范。五是尽快制定不同级别的大数据采集、存储、备份、迁移、处理和发布等关键环节的安全规范和标准,配套完善相应的监管措施。
(二)完善法律法规,加大个人信息保护监管力度。一是积极推动个人信息保护法律的立法工作,探索通过技术标准、行业自律等手段解决法律出台前的个人信息保护问题。加快《网络安全法》的出台,在《网络安全法》中对电信和互联网行业用户信息保护作出明确法律界定,为相关工作开展提供法律依据。二是加强对个人隐私保护的行政监管,同时要加大对侵害个人隐私行为的打击力度,建立对个人隐私保护的测评机制,推动大数据行业的自律和监督。
(三)加强国家信息基础设施保护,提升大数据安全保障与防范能力。一是促进技术研究和创新,通过加大财政支持力度,激励关系国家安全和稳定的政府和国有企事业单位采用安全可控的产品,提升我国基础设施关键设备的安全可控水平。二是加强大数据信息安全系统建设,针对大数据的收集、处理、分析、挖掘等过程设计与配置相应的安全产品,并组成统一的、可管控的安全系统,推动建立国家级、企业级的网络个人信息保护态势感知、监控预警、测评认证平台。三是充分利用大数据技术应对网络攻击,通过大数据处理技术实现对网络异常行为的识别和分析,基于大数据分析的智能驱动型安全模型,把被动的事后分析变成主动的事前防御;基于大数据的网络攻击追踪,实现对网络攻击行为的溯源。
以上是小编为大家分享的关于大数据安全问题及应对思路研究的相关内容,更多信息可以关注环球青藤分享更多干货
㈣ 大数据时代信息安全现状以及对策建议
【导读】随着大数据的推行,我们的个人信息安全受到了很大的安全隐患,相信大家有过这样的感觉,自己手机总是可以莫名其妙的收到很多消息或电话,浏览淘宝,抖音时总是自己想的,其实这都是大数据的后台推算结果,今天我们就来聊聊大数据时代信息安全现状以及对策建议,希望对大家有所帮助。
鉴于大数据资源在国家安全中的战略价值,除加强基础软硬件设施建设、网络攻击监控、防护等方面外,对国内大数据服务和大数据应用提出以下建议。
对重要的大数据应用或服务进行国家网络安全审查。重要的大数据应用程序或服务涉及国民经济、人民生活和政府治理应该被包括在国家网络安全审查的范围,并明确安全评估规范应尽快制定确保这些大数据平台有严格的和可靠的安全措施,防止受到攻击和受到敌对势力。
合理限制敏感和重要部门使用社交网络工具。政府部门、中央企业和重要信息系统单位应避免或限制使用社交网络工具作为日常办公的通讯工具,将办公移动终端和个人移动终端分开使用,防止重要保密信息的泄露。
敏感和重要的部门应该谨慎使用第三方云计算服务。云计算服务是大数据的主要载体。越来越多的政府部门、企事业单位在第三方云计算平台上建立了电子政务和企业业务系统。然而,由于缺乏安全意识、安全专业知识和安全措施,第三方云计算平台本身的安全往往得不到保障。因此,政府、中央企业和重要信息系统单位应谨慎使用第三方云服务,避免使用公共云服务。同时,国家应尽快出台云服务安全评估和测试的相关规范和标准。
严格规范和限制境外机构数据跨境流动。在中国提供大数据应用或服务的海外机构应接受更严格的网络安全审计,以确保其数据存储在国内服务器上,并严格限制数据跨境流动。
以上就是小编今天给大家整理的关于“大数据时代信息安全现状以及对策建议”的相关内容,希望对大家有所帮助。总的来说,大数据的价值不可估量,未来发展前景也是非常可观的,因此有兴趣的小伙伴,尽早着手学习哦!
㈤ 大数据时代信息安全隐患
大数据时代信息安全隐患
近年来,随着信息数据的爆炸式增长,数据的财富转换率也出现了大幅度的增长。这就造成了一个大数据时代的背景。很多人都把数据的增长看做了未来最重要的财富。但是数据的大幅增长,给越来越多的人敲响了警钟:大数据时代的数据安全十分的脆弱!没有安全的数据是缺乏足够财富支撑的,因此很多企业开始着手建立自己的新型数据安全模式,虽然这个过程显得是十分的残酷艰难,但是一切都势在必行,刻不容缓。 2012年很多国际IT巨头都推出了自己的云服务,许多企业都购买了公有云,或是建立了私有云。
云计算时代的到来促进了网络数据的高速发展,在过去的三年里增长的数据甚至超越了人类几百年的数据增长。这些数据的出现意味着巨大的财富,但是数据的非结构化和安全隐患不断增加,让这些数据的价值没能够得到充分的发掘。一方面由于现有技术对于信息开发的成本过大,限制了数据的价值,另一方面由于数据安全得不到足够的保证,也阻碍了数据财富化的进程。数据开发成本的优化是一个缓慢的过程,人们更希望能够得到安全保护的同时,缓慢的去开发数据价值,这也把大数据时代的数据安全问题推到了风头浪尖,这是对于数据安全开发者的一次严峻考验。 大数据时代的数据安全怎么做?对于这个问题有着不同的理解。有的人认为需要在原有安全的基础上加入新的的网络元素,继续沿用既有的数据安全思路,稳中求进;有的人认为需要重新构建全新的数据安全模式,打破原有的桎梏,重组现有技术构成,建立全新的数据安全模式。
这两种看法都可以看做一种对于大数据时代特性的适应,很难说孰优孰劣,只能说大家的发展路线不同,思路不同。 主张在原有安全基础上发展的人们认为,原有的端点数据安全模式十分的稳定,具有较长的运用经验,安全可靠高效。现在的云端技术对于数据安全的要求主要体现在网络安全的应对上。对于传统的端点安全技术来说,有多种方式可以实现最终的安全。面对现有的大数据特性,需要在一些方面做出调整。一般来说有以下的几个方面需要改进。
第一,大数据时代的数据结构化。数据结构化对于数据安全和开发有着非常重要的作用。大数据时代的数据非常的繁杂,其数量非常的惊人,对于很多企业来说,怎样保证这些信息数据在有效利用之前的安全是一个十分严肃的问题。结构化的数据便于管理和加密,更便于处理和分类,能够有效的智能分辨非法入侵数据,保证数据的安全。数据结构化虽然不能够彻底改变数据安全的格局,但是能够加快数据安全系统的处理效率。未来数据标准化,结构化是一个大趋势,不管是怎样的数据安全模式都希望自己的数据更加的标准。
第二,网络层的安全策略是端点数据安全的重点加固对象。常规的数据安全模式往往喜欢分层构建。这也是数据安全的常规做法。现有的端点安全方式对于网络层的安全防护并不完美。一方面是大数据时代的信息爆炸,导致网端的非法入侵次数急剧增长,这对于网络层的考验十分的严峻,另一方面由于云计算的大趋势,现在的网络数据威胁方式和方法越来越难以预测辨识,这给现有的端点数据安全模式造成了巨大的压力。在未来,网络层安全应当作为重点发展的一个层面。在加强网络层数据辨识智能化,结构化的基础上加上于本地系统的相互监控协调,同时杜绝非常态数据的运行,这样就能够在网络层构筑属于大数据时代的全面安全堡垒,完善自身的缺陷。
第三,本地策略的升级。对于端点数据安全来说已经具备了成熟的本地安全防护系统,但是由于思路的转化,现有的端点数据安全系统有一定认识上的偏差,需要进行及时的调整。由于大数据时代的数据财富化导致了大量的信息泄露事件,而这些泄露事件中,来自内部的威胁更大。所以在本地策略的构建上需要加入对于内部管理的监控,监管手段。用纯数据的模式来避免由于人为原因造成的数据流失,信息泄露。由这一点出发我们可以预想到在未来的数据安全模式中,管理者的角色权重逐渐分化,数据本身的自我监控和智能管理将代替一大部分人为的操作。这对于大部分企业来说都是能够减少损失和成本的大事情,值得引起大家的关注和思考。
在本地安全策略的构建过程中还要加强与各个环节的协调。由于现在的数据处理方式往往会依托与网络,所以在数据的处理过程中会出现大量的数据调用,在调用过程中就容易出现很大的安全威胁。这个时候如果能够把本地和网络的链接做的更细腻,完善缓存机制和储存规则,就能够有效保证数据源的纯洁,从根本上杜绝数据的安全威胁。本地数据安全策略还有很多需要注意的问题,也有很多还没有发现的隐患,这些都需要在完善自有系统的基础上,继续开发。
第四,数据存储的问题。在传统端点的数据安全中,数据存储作为非法入侵的最后一站,被业界人士高度的重视,对于数据存储建立了全面完善的防护措施,这些非常值得借鉴,但是还要有进一步的完善。这里的完善主要是数据存储隔离与调用之间的数据逻辑关系策划。这同样是为了适应现在的数据模式。 经过上面几个问题的针对性完善,就能够开发出相对更加适应现在大数据时代应用的数据安全模式。只是在开发力度上的不同导致了现有的端点安全专家们很难深入的调整自己的方法,导致现在市场上存在一批似是而非的数据安全方案,这应该是发展的一个过程吧! 对于想要重新建立数据大时代数据安全的人们来说,他们面对的不是细节的问题,而是整体布局的问题。
想要针对现有的大数据背景,开发出属于下一代的虚拟数据安全方案,绝对是一种创新性的变革,对于未来数据安全的发展具有革命性的作用。因为,针对大数据时代设计的安全方案应该是在虚拟化、移动化的基础上进行的深入开发,而虚拟化安全和移动化网络是未来发展的方向,这样以来,从方向上摆正了自己的位置,具有更快的发展速度和更远的发展空间。但是想要做到这一步需要花费的精力也不是每个团队都能够付出的。以泰然神州为代表的一些具有前瞻性的企业已经开始了这方面的尝试,并取得了不错的成果。泰然神州在虚拟化、移动化和信息安全上做出了杰出的贡献。他们在考虑到虚拟化数据安全问题的时候,就是从整体入手,解决现有的痼疾,打造出全新一代数据安全方案。 在未来的虚拟化数据安全方案中,需要从全面的数据安全系统入手,建立合理的逻辑监管程序,全面数据处理模型,标准化信息配置,同时加强数据的监管,人员监管与外部智能辨识,做好各个环节的相互支撑与防御。虚拟化数据安全的核心是一条贯穿整个安全体系的数据通道,这条渠道需要通过分层管理,交叉监控,实现绝对的隐蔽和安全,同时合理的逻辑关系让整条数据通道变得更加合理和快捷。虚拟化数据安全更加注重客观的数据逻辑,尽量避免由于人为操作造成的数据安全隐患,杜绝数据泄露。
在大部分人的眼中数据泄露一直是个非常难缠的项目,但是在泰然神州新开发的产品中就重点针对了这个项目。他们通过建立监控网络完成对数据流的监控和控制,更多的避免了由于内部和外部原因造成的数据泄露,同时加强了对于既定存储数据的保护措施,很好的避免了数据的泄露。 虚拟化数据安全更加注重对于智能的运用。数据智能处理一直是安全领域最钟爱的一门技术,能够强化各个环节数据智能化,加强数据的辨识智能,处理智能对于数据安全的发展具有很强的促进作用。虚拟化数据安全未来发展的核心要素就是实现纯数据监控的完美形态,让数据管理数据安全,同时为所有用户提供可靠的数据端口,实现最终的数据转换目标。结合端点数据安全发展的历程,我们看得出数据本身具有很强的适应性,如果善加疏导,就能够整合出意想不到的效果。
智能数据一直是泰然神州研发的一个重要目标,为了能够在大数据时代发挥自己的智能数据优势,泰然神州在自己的产品中加入了智能数据的元素,让泰然神州新一代数据堡机完美的呈现了各个层面的技术高度和安全高度。 不管是传统的改进,还是重新建立,对于大数据时代的数据安全发展都具有一定的促进意义,只要进一步发展下去,就能够实现预想的目标。大数据时代已经到来,数据安全行业是所有行业最先起飞的一个,对于业内人士来说,这不仅仅是一次机会,更是一次挑战。只有坚持走在最前列的人,才能够最终获得胜利。
同时,整个世界环境内都开始针对网络信息数据做出适当的调整规范,这必然使得未来的数据安全发展得到极大的支持和鼓励,这对于所有从业人士来说都是一个展示自己团队才华的舞台,一个大数据时代的舞台!
㈥ 大数据时代的安防数据存储安全
大数据时代的安防数据存储安全
近几年随着平安城市、智能交通、智能楼宇等行业的快速发展,大集成、大联网推动安防行业进入了大数据时代。安防行业大数据的存在已经被越来越多的人熟知,特别是安防行业海量的非结构化视频数据,以及飞速增长的特征数据(卡口过车数据、人像抓拍数据、异常行为数据等),带动了大数据的数据安全一系列问题,吸引着行业的关注。
大数据引发监控数据安全性问题突出
大数据的本质是系统通过处理采集到的所有数据,去提取其特征和共性的信息。通过大数据的处理使得所有的数据都有价值。通过大数据的处理,把传统认为没有价值的信息也能够产生非常有价值的信息,这就叫做数据挖掘。同样的数据摆在我们面前不同的挖掘方法,不同的挖掘目标可以为各种各样的业务的应用产生有价值的信息。对于安防行业,监控技术如今正面临日新月异的变革,模拟视频监控正在向IP网络监控转变,巨大转变的同时对安全性也提出了更高的要求。我们探讨数据安全,包括产品本身的物理安全和产生数据的安全。所以,大数据时代引发监控数据安全性问题有以下几点:
1、基础设备的风险:包括监控中心的存储设备、服务器和前端节点设备的安全性、网络设备的安全性、传输线缆的安全性等。设备的安全可靠是整个大数据安防系统安全运行的基础。
2、信息存取的风险:包括用户非法访问、数据丢失、数据被篡改等。系统信息的安全,主要运用各种加密技术、存储技术、及备份方案来达到系统信息的安全。
3、信息在网络上传输的风险:包括视频信息、录像数据信息、用户信息等在传输过程中保密性、完整性的保障以及传输链路上的节点设备的安全。另外还包括前端采集设备、社会监控资源接入公安监控专网的安全。
4、系统运行的风险:包括接入设备的识别和认证、设备运行故障、软件病毒、恶意代码、以及设备控制的优先级调度等。系统运行时的风险控制主要依靠视频监控软件平台来保障,该软件平台可以完成设备管理、故障监控、访问控制、用户管理、鉴权机制等一系列的功能来保障整个系统的安全运行。
基于以上4点,从存储设备的角度我们主要谈及前面两点。
大数据也催生监控存储方式变革
在一个时代下,必然会发生诸多变革。
视频监控的存储技术和介质从VCR模拟存储、DVR数字存储,逐渐向NVR、NAS、SAN等网络存储发展。而在存储方式上,主要有集中式存储和分布式存储两种。大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。为此,我们关注点是,大数据下的信息安全问题将衍生新的机遇,提升安防的价值。
随着安防形势的复杂多变和大数据时代的来临,对视频录像文件分析的需求越来越多。视频监控系统中也越来越多的使用了高级的数据存储设备和系统,例如专业的磁盘阵列系统等等。同理,安防行业使用这些专业存储设备时,需要充分了解这些软硬件的特性,而不要仅仅把它们当作超级外接大硬盘来使用。在系统设计和实施过程中可以充分利用这些设备中自带的一些数据保护软件来保护自己的数据。常用和流行的数据安全保护技术主要有以下七种:
磁盘阵列:磁盘阵列是指把多个类型、容量、接口甚至品牌一致的专用磁盘或普通硬盘连成一个阵列,使其以更快的速度、准确、安全的方式读写磁盘数据,从而加快数据读取速度、提高数据保存的安全性。
SAN:SAN允许服务器在共享存储装置的同时仍能高速传送数据。这一方案具有带宽高、可用性高、容错能力强的优点,而且它可以轻松升级,容易管理,有助于改善整个系统的总体成本状况。我们推荐FCSAN方案,它能为大数据时代的视频监控,相较于IPSAN方案,大幅减少存储设备台数,从而大幅降低成本,在数据安全方面由于自身设备超高的稳定性和性能来得以保障。
数据备份:备份管理包括数据备份的计划,自动操作,备份日志的保存。
双机容错:双机容错的目的在于保证系统数据和服务的在线性,即当某一系统发生故障时,仍然能够正常的向网络系统提供数据和服务,使得系统不至于停顿,双机容错的目的在于保证数据不丢失和系统不停机。
NAS解决方案通常配置为作为文件服务的设备,由工作站或服务器通过网络协议和应用程序来进行文件访问,大多数NAS链接在工作站客户机和NAS文件共享设备之间进行。这些链接依赖于企业的网络基础设施来正常运行;NAS提供视频监控系统后期视频文件批量处理分析的基本可能。
数据迁移:由在线存储设备和离线存储设备共同构成一个协调工作的存储系统,该系统在在线存储和离线存储设备间动态的管理数据,使得访问频率高的数据存放于性能较高的在线存储设备中,而访问频率低的数据存放于较为廉价的离线存储设备中;视频录像的归档可以充分利用高级存储设备的数据迁移手段;分层存储有效降低存储系统的整体成本。
异地容灾:以异地实时备份为基础的、高效的、可靠的远程数据存储,在各单位的IT系统中,必然有核心部分,通常称之为生产中心。往往给生产中心配备一个备份中心,改备份中心是远程的,并且在生产中心的内部已经实施了各种各样的数据保护。不管怎么保护,当火灾、地震这种灾难发生时,一旦生产中心瘫痪了,备份中心会接管生产,继续提供服务;视频监控的多中心配置越来越多,各个中心的系统和数据容灾应该借鉴IT的容灾技术考虑。
结束语
大数据是继云计算、物联网之后信息产业当前科技创新、产业政策及国家安全领域的又一次知识新增长点。在大数据的背景下信息安全面临着很多的挑战,特别是现阶段视频监控已有的信息安全手段已经不能满足大数据时代的信息安全的实际要求,因此研究大数据时代视频监控所面临的信息安全问题具有重要意义。
以上是小编为大家分享的关于大数据时代的安防数据存储安全的相关内容,更多信息可以关注环球青藤分享更多干货
㈦ 大数据时代:如何守护我们的数据安全
大数据时代:如何守护我们的数据安全
不管你承认不承认,我们已经全面进入了大数据时代。无时无刻,我们的很多信息都被通过各种途径传播出去,这就必然导致安全问题的产生。
大数据的安全问题有多严重?在此前举办的“2016中国大数据产业峰会”上发生的一个实例,就可见一斑。
在360展区,市民严女士随手将钱包、手机放到安检筐里,空手走过安检门。她通过安检门,突然发现大屏幕上显示出自己银行卡的姓名拼音、身份证号、银行卡号、卡片有效期、最近10次的消费时间、消费地点、取现记录、转账记录等等。严女士惊呼:“遇到了魔术师”。
360安全专家刘洋解释,实际上,存放手机钱包的安检筐里存有一张具有NFC(近距离通信)功能的无线读卡器,旁边还有配套的信号接收器和电脑等设备,就像公交车刷卡器,只要银行卡靠近读卡器,卡片的信息就显示出来,安检门其实就是“安全魔术师”手中的障眼法。就在严女士将钱包放进安检筐的那一刻,严女士的个人信息就已经泄露了。
那么,我们靠什么来保障我们的数据安全呢?难道我们只能看着个人的数据和隐私到处泄露吗?
数据安全事件日益高发
近来,大数据安全事件呈高发之势。日前,广东警方破获一起高科技经济犯罪案件,17岁的“黑客”叶世广,攻破了多个商业银行网站,窃取了储户的身份证号、银行卡号、支付密码等数据,带领一批人在网上大肆盗刷别人的信用卡,涉案金额近15亿元,涉及银行49家。
今年2月,发生了世界上有史以来规模最大的网络盗窃案。黑客入侵了孟加拉国央行在纽约联邦储备银行的账户,盗走了8100万美元,后来孟加拉国官方表示,黑客出现了一个拼写错误,否则随后还将进行一笔近10亿美元的转账。
今年3月,与叙利亚有关联的激进黑客组织对一个自来水厂发起网络攻击。黑客操纵系统改变了进入到自来水中的化学物含量,阻碍净水过程。
类似的案例不胜枚举。
360公司总裁齐向东向《中国科学报》记者表示,接入互联网的设备越多,网络攻击的发生几率就越高,网络攻击首先瞄准大数据,攻击造成大数据丢失、情报泄密和破坏网络安全运行。大数据技术是一把双刃剑,既可以造福社会、造福人民,又可以被一些人用来损害社会公共利益和民众利益。
大数据安全体系构建势在必行
“在互联网乃至物联网时代,如果我们不能很好地解决安全问题,就会影响社会各方面的发展。因此,各级政府在鼓励发展大数据的同时,要同步考虑构建大数据安全体系。”齐向东表示。
值得注意的是,传统的网络安全思路已经无法保障大数据时代的安全。刘洋向记者介绍,传统网络安全的防护思路是划分边界,将内网、外网分开,业务网和公众网分离,用终端设备将潜在风险隔离。通过在每个边界设立网关设备和网络流量设备,来守住“边界”,以期解决安全问题。但随着移动互联网、云服务的出现,移动终端在4G信号、Wi-Fi信号、电缆之间穿梭,网络边界实际上已经消亡。
“很多传统的大企业认为,只要自己购买服务器并搭建独立的机房,安排专门的技术人员就能够保护企业的数据不被泄露,能够保护企业的信息安全。但实际上,在如今的互联网时代,这种传统的方法更加容易被不法分子所攻破。”阿里云安全资深总监肖力向《中国科学报》记者介绍,这是因为从技术实力来看,绝大部分企业并不是专门做网络安全、数据安全,其设置的技术壁垒难以阻挡专业的黑客。
齐向东介绍,360安全中心每天发现木马样本近千万个,每天发现的各种软硬件漏洞、网站漏洞超过120个,“每一个木马每一个漏洞,都可能攻破预先部署的安全设备和安全软件”。这种情况下,企业的传统防护的确难以奏效。
云平台和大数据需“双剑合璧”
在采访中,有专家认为,对付大数据时代的数据安全问题,防止信息泄露,除了完善相关法制法规,更加需要云平台的防护技术,结合大数据技术来应对数据安全。
“在云计算不断深入发展的当下,将数据存储在云平台上,或许比传统的企业信息防护更加安全。”肖力介绍,以阿里云为例,阿里云在架构设计之初就同步考虑了安全架构,不仅将安全的基因植入到整个云平台和各个云产品中,也将数据安全要求嵌入产品开发生命周期的各个环节。依靠专业的云计算平台,强大的技术团队能够更好地应付来自黑客的攻击。
不同用户之间,无论是CPU、内存,还是存储和网络,都默认相互隔离,既看不到对方的数据,也不会相互影响。“就像一间五星级酒店被分割成多个房间,他们之间是相互独立和封闭的,从而确保不同租户互不干扰和数据隔离。”肖力表示。
据介绍,目前全国35%的网站的数据安全防护都依托于阿里云平台的防护。阿里云的云盾,涵盖网络安全、服务器安全、数据安全、业务安全和移动安全这五个安全领域,来保护数据安全。
360也有自己的云安全管理平台。刘洋介绍,该平台将360独有的云安全漏洞挖掘能力输出给广大用户,通过统一管理、安全可见以及网络、主机、应用、数据的分层纵深防御,为用户全面解决云安全问题。
“用大数据技术来解决大数据时代的安全问题十分必要。”齐向东进一步指出,必须建立“数据驱动安全”的思维,搭建全新的互联网安全体系—“传统安全+互联网+大数据”。也就是说,要利用漏洞挖掘技术、网络攻击技术、软件样行为分析技术以及由网络地址解析数据库、网络访问日志数据库、文件黑白名单数据库等组成大数据系统与分析技术,构建全天候全方位感知网络安全态势。“要基于强大的大数据库、利用先进的大数据技术和广泛的用户覆盖率,提前感知网络威胁态势,为大众提供未知威胁的发现与回溯功能并进行有效防护。”齐向东说。
“未来还应当联合各方力量,共建互联网安全产业链生态,来应对大数据时代的安全风险。”肖力表示。
㈧ 大数据带来解决网络安全新机遇
大数据带来解决网络安全新机遇_数据分析师考试
2015年中国互联网大会近日在北京召开,网络安全成为讨论热点,在专家看来,传统防御手段已经失效。
普华永道发布的调查报告指出,2014年全球所有行业监测到的网络攻击共有4280万次,比上一年增长了48%。有专家分析,随着大数据时代的到来,解决网络安全问题变得越来越难。
360公司总裁齐向东认为,以前的互联网安全,企业面临的是只是操作系统的安全问题,用软件就能够解决。但是进入万物互联的时代以后,包括智能摄像机、路由器、汽车,甚至随身穿戴、智能医疗设备等,都趋于智能化、网络化,解决这些智能硬件的安全问题,无法用上网安全的解决方案完成。
齐向东透露了一组数据:2011年到2014年,国内互联网公开的安全事故已经造成了累计11.3亿用户的信息泄露。95%的网站能够被黑,40%网站存在后门,70%网站存在漏洞。”
随着大数据、云服务的普及,物联网成为攻击对象,网络安全威胁如“细胞分裂”般扩散。在新一代技术革命的浪潮下,信息资源已经成为基础性社会资源,融入到了社会生活的各个领域,颠覆性地改变着人类的生活方式和生产方式。
齐向东表示,“在个人网络安全领域,360已拥有超过12亿的用户,这就相当于12亿个安全大数据的“探测器”,分布在互联网每一个节点上。每一个用户在使用产品的同时,这些终端设备都可以实时感知各种威胁和攻击,汇集到云端。”
以上是小编为大家分享的关于大数据带来解决网络安全新机遇的相关内容,更多信息可以关注环球青藤分享更多干货
㈨ 大数据时代给信息安全带来的挑战
大数据时代给信息安全带来的挑战
在大数据时代,商业生态环境在不经意间发生了巨大变化:无处不在的智能终端、随时在线的网络传输、互动频繁的社交网络,让以往只是网页浏览者的网民的面孔从模糊变得清晰,企业也有机会进行大规模的精准化的消费者行为研究。大数据蓝海将成为未来竞争的制高点。
大数据在成为竞争新焦点的同时,不仅带来了更多安全风险,同时也带来了新机遇。
一、大数据成为网络攻击的显着目标。
在网络空间,大数据是更容易被“发现”的大目标。一方面,大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。另一方面,数据的大量汇集,使得黑客成功攻击一次就能获得更多数据,无形中降低了黑客的进攻成本,增加了“收益率”。
二、大数据加大隐私泄露风险。
大量数据的汇集不可避免地加大了用户隐私泄露的风险。一方面,数据集中存储增加了泄露风险,而这些数据不被滥用,也成为人身安全的一部分。另一方面,一些敏感数据的所有权和使用权并没有明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题。
三、大数据威胁现有的存储和安防措施。
大数据存储带来新的安全问题。数据大集中的后果是复杂多样的数据存储在一起,很可能会出现将某些生产数据放在经营数据存储位置的情况,致使企业安全管理不合规。大数据的大小也影响到安全控制措施能否正确运行。安全防护手段的更新升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。
四、大数据技术成为黑客的攻击手段。
在企业用数据挖掘和数据分析等大数据技术获取商业价值的同时,黑客也在利用这些大数据技术向企业发起攻击。黑客会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使黑客的攻击更加精准。此外,大数据也为黑客发起攻击提供了更多机会。黑客利用大数据发起僵尸网络攻击,可能会同时控制上百万台傀儡机并发起攻击。
五、大数据成为高级可持续攻击的载体。
传统的检测是基于单个时间点进行的基于威胁特征的实时匹配检测,而高级可持续攻击(APT)是一个实施过程,无法被实时检测。此外,由于大数据的价值低密度特性,使得安全分析工具很难聚焦在价值点上,黑客可以将攻击隐藏在大数据中,给安全服务提供商的分析制造很大困难。黑客设置的任何一个会误导安全厂商目标信息提取和检索的攻击,都会导致安全监测偏离应有方向。
六、大数据技术为信息安全提供新支撑。
当然,大数据也为信息安全的发展提供了新机遇。大数据正在为安全分析提供新的可能性,对于海量数据的分析有助于信息安全服务提供商更好地刻画网络异常行为,从而找出数据中的风险点。对实时安全和商务数据结合在一起的数据进行预防性分析,可识别钓鱼攻击,防止诈骗和阻止黑客入侵。网络攻击行为总会留下蛛丝马迹,这些痕迹都以数据的形式隐藏在大数据中,利用大数据技术整合计算和处理资源有助于更有针对性地应对信息安全威胁,有助于找到攻击的源头。
㈩ 大数据背景下的信息安全问题探讨
大数据背景下的信息安全问题探讨
大数据具有体量巨大、类型繁杂、处理速度快、价值密度低四大特点,因此,对于个人来说,难以处理极其庞大的数据,只有国家和大型企业等组织或集团才有可能获取到各种敏感信息;大数据所搜集提取的个人信息可能连本人都不完全知晓,比如个人的行为特征、语言风格、爱好兴趣等。在大数据时代如何保护个人敏感信息或隐私,必将成为高难度的世界课题。
2013年6月,美国前中情局雇员斯诺登曝光了始于2007年小布什时期美国国家安全局和联邦调查局启动的代号为“棱镜”的秘密项目。美国国家安全局通过接入雅虎、谷歌、微软、苹果等9家美国互联网公司中心服务器,对邮件、图片、视频、电话等10类数据进行监控,以搜集情报,监视民众的网络活动。“棱镜”项目缘于2004年美国政府的“星风”监视计划。但是,当时小布什政府由于法律程序等敏感问题而做出让步,美国本土的监听项目有所缩减。为了“星风”计划的继续进行,小布什政府通过司法程序将“星风”监视计划分拆成由国家安全局执行的4个监视计划,包括“棱镜”、“主干道”、“码头”和“核子”,均交由美国家安全局执掌。“棱镜”项目用于监视互联网个人信息。“主干道”和“码头”项目负责存储和分析通信和互联网上数以亿兆计的“元数据”。元数据主要指通话或通信的时间、地点、使用设备、参与者等,不包括电话或邮件等的内容。“核子”项目负责内容信息的获取,截获电话通话者对话内容及关键词,通过拦截通话以及通话者所提及的地点,来实现日常的监控。由此可见,斯诺登不仅揭露了美国的大规模窃听计划,更揭示了大数据时代国家信息安全保护问题。大数据的分析与使用,无论对个人(如跟踪健康状况防范疾病)、对企业(如了解市场偏好以有效安排产品设计生产营销)乃至对国家(如防范疫情或恐怖主义)显然都有巨大的好处,从商业用途来说,谷歌、微软、雅虎等互联网公司,完全可以通过它们掌握到的数以百万计、千万计甚至亿万计的数据,经由“超级计算”,准确推断消费者的爱好及习惯、商品的销售额、疾病疫情的发展趋势。商业如此,在政治、经济、军事等方面亦存在诸多的用途和潜在利益。像“棱镜”计划里涉及的谷歌、雅虎、苹果、微软等大网站,人们每天由于各种业务需要,会把大量个人信息输入其中,但常常并不被事先告知数据的用途。而这些数据会被企业或政府用来进行一些特殊的计算或分析,如通过对大数据的分析预测来对人们尚未实施的行为进行惩罚。比如“大数据之父”舍恩伯格曾披露过一个例子:在美国有一个计划名为“预测式配警”,通过对大数据分析来预测美国某个城市的某条街道的某个时段是犯罪高峰时段,然后在那个位置部署更多的警力。从此该地区居民将长时间被监控,这是一种变相的侵犯或惩罚。他们不是因为做错事,而是因为某个计算机的算法预测他们可能做错事而被惩罚了,显然这是不公平的。美国国安局拥有的正是类似的一套基于“大数据”的新型情报收集系统,这套名为“无界爆料”的系统,以30天为周期,从全球网络系统中接收到970亿条讯息,再通过比对信用卡或者通讯记录等方式,能几近真实地还原个人的实时状况。当然,像谷歌这样的商业组织也有可能掌握同样量级的信息而进行商业预测分析。因此,必须建立一套规则予以规范和约束对大数据的收集和使用。第一,虽然这些信息储存在不同的服务器上,但这些数据是用户的资产,拥有权属于用户自己而不是这些公司,这是必须明确的,就像财产所有权一样,个人隐私数据也应该有所有权。第二,利用大数据、云计算技术给用户提供信息服务的公司或企业,需要把收集到的用户数据进行安全存储和传输,这是企业的责任和义务。第三,如果企业或政府要使用用户的信息,一定要让用户有知情权和选择权,泄露用户数据甚至牟利,不仅要被视作不道德的行为,而且是非法行为。大数据时代的数据存储和应用方式是跨地域甚至是跨国界的。作为国家层面要将大数据上升为国家战略,奥巴马政府在2012年3月将“大数据战略”上升为最高国策,像陆权、海权、空权一样,将对数据的占有和控制作为重要的国家核心能力。我国也应从国家高度重视大数据,在对其进行安全保护、政策制定需要重视三个方面:一是要正视数据霸权,要清醒认识到我国在网络控制权、关键技术和高端设备等方面,还受制于西方。二是要明确主权,数据作为一种重要的战略资源,无论是个人拥有还是国家拥有,都要纳入到主权范围里面来考虑。三是要有治权,因为有主权不一定能够管治。比如:数据存到国外,云计算跨越国境,可能不在你的主权范围之内。要区别对待不同的数据,对确需保护的数据,必须有切实可靠的手段进行有效管理。如果做不到对数据的有效管理,大数据就必然面临失控的危险。政策界定安全责任问题。大数据的安全问题涉及政府、相关企业、网络运营商、服务提供者,以及数据产生者、使用者等方方面面,必须对各自的安全责任有明晰的政策界定。信息安全风险存在于数据的全生命周期之中,从技术思路、产品开发、用户使用、服务管理,各个环节均要分担相应的安全责任。监管保障基础设施安全问题。大数据的发展离不开电信网络甚至工控系统等关键基础设施,其安全可靠同样依赖于这些基础设施,受供应链全球化、产业私有化的影响,网络与关键基础设施间的安全日趋复杂,一国的大数据可能存放在别国的网络中,一国的基础设施可能同时服务于多个国家,高度的全球相互依赖性,挑战着原有的国家主权观念。所以,关键基础设施的安全监管体系十分重要,我国需要尽快确立对供应链的实质性国家安全审查和对基础网络的常态化安全监管。
网络空间冲突管理问题。大数据的资源价值越来越高,围绕大数据的争夺和冲突就越来越激烈。大数据的生成、处理和利用方式,将极大改变各种冲突的表现方式和破坏烈度。通过立法与国际合作应对包括知识产权的保护、网络犯罪的处置、网络破坏活动特别是网络恐怖主义的打击以及网络战争的威胁。