❶ gis网络路径分析怎么设置方向
《WebGIS之OpenLayers全面解析》是第一本全面介绍Openlayers3的中文专业书籍,于2016年7月由电子工业出版社出版,并已登录淘宝、京东、当当等网络商城。
书籍内容简介:
OpenLayers作为业内使用最为广泛的地图引擎之一,已被各大GIS厂商和广大WebGIS二次开发者采用。借助OpenLayers强大的扩展功能,可以实现与各个不同的WebGIS平台产品相结合,开发出各具特色的WebGIS应用系统。 本书主要内容涵盖:WebGIS开发基础、OpenLayers开发基础、OpenLayers快速入门、OpenLayers之多源数据加载、OpenLayers之图形绘制、OpenLayers之OGC、OpenLayers之高级功能,最后给出了OpenLayers之项目实战――水利信息在线分析服务系统。Openlayers功能全且具有强大的可扩展性,使用Javascript语言,支持HTML5新特性,不依赖任何浏览器插件,是目前GIS领域使用最为广泛的开源WebGIS开发库。本书一共由9个章节内容组成,提供近百个程序实例,基本涵盖了WebGIS开发中的全部功能,可使读者迅速入门并掌握WebGIS和Openlayers开发,提高基础知识学习效率和系统开发效率。读者只需要将书中的示例稍加改动,便可快速的将其移植到具体的WebGIS应用中。本书具体内容安排如下:
第一章 概述:介绍了什么是WebGIS,并对目前常见的开源WebGIS软件进行了介绍。
第二章 WebGIS开发基础:对WebGIS开发涉及到的各种基础开发知识进行了讲解,指导读者快速入门WebGIS。
第三章 Openlayers开发基础:对Openlayers Javascript开发库的框架设计、API组成和开发调试方式进行了讲解,指导读者快速了解Openlayers。
第四章 Openlayers快速入门:对Openlayers中提供的常用的10个控件的二次开发进行了讲解,指导读者快速开发出一个简单的网络地图应用。
第五章 Openlayers之多源数据展示篇:通过丰富的示例讲解了Openlayers中如何显示来自各种网络地图服务商提供的地图数据,指导读者实现各种网络地图、KML、GPX、GeoJSON等开放数据源的叠加显示。
第六章 Openlayers之图形绘制篇:本章重点讲解了WebGIS应用中常用的点、线、矩形、多边形、圆等浏览器客户端的图形绘制功能,指导读者开发出各种鼠标交互图形绘制功能。
第七章 Openlayers之OGC篇:对Openlayers中如何加载WMS、WMTS、WFS、WCS图层进行了示例讲解,指导读者快速掌握OGC服务数据的对接。
第八章 Openlayers之高级功能篇:对Openlayers中投影、热区、聚合标注、热点图、统计图、标绘等高级功能进行了示例讲解,指导读者快速高效地开发高级WebGIS功能。
第九章 Openlayers之项目实战:结合一个具体的项目需求进行开发实战,配以详细的程序示例,讲解如何将Openlayers中的常用功能应用到项目实践中,指导读者基于前面章节中的Openlayers开发知识进行WebGIS系统开发。
本书可用于开设GIS专业的各大院校作为网络GIS课程的教材和教辅参考书,本书迎合WebGIS客户端开发技术的趋势和读者需求,适时推出本书,可作为学习WebGIS和Openlayers的入门及高级应用教材,也可供GIS领域科研工作者、高校师生及IT技术人员作为技术参考书。
❷ gis物流实习报告
ARCGIS网络分析学习――物流最佳路径网络分析
一、实验目的
网络分析是GIS空间分析的重要功能。
有两类网络,一为道路(交通)网络,一为实体网络(比如,河流,排水管道,电力网络)。
此实验主要涉及道路网络分析,主要内容包括: 最佳路径分析,如:找出两地通达的最佳路径——物流最佳路径网络分析。
通过对本实习的学习,应达到以下几个目的:加深对网络分析基本原理,方法的认识; 熟练掌握ARCGIS下进行道路网络分析的技术方法。
结合实际,掌握利用网络分析方法解决地学空间分析问题的能力。
二、实验准备软件准备
ArcMap,要求有网络分析扩展模块的许可授权
数据准备: Shape文件创建网络数据集(高速公路:Highways, 主要街道:Major Streets, 公园:Parks,湖泊:Lakes,街道:Streets) Geodatabase网络数据集:NetworkAnalysis。mdb:包含:街道图层,Streets; 仓库图层,Warehouses; 商店图层:Stores;
在ArcMap中加载启用NetWork Anylyst网络分析模块: 执行菜单命令[工具Tools]>>[Extensions], 在[Extensions]对话框中点击 [Network Analyst] 启用网络分析模块,即装入Network Analyst空间分析扩展模块。
道路网络分析步骤 1。 创建分析图层 2。 添加网络位置 3。 设置分析选项 4。 执行分析过程显示分析结果
三、实验内容及步骤
(一) 最佳路径分析根据给定的停靠点,查找最佳路径(物流最佳路径)
1.1 数据准备
(1).双击ArcMap工程,或从ArcMap中打开工程EX10_1.mxd。
(2).如果网络分析扩展模块(Network Analyst Extension)已经启用(参考实验准备中的步骤)
(3).如果网络分析工具栏没有出现,则在工具栏显区点右键打开或执行菜单命令[View-视图]>>[Toolbars-工具栏],并点击[Network Analyst]以显示网络分析工具栏。
(4)如果网络分析窗口没有推开,则在网络分析工具栏中点击网络分析窗口按钮(上图红色区域),以打开网络分析窗口;
注意:这是一个悬停窗口,它可以嵌入并固定在ArcMap的窗体中,或是作为一个单独的窗口悬浮在操作区上。在练习中,为了方便可以将其固定在TOC面板之下。
1。2 创建路径分析图层
在网络分析工具栏[ Network Analyst]上点击下拉菜单[Network Analyst],然后点击[New Route]菜单项。 此时在网络分析窗口[ Network Analyst Window]中包含一个空的列表,显示停靠点(Stops),路径(Routes),路障(Barriers)的相关信息。同时,在TOC(图层列表)面板上添加了新建的一个路径分析图层[Route]组合。
1。3 添加停靠点
通过以下步骤添加停靠点,最佳路径分析将找到最佳的经停顺序以计算并得到最佳路径
(1) 在网络分析窗口[Network Analyst Window]中点选Stops(0)。
(2)。 在网络分析工具栏[Network Analyst]上点击"新建网络位置"[Create Network Location]工具。
(3) 在地图的街道网络图层的任意位置上点击以定义一个新的停靠点。 程序将在街道网络上自动的计算并得到一个距离给定位置最近的停靠点,已定义的停靠点会以特别的符号进行显示。停靠点会保持被选中的状态,除非它被明确地反选(Unselected)或者又新增了一个另外的停靠点。停靠点的所在的位置会同时显示一个数字"1",数字表示经停的顺序。
(4) 再添加4 个停靠点。 新增加的停靠点的编号为2,3,4,5。经停的顺序可以在网络分析窗口[Network Analyst Window]中更改。第一个停靠点被认定为出发点,最后一个停靠点被认定为是目的地。 如果一个停靠点无法定位于道路网络上,则会显示一个"未定位"的符号。 "未定位"的停靠点可以通过移动操作将其定位到道路网络上,在网络分析[Network Analyst]工具栏上点选[选择/移动网络位置] [Select/Move Network Location]按钮,使用此工具将"未定位"的停靠点拖放到附近的道路网络上。
1。4 设置分析选项
以下操作基于规则(单向行驶规划必须遵守,任意路口可以调头)计算最省时间的线路 (1)。 如图所示,在网络分析窗口[Network Analyst Window]中点击分析图层属性按钮[Analysis Layer Properties] 打开图层Route的属性设置对话框:
(2) 在分析图层-Route属性对话框中,点击分析设置[Analysis Settings]选项页,并确认-阻抗[impedance]设置为分钟Minutes (Minutes)。
(3)。不使用时间限制 (保持Use Time Windows 前的检查框为非选中状态)。当必须在规定时间在某个停靠点停留时才使用这个选项,选则这个选项后可以通过设置停靠点属性来设置某个停靠点到达的时间,离开的时间(在ArcMap联机帮助中查询关键词network analysis, routing with time windows 可以了解详细内容)
(4)。不使用"经停点重排序功能"(保持[Reorder stops to Find Optimal Route]检查框为未选中状态)。这保证了经停顺序为你事先指定的顺序。
(5) 在"允许路口调头"[Allow U-turns]下拉列表中选择 任何路口[EveryWhere]
(6)。在"输出图形类型"[Output Shape Type]下拉列表中选择 实际形状[True Shape]
(7)。选中"忽略无效位置"[Ignore Invalid Locations]检查框。这样分析时将会忽略那些不在道路网络上的停靠点。
(8)。在"约束规划"[Restrictions]列表框中选择单行线[Oneway]。
(9) 点击方向[Directions]选项页,确定距离单位[Distance Units]设置为米[Meters], 显示时间[Display Time]检查框被选中,时间属性[Time Attribute]被设置为分钟[Minutes]。点击[确定]按钮退出"图层属性"对话框。
1。5 运行最佳路径分析得到分析结果在网络分析工具栏[Network Analyst]上点击"求解"[Solve]按钮。
分析结果-最佳路径线状要素图层将在地图中显示,在"网络分析窗口"[Network Analyst Window]中"路径"[Route]目录下也会同时显示:
(2)。在网络分析窗口[Network Analyst Window]中点击Route树状结点左边的加号(+)显示最佳路径
(3)。右键击最佳路径"Graphic Pick…"或在网络分析工具栏中点击方向[Direction]按钮打开"行驶方向"窗口。
(4)。在行驶方向[Directions]窗口中点击"超链接"[Map]可以显示转向提示地图
(5)。 关闭"行驶方向"[Directions]窗口
1。6 设置路障(barrier)
通过在行驶路径步增加障碍,表示真实情况下,道路上无法通行的路障。在进行最佳路径分析将会绕开这些路径查找替代路线
(1)。在ArcMap的中执行菜单命令[Window]>>[Magnier]显示放大镜窗口[Magnier]
(2)。通过按住放大镜窗口[Magni er]的标题栏在地图上移动,在地图中找到已经计算得到的最佳路径,松开鼠标。这时最佳路径的一部分应该显示在放大镜窗口[Magni er]的中心位置,我们将这这个区域的某个路段上放置一个路障
(3)。在网络分析窗口[Network Analyst Window]中单击"路障"[Barrier (0)]。
(4)。在网络分析工具栏[Network Analyst]上点击"新建网络位置"[Create Network Location]工具按钮。
(5)。在放大镜窗口[Magni er]中最佳路径上的某个位置放置一个路障。
(6)。在网络分析工具栏[Network Analyst]上点击"求解"[Solve] 按钮,得到新的最佳路径,从而避开路障
(8)。关闭"放大镜"[Magni er] 窗口
1。7 保存分析结果
最佳路径 (1)。 在网络分析窗口[Network Analyst Window]中右键点击"路径"[Routes (1) ],在出现的右键菜单中点击"导出数据"[Export Data]菜单命令。
(2)。在"导出数据"[Export Data]对话框中指定导出的文件命,比如"D:\Ex10_1\Ex10_Route。shp"
(3)。点击[OK]按钮,最佳路径就会保存为指定的Shape文件。。
(4)。当ArcMap询问"是否要将导出数据作为一个图层添加到地图中"时,点击否[NO]
(5) 关闭ArcMap
❸ PADS中如何显示网络阻抗特性值
假设一根均匀电缆无限延伸,在发射端的在某一频率下的阻抗称为“特性阻抗”。 测量特性阻抗时,可在电缆的另一端用特性阻抗的等值电阻终接
❹ 如何利用矢量网络分析仪测量TDR时域阻抗
测量所需仪器
第一步:测量设置
首先要设置所需要的起始频率和终止频率。然后点击右侧时域按钮,进入时域设置状态。点击时域变换按钮,弹出时域变换对话框后,在变换模式中选择低通阶跃,然后选中时域变换。
接上一步,将时域变换勾除掉。
第二步:电子校准
选择全四端口校准,根据校准件和被测件选择校准方式和连接方式。按照向导步骤进行四端口校准。
第三步:测量过程
击新建轨迹,建立差分测试轨迹Sdd11。在平衡参数页,点击改变按钮进行平衡拓扑设置。修改平衡拓扑设置,选择平衡到平衡。
根据被测件连接情况设置平衡端口和网络仪端口的关系。选择轨迹Sdd11,点击确定。选择阻抗格式。
点击分析→时域→时域变换→低通阶跃并勾选时域变换,同时根据被测件长度设置起始和终止时间。设置光标等观察阻抗曲线。
第四步:测量结果显示及保存
此时屏幕显示只有Sdd11的TDR阻抗一条曲线。按文件-另存为,可以将测试数据保存为各种格式,也将测试曲线可以保存为jpg,bmp,png等图片格式。
❺ GIS空间分析方法是什么
指在GIS(地理信息系统)里实现分析空间数据,即从空间数据中获取有关地理对象的空间位置、分布、形态、形成和演变等信息并进行分析。
根据作用的数据性质不同,可以分为:
1、基于空间图形数据的分析运算;
2、基于非空间属性的数据运算;
3、空间和非空间数据的联合运算。空间分析赖以进行的基础是地理空间数据库,其运用的手段包括各种几何的逻辑运算、数理统计分析,代数运算等数学手段,最终的目的是解决人们所涉及到地理空间的实际问题,提取和传输地理空间信息,特别是隐含信息,以辅助决策。
(5)gis网络分析阻抗值怎么设置扩展阅读
空间分析源于60年代地理学的计量革命,在开始阶段,主要是应用定量(主要是统计)分析手段用于分析点、线、面的空间分布模式。后来更多的是强调地理空间本身的特征、空间决策过程和复杂空间系统的时空演化过程分析。
实际上自有地图以来,人们就始终在自觉或不自觉地进行着各种类型的空间分析。如在地图上量测地理要素之间的距离、方位、面积,乃至利用地图进行战术研究和战略决策等,都是人们利用地图进行空间分析的实例,而后者实质上已属较高层次上的空间分析。
❻ 怎么调整信号源输出阻抗
信号源的输出阻抗是由输出电路决定的,一般没有办法调整,但是你可以改变输出电路,比如把集电极输出改为射极输出,输出阻抗就大大降低了。
标准做法是用阻抗分析仪;简单做法:先测空载电压并记下数据。加50欧高频负载(纯电阻),再测输出电压,通过这两个数值计算输出阻抗。
❼ 如何用网络分析仪测试短路线在不同频率下的阻抗
实际应用中的电路元件要比理想电阻复杂得多,并且呈现出阻性、容性和感性特性,它们共同决定了阻抗特性。阻抗与电阻的不同主要在于两个方面。首先,阻抗是一种交流(AC)特性;其次,通常在某个特定频率下定义阻抗。如果在不同的频率条件下测量阻抗,会得到不同的阻抗值。通过测量多个频率下的阻抗,才能获取有价值的元件数据。这就是阻抗频谱法(IS)的基础,也是为许多工业、仪器仪表和汽车传感器应用打下基础的基本概念。
电子元件的阻抗可由电阻、电容或电感组成,更一般的情况是三者的组合。可以采用虚阻抗来建立这种模型。电感器具有的阻抗为jωL,电容器具有的阻抗为1/jωC,其中j是虚数单位,ω是信号的角频率。采用复数运算将这些阻抗分量组合起来。阻抗的虚数部分称为电抗,总表达式为Z=R+jX,其中X为电抗,Z表示阻抗。当信号的频率上升时,容抗Xc降低,而感抗XL升高,从而引起总阻抗的变化,阻抗与频率呈函数关系。纯电阻的阻抗不随频率变化。。
图1:电阻器和电容器并联时的奈奎斯曲线。
为了检测元件的阻抗,在以不同的频率对器件进行扫描时,通常需要测量时域或频域的响应信号。测量频域响应信号一般采用模拟信号分析方法,例如交流耦合电桥,但是采用高性能模数转换器(ADC),允许在时域采集数据,然后再转换到频域
许多积分变换都可以用于将数据转换到频域,如傅里叶分析。这种方法就是取出信号的一系列时域信号表示,然后应用积分变换将其映射为频谱。采用这种方法可以给出任意两种信号之间关系的数学描述。在阻抗分析中感兴趣的是激励电流(元件的输入)和电压响应(元件的输出)之间的关系。如果系统是线性的,测得的时域电压和电流的各自傅里叶变换的比值就等于其阻抗,并且它可以表示成一个复数。这个复数的实数部分和虚数部分构成随后数据分析的关键部分。
其中,E=系统电压;I=系统电流;t=时域参数
?=傅里叶变换
将复数形式转换成极坐标形式便可以得到在特定频率下响应信号的幅度和相位与激励信号的关系。
其中R和X分别表示复数的实部和虚部。上面计算得到的幅度表示该元件在特定频率条件下的复数阻抗。在扫频的情况下,可以计算出每个频率点对应的复数阻抗。
阻抗数据分析
常用的方法是将产生的阻抗与频率的关系曲线作为数据分析的一部分。当频率在给定的范围内扫频时,奈奎斯特(Nyquist)图是在复数平面内以传递函数的实部和虚部为参数的曲线。如果图中的x轴表示实部,y轴表示虚部(注意:y轴取负数),就可以得到每个频率点的阻抗表示。换句话说就是,曲线上的每个点都代表了某个频率点的阻抗。可以从向量长度|Z|和该向量与x轴之间的夹角?计算出阻抗。图1为电阻器和电容器并联时的典型奈奎斯曲线。
尽管奈奎斯曲线很常用,但是它不能给出频率信息,所以对于任何特定阻抗,都不可能知道采用的频率值是多少。因此,奈奎斯曲线通常要采用其它曲线来补充。另外一种常用的表示方法就是波特(Bode)图。在波特图中,x轴表示频率的对数,阻抗的幅度绝对值|Z|和相移都用y轴表示。因此波特图同时表示了阻抗与频率和相移与频率的关系。通常将奈奎斯曲线和波特图一起使用来分析传感器元件的传递函数。
基于阻抗特性的传感器
考虑一个基于阻抗特性的传感器,在正常条件下其电容、电感和电阻特性的组合会产生一个特定的阻抗信号。如果传感器周围环境的变化引起上述特性的任何变化,都会造成阻抗的改变。通过测量这种阻抗传感器随频率变化的特性,将会得到一系列新的阻抗特性。
一种相当简单的方法就是将阻抗的测量值和预测值比较以便得出某种结论。这种工作原理的一个实例就是一种采用涡流原理的金属检测传感器。在位于传感器外壳的线圈中产生一个高频交流信号。该线圈产生的电磁场在导电靶中感应出涡流。反过来这个涡流与该传感器线圈相互作用,所以改变了其阻抗。
图2:表示阻抗与频率和相角与频率之间关系的波特图。
测量随频率变化的线圈阻抗具有许多好处。因为材料的渗透率会影响线圈的阻抗,所以利用经验阻抗特性可得出一些有关金属类型的结论。采用这种方法还可以允许该阻抗特性传感器检测具有不同渗透率的金属。渗透率变化还可以用于测量金属压力,因为压力变化会改变渗透率,而渗透率的变化又会改变阻抗。波特图和奈奎斯曲线在检查传感器的频率响应方面是很有用的。测量大量频率点的阻抗比测量单个频率点的阻抗得到的结果更为精确,因为这有助于去除噪声。还可以通过在某些特定条件下测量电容分量和电感分量的频率响应确定最佳的工作频率点。
将阻抗的测量值和其理想值相比较的方法可适用于许多基于阻抗特性能引起电阻、电容或电感变化原理的传感器技术。常见的应用范围包括从采用化学传感器的气体检测、基于电容特性的湿度传感器、游戏或食品业中的金属硬币或颗粒特征识别,到农业中的土壤监测。
阻抗分析不仅仅包含简单地将阻抗响应特性与其理想特性相比较。阻抗频谱法(IS)通常用于表征系统以及获取有关系统的有价值信息。本文的目的是将系统从总体上定义为一个元件或者与电极有电接触的材料。这种接触可以是固体与固体(在许多化学传感器的情况下)或者固体与液体(当测量液体中某种成分的浓度时)之间的界面。采用IS可以得到有关元件本身和元件与电极之间界面的信息。
IS的原理利用这样的事实:如果给界面施加很小的电位,它就会极化。界面极化的方式与当施加电位反转时极化改变的速度相结合,可以表征界面的特性。对于系统界面,例如吸附和反应速率常数、扩散系数和电容等信息都可以得到。对于元件本身,有关其介电常数、电导率、电荷均衡迁移率、各成分浓度以及大量生成率和复合率等信息都可以估计出来。
系统或元件的等效电路模型是分析阻抗扫描所产生数据的基础。这种模型通常是所连接的电阻器、电容器和电感器的组合,以便模拟该系统的电特性。我们要找的模型要求在不同频率下其阻抗要与测得的阻抗特性相匹配。在理想情况下,模型的元件和互连方式的选择要用来表示特定的电化学特性,而且要符合该过程的物理特性。可以采用文献中已有的模型,也可以根据经验建立一种新模型。
在根据经验建立模型的情况下,要在经验模型和测量数据之间找到最佳匹配。因为模型中的元件不一定总是符合电化学工艺的物理特性,所以可以单独构建模型以便得到最佳匹配。通过逐步增大或减小元件的阻抗直至得到最佳匹配,便可以建立起经验模型。通常根据非线性最小二乘法拟合(NLLS)原理来完成建模。借助于计算机,利用NLLS算法先初步估计模型参数,然后逐步改变每个模型参数,并评估产生的拟合结果。采用软件迭代处理直至找到可以接受的最佳拟合结果。
图3. 用于腐蚀分析的常用等效电路
数据分析和等效电路模型都应当非常小心的对待,而且要进行尽可能多的模型验证。虽然通过增加元件几乎总可以建立一个非常合适的模型,但是这样并不能认为它就代表了系统的电化学工艺。一般说来,经验模型应该采用尽可能少的元件,而且应当尽可能采用基于系统电化学工艺理论基础的物理模型。
另外,通常可以建立具有相同阻抗特性的许多不同的经验模型。虽然可能得到一个很好的最小二乘法匹配模型,但仍然有可能得到不能代表该物理系统的不恰当模型。还有可能NLLS拟合算法对测量特性有部分遗漏或者没有收敛。这是因为很多算法都试图在整个频谱范围内优化拟合曲线,所以有可能漏掉了频谱中某些特定频率点上不好的拟合数据。
腐蚀分析是采用IS法表征系统特性的常见应用,也是一个很好的实例。金属的腐蚀(例如铝和钢)是许多行业中的重大安全考虑因素。如果不重视的话,它会导致金属寿命过早结束。自动监视腐蚀的能力能显着节省成本,具有安全和可靠性优势,而且有助于最佳化预防性地维护系统。
除了确定腐蚀的程度,通过监测腐蚀的速率还有可能预测金属疲劳。产生金属疲劳后,在小裂缝出现的地方会从有弹性变为没有弹性。这些裂缝是新的,但是腐蚀速率相当地快,而且裂纹扩展的速率以及随后的腐蚀代表了金属疲劳的程度。早期鉴定腐蚀的方法,特别是在很难达到且无法看到的位置,可以防止或者减慢严重腐蚀的破坏。它还可以用于帮助在现实条件下鉴定不同的保护涂层。
下面是根据物理学知识和腐蚀期间发生的电化学工艺过程建立的一种腐蚀过程等效电路模型。常用于腐蚀监视的等效电路用一个电阻器(Rp)和电容器(Cp)相并联再与一个电阻器Rs相串联表示。
在模型A中电阻器Rs表示金属所在的溶液,而电容Cc表示金属表面的保护涂层或涂料,这表示初始涂层的电容。经过一段时间后,水渗入涂层中形成新的液体和金属界面。随着金属的腐蚀
❽ 怎么使用网络分析仪准确的测试数据
测试前的设置:
1、网络分析仪端口连接专用测试电缆;
2、频率范围按照被测件DUT的频率范围设置;
3、当测量增益最大值Gain的放大器等DUT时,设置输出功率PWR>>Power:-Gain,另需注意DUT输出功率不可超出量程(如0dBm);
4、中频带宽设置依据测试标准或BW>>Bandwidth:1kHz;
5、测量点数依据标准或Sweep>>numberofpoints:401;
6、连接自动校准件执行校准CAL>>StartAutocal;
7、如果只有手动校准件,矢网必须加载校准件匹配的数据文件,不可用ideal数据,执行UOSM或TOSM校准;
8、注意专用测试电缆测试端口的类型与校准件必须一致,不可转接。
经过上述设置和校准后,选定所需测试项进行测试。
下表左栏列举常用基本测试项,右栏内容是该测试项对应的仪器设置:
测试项目仪器设置驻波
MEAS>>S11或S22;
FORMAT>>SWR;
无单位
回波损耗
MEAS>>S11或S22;
FORMAT>>dBMag;
单位dB
插入损耗
增益
MEAS>>S21或S12;
FORMAT>>dBMag;
单位dB
复阻抗
MEAS>>S11或S22;
FORMAT>>Smith;
Marker读数,显示格式R+jX阻抗实部和虚部,以及电阻、电感和电容
阻抗MEAS>>Z<-S11;
单位Ω
相位
MEAS>>S21或S12;
FORMAT>>Phase;
单位°
群时延
MEAS>>S21或S12;
FORMAT>>Delay;
单位s
获取测试数据:
1、光标Marker在曲线上选点读数,是分析数据的基本功能;
2、支持打开多个Marker;
3、Marker>>Search能对曲线数据进行最大值以及最小值等条件搜索;
4、Marker还有滤波器测量功能;
5、曲线数据可以导出为*.snp文件或matlab以及ASCII文本格式文件,Trace>>Tracedata;
6、屏幕图像可保存为图形文件,Print>>toFile.
希望以上内容可以帮到你