A. 我们要最大限度或者极限使用深度学习其中两个暴力是指什么
胁的或实际发生的,针对自己、他人,或针对群体或社群的故意使用实际武力(force)或权力(power),其结果是,或很可能是伤害、死亡、心理创伤、畸形发展、剥夺”。这是一个很有用的定义,因为它在一般关于暴力的“武力”之外还考虑到了“权力”(“支配力”),例如,限制言论自由不一定要用武力,而是可以通过实际的“支配力”来做到。在这个定义中,暴力包括两个方面:意愿和为达到意愿的行动,与结果并不一定有关。例如,一个人朝你开枪,虽然没有击中你,但仍然行使了暴力。但是,另一方面,暴力又经常是指实际的伤害后果,即使没有加害别人的意思,如果事实上造成伤害,也仍然还是暴力。例如,父母体罚子女,政府强行维稳,动机再好,造成实质伤害,也照样还是暴力。
暴力包括由于“权力关系”(power relationship)而造成的伤害,例如威胁、胁迫、恐吓、压制、歧视、压迫、剥夺。
B. 日本防卫省研发人工智能用深度学习防御网络攻击
据日本《产经新闻》1月7日报道称,日本防卫省于6日宣布:为强化对网络攻击的应对能力,已经确定要将人工智能(AI)引入日本自卫队信息通信网络的防御系统中。预计将于明年开始为期两年的调查研究,于2020年着手进行软件开发,2022年实际运用,并且也开始考虑在日本政府全体的网络防御系统中应用AI。
目前,军方人员介入网络安全战场早已成为常态,美国着名的网络安全公司Cybereason其创办人正是来自以色列国防部下属精英网络部队8200部队。值得注意的是,2015年该公司接受了来自日本软银的为数1亿美元的融资,不知《产经新闻》提到的“以色列技术”是否来自该公司呢?
C. 什么是深度学习
随着阿尔法狗、无人驾驶、智能翻译的横空出世,“人工智能”这个已经存在60多年的词语,仿佛一夜之间重新成为热词。同时被科技圈和企业界广泛提及的还有“机器学习”“深度学习”“神经网络”…… 但事实是,如此喧嚣热烈的气氛之下,大部分人对这一领域仍是一知半解。
如果要说谁有资格谈论目前正在进行的“人工智能革命”,特伦斯·谢诺夫斯基(Terry Sejnowski)必然是其中一个。
在智能翻译、无人驾驶、阿尔法狗、微软小冰还被认为是远在天边的愿景时,谢诺夫斯基就已经在为深度学习领域奠定基础了。
《深度学习:智能时代的核心驱动力量》
中信出版集团 2019.2
Q:首先,我想问一下定义。人们几乎可以互换地使用“人工智能”,“神经网络”,“深度学习”和“机器学习”等词语。 但这些是不同的东西。你能解释一下吗?
人工智能可以追溯到1956年的美国,那时工程师们决定编写一个试图仿效智能的计算机程序。
在人工智能中,一个新领域成长起来,称为机器学习。不是编写一个按部就班的程序来做某事——这是人工智能中的传统方法——而是你收集了大量关于你试图理解的事物的数据。例如,设想您正在尝试识别对象,因此您可以收集大量它们的图像。然后,通过机器学习,这是一个可以剖析各种特征的自动化过程,就可以确定一个物体是汽车,而另一个是订书机。
机器学习是一个非常大的领域,其历史可以追溯到更久远的时期。最初,人们称之为“模式识别”。后来算法在数学上变得更加广泛和复杂。
在机器学习中有受大脑启发的神经网络,然后是深度学习。深度学习算法具有特定的体系结构,其中有许多层数据流经的网络。
基本上,深度学习是机器学习的一部分,机器学习是人工智能的一部分。
Q: 有什么“深度学习”能做而其他程序不能做的吗?
编写程序非常耗费人力。在过去,计算机是如此之慢,内存非常昂贵,以至于人们采用逻辑,也就是计算机的工作原理,来编写程序。他们通过基础机器语言来操纵信息。计算机太慢了,计算太贵了。
但现在,计算力越来越便宜,劳动力也越来越昂贵。而且计算力变得如此便宜,以至于慢慢地,让计算机学习会比让人类编写程序更有效。在那时,深度学习会开始解决以前没有人编写过程序的问题,比如在计算机视觉和翻译等领域。
机器学习是计算密集型的,但你只需编写一个程序,通过给它不同的数据集,你可以解决不同的问题。并且你不需要是领域专家。因此,对于存在大量数据的任何事物,都有对应的大量应用程序。
Q:“深度学习”现在似乎无处不在。 它是如何变得如此主导潮流?
我可以在历史上精确地找到这一特定时刻:2012年12月在NIPS会议(这是最大的AI会议)上。在那里,计算机科学家Geoff Hinton和他的两个研究生表明你可以使用一个名为ImageNet的非常大的数据集,包含10,000个类别和1000万个图像,并使用深度学习将分类错误减少20%。
通常,在该数据集上,错误在一年内减少不到1%。 在一年内,20年的研究被跨越了。
这真的打开了潮水的闸门。
Q:深度学习的灵感来自大脑。那么计算机科学和神经科学这些领域如何协同工作呢?
深度学习的灵感来自神经科学。最成功的深度学习网络是由Yann LeCun开发的卷积神经网络(CNN)。
如果你看一下CNN的架构,它不仅仅是很多单元,它们以一种基本上镜像大脑的方式连接起来。大脑中被研究的最好的一部分在视觉系统,在对视觉皮层的基础研究工作中,表明那里存在简单和复杂细胞。如果你看一下CNN架构,会发现有简单细胞和复杂细胞的等价物,这直接来自我们对视觉系统的理解。
Yann没有盲目地试图复制皮质。他尝试了许多不同的变种,但他最终收敛到的方式和那些自然收敛到的方式相同。这是一个重要的观察。自然与人工智能的趋同可以教给我们很多东西,而且还有更多的东西要去探索。
Q:我们对计算机科学的理解有多少取决于我们对大脑的理解程度?
我们现在的大部分AI都是基于我们对大脑在60年代的了解。 我们现在知道的更多,并且更多的知识被融入到架构中。
AlphaGo,这个击败围棋冠军的程序不仅包括皮质模型,还包括大脑的一部分被称为“基底神经节”的模型,这对于制定一系列决策来实现目标非常重要。 有一种称为时间差分的算法,由Richard Sutton在80年代开发,当与深度学习相结合时,能够进行人类以前从未见过的非常复杂的玩法。
当我们了解大脑的结构,并且当我们开始了解如何将它们集成到人工系统中时,它将提供越来越多的功能,超越我们现在所拥有的。
Q:人工智能也会影响神经科学吗?
它们是并行的工作。创新神经技术已经取得了巨大的进步,从一次记录一个神经元到同时记录数千个神经元,并且同时涉及大脑的许多部分,这完全开辟了一个全新的世界。
我说人工智能与人类智能之间存在着一种趋同。随着我们越来越多地了解大脑如何工作,这些认识将反映到AI中。 但与此同时,他们实际上创造了一整套学习理论,可用于理解大脑,让我们分析成千上万的神经元以及他们的活动是如何产生的。 所以神经科学和人工智能之间存在这种反馈循环,我认为这更令人兴奋和重要。
Q:你的书讨论了许多不同的深度学习应用,从自动驾驶汽车到金融交易。你觉得哪个特定领域最有趣?
我完全被震撼到的一个应用是生成对抗网络,或称GANS。使用传统的神经网络,你给出一个输入,你得到一个输出。 GAN能够在没有输入的情况下开展活动 - 产生输出。
是的,我在这些网络创建假视频的故事背景下听说过这个。他们真的会产生看似真实的新事物,对吧?
从某种意义上说,它们会产生内部活动。事实证明这是大脑运作的方式。你可以看某处并看到一些东西,然后你可以闭上眼睛,你可以开始想象出那里没有的东西。你有一个视觉想象,当周围安静时,你闹钟声会浮现想法。那是因为你的大脑是生成性的。现在,这种新型网络可以生成从未存在过的新模式。所以你可以给它,例如,数百张汽车图像,它会创建一个内部结构,可以生成从未存在的汽车的新图像,并且它们看起来完全像汽车。
Q:另一方面,您认为哪些想法可能是过度炒作?
没有人可以预测或想象这种新技术的引入会对未来的事物组织方式产生什么影响。当然这其中有炒作。我们还没有解决真正困难的问题。我们还没有通用智能,就有人说机器人将不久后会取代我们,其实机器人远远落后于人工智能,因为复制身体被发现比复制大脑更复杂。
让我们看一下这一种技术进步:激光。它是在大约50年前发明的,当时占据了整个房间。从占据整个房间到我现在演讲时使用的激光笔需要50年的技术商业化。它必须被推进到体积足够小并可以用五美元购买它的程度。同样的事情将发生在像自动驾驶汽车这样的被炒作的技术上。它并不被期望在明年或者未来10年,就变得无处不在。这过程可能需要花费50年,但重点是,在此过程中会有逐步推进,使它越来越灵活,更安全,更兼容我们组织运输网络的方式。炒作的错误在于人们的时标设定错了。他们期待太多事情太快发生,其实事物只在适当的时候。
关于深度学习的问题可以看下这个网页的视频讲解:AI深度学习---中科院公开课。
D. 深度学习与神经网络有什么区别
深度学习与神经网络关系
2017-01-10
最近开始学习深度学习,基本上都是zouxy09博主的文章,写的蛮好,很全面,也会根据自己的思路,做下删减,细化。
五、Deep Learning的基本思想
假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为: I =>S1=>S2=>…..=>Sn => O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失(呵呵,大牛说,这是不可能的。信息论中有个“信息逐层丢失”的说法(信息处理不等式),设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息。这表明信息处理不会增加信息,大部分处理会丢失信息。当然了,如果丢掉的是没用的信息那多好啊),保持了不变,这意味着输入I经过每一层Si都没有任何的信息损失,即在任何一层Si,它都是原有信息(即输入I)的另外一种表示。现在回到我们的主题Deep Learning,我们需要自动地学习特征,假设我们有一堆输入I(如一堆图像或者文本),假设我们设计了一个系统S(有n层),我们通过调整系统中参数,使得它的输出仍然是输入I,那么我们就可以自动地获取得到输入I的一系列层次特征,即S1,…, Sn。
对于深度学习来说,其思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。
另外,前面是假设输出严格地等于输入,这个限制太严格,我们可以略微地放松这个限制,例如我们只要使得输入与输出的差别尽可能地小即可,这个放松会导致另外一类不同的Deep Learning方法。上述就是Deep Learning的基本思想。
六、浅层学习(Shallow Learning)和深度学习(Deep Learning)
浅层学习是机器学习的第一次浪潮。
20世纪80年代末期,用于人工神经网络的反向传播算法(也叫Back Propagation算法或者BP算法)的发明,给机器学习带来了希望,掀起了基于统计模型的机器学习热潮。这个热潮一直持续到今天。人们发现,利用BP算法可以让一个人工神经网络模型从大量训练样本中学习统计规律,从而对未知事件做预测。这种基于统计的机器学习方法比起过去基于人工规则的系统,在很多方面显出优越性。这个时候的人工神经网络,虽也被称作多层感知机(Multi-layer Perceptron),但实际是种只含有一层隐层节点的浅层模型。
20世纪90年代,各种各样的浅层机器学习模型相继被提出,例如支撑向量机(SVM,Support Vector Machines)、 Boosting、最大熵方法(如LR,Logistic Regression)等。这些模型的结构基本上可以看成带有一层隐层节点(如SVM、Boosting),或没有隐层节点(如LR)。这些模型无论是在理论分析还是应用中都获得了巨大的成功。相比之下,由于理论分析的难度大,训练方法又需要很多经验和技巧,这个时期浅层人工神经网络反而相对沉寂。
深度学习是机器学习的第二次浪潮。
2006年,加拿大多伦多大学教授、机器学习领域的泰斗Geoffrey Hinton和他的学生RuslanSalakhutdinov在《科学》上发表了一篇文章,开启了深度学习在学术界和工业界的浪潮。这篇文章有两个主要观点:1)多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类;2)深度神经网络在训练上的难度,可以通过“逐层初始化”(layer-wise pre-training)来有效克服,在这篇文章中,逐层初始化是通过无监督学习实现的。
当前多数分类、回归等学习方法为浅层结构算法,其局限性在于有限样本和计算单元情况下对复杂函数的表示能力有限,针对复杂分类问题其泛化能力受到一定制约。深度学习可通过学习一种深层非线性网络结构,实现复杂函数逼近,表征输入数据分布式表示,并展现了强大的从少数样本集中学习数据集本质特征的能力。(多层的好处是可以用较少的参数表示复杂的函数)
而为了克服神经网络训练中的问题,DL采用了与神经网络很不同的训练机制。传统神经网络(这里作者主要指前向神经网络)中,采用的是back propagation的方式进行,简单来讲就是采用迭代的算法来训练整个网络,随机设定初值,计算当前网络的输出,然后根据当前输出和label之间的差去改变前面各层的参数,直到收敛(整体是一个梯度下降法)。而deep learning整体上是一个layer-wise的训练机制。这样做的原因是因为,如果采用back propagation的机制,对于一个deep network(7层以上),残差传播到最前面的层已经变得太小,出现所谓的gradient diffusion(梯度扩散)。这个问题我们接下来讨论。
八、Deep learning训练过程
8.1、传统神经网络的训练方法为什么不能用在深度神经网络
BP算法作为传统训练多层网络的典型算法,实际上对仅含几层网络,该训练方法就已经很不理想。深度结构(涉及多个非线性处理单元层)非凸目标代价函数中普遍存在的局部最小是训练困难的主要来源。
BP算法存在的问题:
(1)梯度越来越稀疏:从顶层越往下,误差校正信号越来越小;
(2)收敛到局部最小值:尤其是从远离最优区域开始的时候(随机值初始化会导致这种情况的发生);
(3)一般,我们只能用有标签的数据来训练:但大部分的数据是没标签的,而大脑可以从没有标签的的数据中学习;
8.2、deep learning训练过程
如果对所有层同时训练,时间复杂度会太高;如果每次训练一层,偏差就会逐层传递。这会面临跟上面监督学习中相反的问题,会严重欠拟合(因为深度网络的神经元和参数太多了)。
2006年,hinton提出了在非监督数据上建立多层神经网络的一个有效方法,简单的说,分为两步,一是每次训练一层网络,二是调优,使原始表示x向上生成的高级表示r和该高级表示r向下生成的x'尽可能一致。方法是:
1)首先逐层构建单层神经元,这样每次都是训练一个单层网络。
2)当所有层训练完后,Hinton使用wake-sleep算法进行调优。
将除最顶层的其它层间的权重变为双向的,这样最顶层仍然是一个单层神经网络,而其它层则变为了图模型。向上的权重用于“认知”,向下的权重用于“生成”。然后使用Wake-Sleep算法调整所有的权重。让认知和生成达成一致,也就是保证生成的最顶层表示能够尽可能正确的复原底层的结点。比如顶层的一个结点表示人脸,那么所有人脸的图像应该激活这个结点,并且这个结果向下生成的图像应该能够表现为一个大概的人脸图像。Wake-Sleep算法分为醒(wake)和睡(sleep)两个部分。
1)wake阶段:认知过程,通过外界的特征和向上的权重(认知权重)产生每一层的抽象表示(结点状态),并且使用梯度下降修改层间的下行权重(生成权重)。也就是“如果现实跟我想象的不一样,改变我的权重使得我想象的东西就是这样的”。
2)sleep阶段:生成过程,通过顶层表示(醒时学得的概念)和向下权重,生成底层的状态,同时修改层间向上的权重。也就是“如果梦中的景象不是我脑中的相应概念,改变我的认知权重使得这种景象在我看来就是这个概念”。
deep learning训练过程具体如下:
1)使用自下上升非监督学习(就是从底层开始,一层一层的往顶层训练):
采用无标定数据(有标定数据也可)分层训练各层参数,这一步可以看作是一个无监督训练过程,是和传统神经网络区别最大的部分(这个过程可以看作是feature learning过程):
具体的,先用无标定数据训练第一层,训练时先学习第一层的参数(这一层可以看作是得到一个使得输出和输入差别最小的三层神经网络的隐层),由于模型capacity的限制以及稀疏性约束,使得得到的模型能够学习到数据本身的结构,从而得到比输入更具有表示能力的特征;在学习得到第n-1层后,将n-1层的输出作为第n层的输入,训练第n层,由此分别得到各层的参数;
2)自顶向下的监督学习(就是通过带标签的数据去训练,误差自顶向下传输,对网络进行微调):
基于第一步得到的各层参数进一步fine-tune整个多层模型的参数,这一步是一个有监督训练过程;第一步类似神经网络的随机初始化初值过程,由于DL的第一步不是随机初始化,而是通过学习输入数据的结构得到的,因而这个初值更接近全局最优,从而能够取得更好的效果;所以deep learning效果好很大程度上归功于第一步的feature learning过程。
E. 有哪些人工智能安全风险
在分析之前,让我们简要介绍一下人工智能的应用。人工智能因其在数据分析、知识提取和自主学习方面的突出优势,被广泛应用于网络保护、数据管理、信息审查、智能安全、金融风险控制和舆情监测等领域。在这些领域,往往会出现一些安全风险,常见风险如下:
1、人工智能安全风险——框架的安全风险
近年来,着名的深度学习框架TensorFlow和Caffe及其依赖库多次被发现存在安全漏洞,被攻击者利用,导致系统安全问题。以生成模型[3]为例。原始工作原理是:将输入X映射到低维表示的Z编码器,再映射回高维重构的X解码器,表示如下图所示:
如果输入是7,攻击后的输出可能是8。如图所示:
此外,人工智能可以用来编写计算机病毒和木马。原始的恶意脚本是手动编写的。人工智能技术可以通过插入拮抗样本[4],绕过安全检测,实现这些过程的自动化。同样,人工智能技术也可以自动生成智能僵尸网络[5],它可以在不等待僵尸网络控制命令的情况下对其他系统进行大规模、自动的攻击,大大提高了网络攻击的破坏程度。(页面)
2、人工智能安全风险——数据安全风险
攻击者可以通过网络的内部参数得到网络训练的数据集。人工智能技术还将增强数据挖掘能力,提高隐私泄露风险,比如2018年3月的Facebook数据泄露事件。
3、人工智能安全风险——算法的安全风险
深度学习网络目标函数的定义不准确、不合理或不正确,可能会导致错误甚至有害的结果。错误的目标函数、代价过高的目标函数以及表达能力有限的网络都可能导致网络产生错误的结果。例如,2018年3月,一辆优步自动驾驶汽车发生事故,机器人视觉系统未能及时识别突然出现在道路上的行人,导致行人发生碰撞并死亡。算法的偏差和人工智能的不可解释性也是主要问题。在美国,人工智能算法被用来预测罪犯,一些列表显示许多无辜的人受到了伤害,其中大部分是黑人,甚至系统的开发者也没有合理的解释这个决定。拮抗样本的存在也会导致算法的误判。通过给下面的图片添加一点噪声,人工智能将很有信心地确认熊猫是长臂猿。
4、人工智能安全风险——信息安全风险
有了足够的训练数据,人工智能可以产生用于非法活动的虚假信息。比如人工智能面部修饰DeepFakes,以及最近推出的DeepNude。一些罪犯使用假声音和假视频进行诈骗。现在谷歌已经发明了一种聊天机器人,它可以完全愚弄人们在电话上聊天。
以上就是《人工智能安全风险有哪些?安全在这个行业竟然这么重要》,在分析之前,让我们先简单介绍一下人工智能的应用。人工智能由于其在数据分析、知识提取和自主学习方面的突出优势,如果你想知道更多的人工智能安全的发展,可以点击本站的其他文章进行学习。
F. 隧道安全监控报警系统最大的作用是什么
1.告警精确度高
智能视频分析系统内置智能算法,能排除气候与环境因素的干扰,有效弥补人工监控的不足,减少视频监控系统整体的误报率和漏报率。
2.实时识别报警
基于智能视频分析和深度学习神经网络技术,对隧道监控区域内的异常行为进行监测,报警信息可显示在监控客户端界面,也可将报警信息推送到移动端。
3.全天候运行 稳定可靠
智能视频监控系统可对监控画面进行7×24不间断的分析,大大提高了视频资源的利用率,减少人工监控的工作强度。
4.告警存储功能
对隧道监控区域内的异常行为实时识别预警,并将报警信息存储到服务器数据库中,包括时间、地点、快照、视频等。