当前位置:首页 » 安全设置 » bp神经网络需要自己设置

bp神经网络需要自己设置

发布时间: 2022-10-08 13:05:34

① 伤寒、副伤寒流行预测模型(BP神经网络)的建立

由于目前研究的各种数学模型或多或少存在使用条件的局限性,或使用方法的复杂性等问题,预测效果均不十分理想,距离实际应用仍有较大差距。NNT是Matlab 中较为重要的一个工具箱,在实际应用中,BP 网络用的最广泛。神经网络具有综合能力强,对数据的要求不高,适时学习等突出优点,其操作简便,节省时间,网络初学者即使不了解其算法的本质,也可以直接应用功能丰富的函数来实现自己的目的。因此,易于被基层单位预防工作者掌握和应用。以下几个问题是建立理想的因素与疾病之间的神经网络模型的关键:

(1)资料选取

应尽可能地选取所研究地区系统连续的因素与疾病资料,最好包括有疾病高发年和疾病低发年的数据。在收集影响因素时,要抓住主要影响伤寒、副伤寒的发病因素。

(2)疾病发病率分级

神经网络预测法是按发病率高低来进行预测,在定义发病率等级时,要结合专业知识及当地情况而定,并根据网络学习训练效果而适时调整,以使网络学习训练达到最佳效果。

(3)资料处理问题

在实践中发现,资料的特征往往很大程度地影响网络学习和训练的稳定性,因此,数据的应用、纳入、排出问题有待于进一步研究。

6.3.1 人工神经网络的基本原理

人工神经网络(ANN)是近年来发展起来的十分热门的交叉学科,它涉及生物、电子、计算机、数学和物理等学科,有着广泛的应用领域。人工神经网络是一种自适应的高度非线性动力系统,在网络计算的基础上,经过多次重复组合,能够完成多维空间的映射任务。神经网络通过内部连接的自组织结构,具有对数据的高度自适应能力,由计算机直接从实例中学习获取知识,探求解决问题的方法,自动建立起复杂系统的控制规律及其认知模型。

人工神经网络就其结构而言,一般包括输入层、隐含层和输出层,不同的神经网络可以有不同的隐含层数,但他们都只有一层输入和一层输出。神经网络的各层又由不同数目的神经元组成,各层神经元数目随解决问题的不同而有不同的神经元个数。

6.3.2 BP神经网络模型

BP网络是在1985年由PDP小组提出的反向传播算法的基础上发展起来的,是一种多层次反馈型网络(图6.17),它在输入和输出之间采用多层映射方式,网络按层排列,只有相邻层的节点直接相互连接,传递之间信息。在正向传播中,输入信息从输入层经隐含层逐层处理,并传向输出层,每层神经元的状态只影响下一层神经元的状态。如果输出层不能得到期望的输出结果,则转入反向传播,将误差信号沿原来的连同通路返回,通过修改各层神经元的权值,使误差信号最小。

BP网络的学习算法步骤如下(图6.18):

图6.17 BP神经网络示意图

图6.18 BP算法流程图

第一步:设置初始参数ω和θ,(ω为初始权重,θ为临界值,均随机设为较小的数)。

第二步:将已知的样本加到网络上,利用下式可算出他们的输出值yi,其值为

岩溶地区地下水与环境的特殊性研究

式中:xi为该节点的输入;ωij为从I到j的联接权;θj为临界值;yj为实际算出的输出数据。

第三步:将已知输出数据与上面算出的输出数据之差(dj-yj)调整权系数ω,调整量为

ΔWij=ηδjxj

式中:η为比例系数;xj为在隐节点为网络输入,在输出点则为下层(隐)节点的输出(j=1,2…,n);dj为已知的输出数据(学习样本训练数据);δj为一个与输出偏差相关的值,对于输出节点来说有

δjj(1-yj)(dj-yj

对于隐节点来说,由于它的输出无法进行比较,所以经过反向逐层计算有

岩溶地区地下水与环境的特殊性研究

其中k指要把上层(输出层)节点取遍。误差δj是从输出层反向逐层计算的。各神经元的权值调整后为

ωij(t)=ωij(t-1)+Vωij

式中:t为学习次数。

这个算法是一个迭代过程,每一轮将各W值调整一遍,这样一直迭代下去,知道输出误差小于某一允许值为止,这样一个好的网络就训练成功了,BP算法从本质上讲是把一组样本的输入输出问题变为一个非线性优化问题,它使用了优化技术中最普遍的一种梯度下降算法,用迭代运算求解权值相当于学习记忆问题。

6.3.3 BP 神经网络模型在伤寒、副伤寒流行与传播预测中的应用

伤寒、副伤寒的传播与流行同环境之间有着一定的联系。根据桂林市1990年以来乡镇为单位的伤寒、副伤寒疫情资料,伤寒、副伤寒疫源地资料,结合现有资源与环境背景资料(桂林市行政区划、土壤、气候等)和社会经济资料(经济、人口、生活习惯等统计资料)建立人工神经网络数学模型,来逼近这种规律。

6.3.3.1 模型建立

(1)神经网络的BP算法

BP网络是一种前馈型网络,由1个输入层、若干隐含层和1个输出层构成。如果输入层、隐含层和输出层的单元个数分别为n,q1,q2,m,则该三层网络网络可表示为BP(n,q1,q2,m),利用该网络可实现n维输入向量Xn=(X1,X2,…,Xn)T到m维输出向量Ym=(Y1,Y2,…,Ym)T的非线性映射。输入层和输出层的单元数n,m根据具体问题确定。

(2)样本的选取

将模型的输入变量设计为平均温度、平均降雨量、岩石性质、岩溶发育、地下水类型、饮用水类型、正规自来水供应比例、集中供水比例8个输入因子(表6.29),输出单元为伤寒副伤寒的发病率等级,共一个输出单元。其中q1,q2的值根据训练结果进行选择。

表6.29 桂林市伤寒副伤寒影响因素量化表

通过分析,选取在伤寒副伤寒有代表性的县镇在1994~2001年的环境参评因子作为样本进行训练。利用聚类分析法对疫情进行聚类分级(Ⅰ、Ⅱ、Ⅲ、Ⅳ),伤寒副伤寒发病最高级为Ⅳ(BP网络中输出定为4),次之的为Ⅲ(BP网络中输出定为3),以此类推,最低为Ⅰ(BP网络中输出定为1)

(3)数据的归一化处理

为使网络在训练过程中易于收敛,我们对输入数据进行了归一化处理,并将输入的原始数据都化为0~1之间的数。如将平均降雨量的数据乘以0.0001;将平均气温的数据乘以0.01;其他输入数据也按类似的方法进行归一化处理。

(4)模型的算法过程

假设共有P个训练样本,输入的第p个(p=1,2,…,P)训练样本信息首先向前传播到隐含单元上。

经过激活函数f(u)的作用得到隐含层1的输出信息:

岩溶地区地下水与环境的特殊性研究

经过激活函数f(u)的作用得到隐含层2的输出信息:

岩溶地区地下水与环境的特殊性研究

激活函数f(u)我们这里采用Sigmoid型,即

f(u)=1/[1+exp(-u)](6.5)

隐含层的输出信息传到输出层,可得到最终输出结果为

岩溶地区地下水与环境的特殊性研究

以上过程为网络学习的信息正向传播过程。

另一个过程为误差反向传播过程。如果网络输出与期望输出间存在误差,则将误差反向传播,利用下式来调节网络权重和阈值:

岩溶地区地下水与环境的特殊性研究

式中:Δω(t)为t次训练时权重和阈值的修正;η称为学习速率,0<η<1;E为误差平方和。

岩溶地区地下水与环境的特殊性研究

反复运用以上两个过程,直至网络输出与期望输出间的误差满足一定的要求。

该模型算法的缺点:

1)需要较长的训练时间。由于一些复杂的问题,BP算法可能要进行几小时甚至更长的时间的训练,这主要是由于学习速率太小造成的,可采用变化的学习速率或自适应的学习速率加以改进。

2)完全不能训练。主要表现在网络出现的麻痹现象上,在网络的训练过程中,当其权值调的过大,可能使得所有的或大部分神经元的加权总和n偏大,这使得激活函数的输入工作在S型转移函数的饱和区,从而导致其导数f′(n)非常小,从而使得对网络权值的调节过程几乎停顿下来。

3)局部极小值。BP算法可以使网络权值收敛到一个解,但它并不能保证所求为误差超平面的全局最小解,很可能是一个局部极小解。这是因为BP算法采用的是梯度下降法,训练从某一起点沿误差函数的斜面逐渐达到误差的最小值。

考虑到以上算法的缺点,对模型进行了两方面的改进:

(1)附加动量法

为了避免陷入局部极小值,对模型进行了改进,应用了附加动量法。附加动量法在使网络修正及其权值时,不仅考虑误差在梯度上的作用,而且考虑在误差曲面上变化趋势的影响,其作用如同一个低通滤波器,它允许网络忽略网络上的微小变化特性。在没有附加动量的作用下,网络可能陷入浅的局部极小值,利用附加动量的作用则有可能滑过这些极小值。

该方法是在反向传播法的基础上在每一个权值的变化上加上一项正比于前次权值变化量的值,并根据反向传播法来产生心的权值变化。促使权值的调节向着误差曲面底部的平均方向变化,从而防止了如Δω(t)=0的出现,有助于使网络从误差曲面的局部极小值中跳出。

这种方法主要是把式(6.7)改进为

岩溶地区地下水与环境的特殊性研究

式中:A为训练次数;a为动量因子,一般取0.95左右。

训练中对采用动量法的判断条件为

岩溶地区地下水与环境的特殊性研究

(2)自适应学习速率

对于一个特定的问题,要选择适当的学习速率不是一件容易的事情。通常是凭经验或实验获取,但即使这样,对训练开始初期功效较好的学习速率,不见得对后来的训练合适。所以,为了尽量缩短网络所需的训练时间,采用了学习速率随着训练变化的方法来找到相对于每一时刻来说较差的学习速率。

下式给出了一种自适应学习速率的调整公式:

岩溶地区地下水与环境的特殊性研究

通过以上两个方面的改进,训练了一个比较理想的网络,将动量法和自适应学习速率结合起来,效果要比单独使用要好得多。

6.3.3.2 模型的求解与预测

采用包含了2个隐含层的神经网络BP(4,q1,q2,1),隐含层单元数q1,q2与所研究的具体问题有关,目前尚无统一的确定方法,通常根据网络训练情况采用试错法确定。在满足一定的精度要求下一般认小的数值,以改善网络的概括推论能力。在训练中网络的收敛采用输出值Ykp与实测值tp的误差平方和进行控制:

岩溶地区地下水与环境的特殊性研究

1)将附加动量法和自适应学习速率结合应用,分析桂林市36个乡镇地质条件各因素对伤寒副伤寒发病等级的影响。因此训练样本为36个,第一个隐含层有19个神经元,第二个隐含层有11个神经元,学习速率为0.001。

A.程序(略)。

B.网络训练。在命令窗口执行运行命令,网络开始学习和训练,其学习和训练过程如下(图6.19)。

图6.19 神经网络训练过程图

C.模型预测。

a.输入未参与训练的乡镇(洞井乡、两水乡、延东乡、四塘乡、严关镇、灵田乡)地质条件数据。

b.预测。程序运行后网络输出预测值a3,与已知的实际值进行比较,其预测结果整理后见(表6.30)。经计算,对6个乡镇伤寒副伤寒发病等级的预测符合率为83.3%。

表6.30 神经网络模型预测结果与实际结果比较

c.地质条件改进方案。在影响疾病发生的地质条件中,大部分地质条件是不会变化的,而改变发病地区的饮用水类型是可以人为地通过改良措施加以实施的一个因素。因此,以灵田乡为例对发病率较高的乡镇进行分析,改变其饮用水类型,来看发病等级的变化情况。

表6.31显示,在其他地质条件因素不变的情况下,改变当地的地下水类型(从原来的岩溶水类型改变成基岩裂隙水)则将发病等级从原来的最高级4级,下降为较低的2级,效果是十分明显的。因此,今后在进行伤寒副伤寒疾病防治的时候,可以通过改变高发区饮用水类型来客观上减少疫情的发生。

表6.31 灵田乡改变饮用水类型前后的预测结果

2)选取桂林地区1994~2000年月平均降雨量、月平均温度作为输入数据矩阵,进行样本训练,设定不同的隐含层单元数,对各月份的数据进行BP网络训练。在隐含层单元数q1=13,q2=9,经过46383次数的训练,误差达到精度要求,学习速率0.02。

A.附加动量法程序(略)。

B.网络训练。在命令窗口执行运行命令,网络开始学习和训练,其学习和训练过程如下(图6.20)。

C.模型预测。

a.输入桂林市2001年1~12月桂林市各月份的平均气温和平均降雨量。预测程度(略)。

b.预测。程序运行后网络输出预测值a2,与已知的实际值进行比较,其预测结果整理后见(表6.32)。经计算,对2001年1~12月伤寒副伤寒发病等级进行预测,12个预测结果中,有9个符合,符合率为75%。

图6.20 神经网络训练过程图

表6.32 神经网络模型预测结果与实际值比较

6.3.3.3 模型的评价

本研究采用BP神经网络对伤寒、副伤寒发病率等级进行定量预测,一方面引用数量化理论对不确定因素进行量化处理;另一方面利用神经网络优点,充分考虑各影响因素与发病率之间的非线性映射。

实际应用表明,神经网络定量预测伤寒、副伤寒发病率是理想的。

其主要优点有:

1)避免了模糊或不确定因素的分析工作和具体数学模型的建立工作。

2)完成了输入和输出之间复杂的非线性映射关系。

3)采用自适应的信息处理方式,有效减少人为的主观臆断性。

虽然如此,但仍存在以下缺点:

1)学习算法的收敛速度慢,通常需要上千次或更多,训练时间长。

2)从数学上看,BP算法有可能存在局部极小问题。

本模型具有广泛的应用范围,可以应用在很多领域。从上面的结果可以看出,实际和网络学习数据总体较为接近,演化趋势也基本一致。说明选定的气象因子、地质条件因素为神经单元获得的伤寒、副伤寒发病等级与实际等级比较接近,从而证明伤寒、副伤寒流行与地理因素的确存在较密切的相关性。

② BP神经网络怎么设置输入层节点数

matlab的? 输入层由你输入的特征决定的,送入特征matlab就自动确定输入层节点数了

③ BP神经网络中初始权值和阈值的设定

1、首先需要了解BP神经网络是一种多层前馈网络。

④ BP神经网络 运行的步骤太少就停了,是参数设置的问题吗

不是运行太少而停止,是达到了你的要求。
net.trainParam.goal=0.01;
精度调高点试下

⑤ BP神经网络的梳理

BP神经网络被称为“深度学习之旅的开端”,是神经网络的入门算法。
各种高大上的神经网络都是基于BP网络出发的,最基础的原理都是由BP网络而来 [1] ,另外由于BP神经网络结构简单,算法经典, 是神经网络中应用最广泛的一种。

BP神经网络(back propagation neural network)全称是反向传播神经网络。
神经网络发展部分背景如下 [2] :

为解决非线性问题,BP神经网络应运而生。

那么什么是BP神经网络?稍微专业点的解释要怎么说呢?

很喜欢 最简单的神经网络--Bp神经网络 一文对算法原理的解释,语言活泼,案例简单,由浅入深。
文中提到所谓的 AI 技术,本质上是一种数据处理处理技术,它的强大来自于两方面:1.互联网的发展带来的海量数据信息;2.计算机深度学习算法的快速发展。AI 其实并没有什么神秘,只是在算法上更为复杂 [3] 。

我们从上面的定义出发来解释BP神经网络的原理。

BP神经网络整个网络结构包含了:一层输入层,一到多层隐藏层,一层输出层。
一般说L层神经网络,指的是有L个隐层,输入层和输出层都不计算在内的 [6] 。

BP神经网络模型训练的学习过程由信号的 正向传播 和误差的 反向传播 两个过程组成。

什么是信号的正向传播?顾名思义,就是结构图从左到右的运算过程。

我们来看看结构图中每个小圆圈是怎么运作的。我们把小圈圈叫做神经元,是组成神经网络的基本单元。

正向传播就是输入数据经过一层一层的神经元运算、输出的过程,最后一层输出值作为算法预测值y'。

前面正向传播的时候我们提到权重w、偏置b,但我们并不知道权重w、偏置b的值应该是什么。关于最优参数的求解,我们在 线性回归 、 逻辑回归 两章中有了详细说明。大致来讲就是:

BP神经网络全称 back propagation neural network,back propagation反向传播是什么?
反向传播的建设本质上就是寻找最优的参数组合,和上面的流程差不多,根据算法预测值和实际值之间的损失函数L(y',y),来反方向地计算每一层的z、a、w、b的偏导数,从而更新参数。
对反向传播而言,输入的内容是预测值和实际值的误差,输出的内容是对参数的更新,方向是从右往左,一层一层的更新每一层的参数。

BP神经网络通过先正向传播,构建参数和输入值的关系,通过预测值和实际值的误差,反向传播修复权重;读入新数据再正向传播预测,再反向传播修正,...,通过多次循环达到最小损失值,此时构造的模型拥有最优的参数组合。

以一个简单的BP神经网络为例,由3个输入层,2层隐藏层,每层2个神经元,1个输出层组成。

【输入层】传入
【第一层隐藏层】
对于 神经元而言,传入 ,加权求和加偏置激活函数处理后,输出 ;
对于 神经元而言,传入 ,加权求和加偏置函数处理后,输出 ;
输出:

【第二层隐藏层】
对于 神经元而言,传入 ,加权求和加偏置激活函数处理后,输出 ;
对于 神经元而言,传入 ,加权求和加偏置激活函数处理后,输出 ;
输出:

【输出层】
对于输出层神经元而言,输入 ,加权求和加偏置激活函数处理后,输出 ,输出的是一个值

第一次运行正向传播这个流程时随用随机参数就好,通过反向传播不断优化。因此需要在一开始对 设置一个随机的初始值。

首先计算正向传播输出值 与实际值的损失 ,是一个数值。所谓反向是从右到左一步步来的,先回到 ,修正参数 。

以此类推,通过对损失函数求偏导跟新参数 ,再跟新参数 。这时又回到了起点,新的数据传入又可以开始正向传播了。

keras可以快速搭建神经网络,例如以下为输入层包含7129个结点,一层隐藏层,包含128个结点,一个输出层,是二分类模型。

神经网络反向传播的优化目标为loss,可以观察到loss的值在不断的优化。

可以通过model.get_layer().get_weights()获得每一层训练后的参数结果。通过model.predict()预测新数据。

至此,BP神经网络的整个运算流程已经过了一遍。之前提到BP神经网络是为解决非线性问题应运而生的,那么为什么BP神经网络可以解决非线性问题呢?
还记得神经元里有一个激活函数的操作吗?神经网络通过激活函数的使用加入非线性因素。
通过使用非线性的激活函数可以使神经网络随意逼近复杂函数,从而使BP神经网络既可以处理线性问题,也可以处理非线性问题。

为什么激活函数的使用可以加入非线性因素 [7] ?

其实逻辑回归算法可以看作只有一个神经元的单层神经网络,只对线性可分的数据进行分类。
输入参数,加权求和,sigmoid作为激活函数计算后输出结果,模型预测值和实际值计算损失Loss,反向传播梯度下降求编导,获得最优参数。

BP神经网络是比 Logistic Regression 复杂得多的模型,它的拟合能力很强,可以处理很多 Logistic Regression处理不了的数据,但是也更容易过拟合。

具体用什么算法还是要看训练数据的情况,没有一种算法是使用所有情况的。

常见的前馈神经网络有BP网络,RBF网络等。

BP神经网络的一个主要问题是:结构不好设计。
网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据经验或者通过反复实验确定。

但是BP神经网络简单、易行、计算量小、并行性强,目前仍是多层前向网络的首选算法。

[1] 深度学习开端---BP神经网络: https://blog.csdn.net/Chile_Wang/article/details/100557010
[2] BP神经网络发展历史: https://zhuanlan.hu.com/p/47998728
[3] 最简单的神经网络--Bp神经网络: https://blog.csdn.net/weixin_40432828/article/details/82192709
[4] 神经网络的基本概念: https://blog.csdn.net/jinyuan7708/article/details/82466653
[5] 神经网络中的 “隐藏层” 理解: https://blog.csdn.net/nanhuaibeian/article/details/100183000
[6] AI学习笔记:神经元与神经网络: https://www.jianshu.com/p/65eb2fce0e9e
[7] 线性模型和非线性模型的区别: https://www.cnblogs.com/toone/p/8574294.html
[8] BP神经网络是否优于logistic回归: https://www.hu.com/question/27823925/answer/38460833

⑥ 我的BP神经网络训练一直达不到要求,要怎样修改才能达到要求

net=init(net);不用这一句,把‘logsig‘改成“tansig”,第一个,同样,把第二个改成’purelin‘
建议你把’trainrp‘改成’trainlm“,试试!

⑦ BP神经网络如何设置初始权值

1、如果使用MATLAB的话不要自己设定,newff之后会自动赋值
也可以手动:net.IW{}= ; net.bias{}=
2、一般来说输入归一化,那么w和b取0-1的随机数就行

⑧ 菜鸟请BP神经网络达人帮忙。。万分感谢!

步骤基本上是这样的,但你需要自己根据数据来设置相应的参数
close all ;
clear ;
echo on ;
clc ;
% NEWFF——生成一个新的前向神经网络
% TRAIN——对 BP 神经网络进行训练
% SIM——对 BP 神经网络进行仿真
pause
% 敲任意键开始
clc
% 定义训练样本
% P 为输入矢量
p=[ ];
% T 为目标矢量
t= [];
%训练样本的归一化
for i=1:(训练样本的指标数)
P(i,:)=(p(i,:)-min(p(i,:)))/(max(p(i,:))-min(p(i,:)));
end
pause
clc

% 创建一个新的前向神经网络
net=newff(minmax(P),[15,2],{'tansig','purelin'},'traingda'); %这些参数要自己设置
% 当前输入层权值和阈值
inputWeights=net.IW{1,1};
inputbias=net.b{1} ;
% 当前网络层权值和阈值
layerWeights=net.LW{2,1} ;
layerbias=net.b{2} ;
pause
clc

% 设置训练参数 也要自己设置
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
%net.trainParam.mc = 0.9; % 附加动量因子
net.trainParam.epochs =5000;
net.trainParam.goal = 1e-4;
pause
clc

% 调用 TRAINGDM 算法训练 BP 网络
[net,tr]=train(net,P,t);
pause
clc
% 对 BP 网络进行仿真
p_test=[];
for i=1:6
P_test(i,:)=(p_test(i,:)-min(p_test(i,:)))/(max(p_test(i,:))-min(p_test(i,:)));
end
t_test=[];
A = sim(net,P_test)
% 计算仿真误差
E = t - A
error=mse(E)
pause
clc
echo off

%反归一化
for i=1:2
predict(i,:)=A(i,:)*(max(t(i,:))-min(t(i,:)))+ min(t(i,:));
end
predict %即仿真结果
pause

⑨ 在用bp神经网络时,需要输入数据,但有些数据是定性数据,如何将定性数据定量化

你所说的应该是输入数据的预处理 即pre-processing,你使用ST Nueral Networks的话,里面有自动的预处理,你输入定性数据(nominal variable)后,软件可以自动预处理后转化为神经网络可以识别的数值.
或者你自己设置
例1 根据年鉴记载的某些地区经度,纬度与台风类型的关系预测任意经纬度下台风类型(台风A或者台风B),

台风类型就属于定性数据在STNN中你可以现将输出变量设置为nominal variable,然后设置输出变量的数目为2,分别是V1和V2,构建网络的时候经纬度对应台风A的,设置输出值为V1,为台风B的设置为V2,预测时,网络可以给出结果V1或者V2,你就知道是哪种台风了.
例2 根据现有的水质标准以及数种污染物的采样值预测该河流的水质级别

输出值为水质级别,同样为nominal variable,你可以将输出值作一个标准化处理,设总共有五个水质级别,你可以将输出变量区间化分为0-0.2,0.2-0.4,0.4-0.6,0.6-0.8,0.8-1,设置第一级别水质对应的输出值为0.2 第2级水质对应0.4,等等,第5级水质对应1

⑩ BP人工神经网络方法

(一)方法原理

人工神经网络是由大量的类似人脑神经元的简单处理单元广泛地相互连接而成的复杂的网络系统。理论和实践表明,在信息处理方面,神经网络方法比传统模式识别方法更具有优势。人工神经元是神经网络的基本处理单元,其接收的信息为x1,x2,…,xn,而ωij表示第i个神经元到第j个神经元的连接强度或称权重。神经元的输入是接收信息X=(x1,x2,…,xn)与权重W={ωij}的点积,将输入与设定的某一阈值作比较,再经过某种神经元激活函数f的作用,便得到该神经元的输出Oi。常见的激活函数为Sigmoid型。人工神经元的输入与输出的关系为

地球物理勘探概论

式中:xi为第i个输入元素,即n维输入矢量X的第i个分量;ωi为第i个输入与处理单元间的互联权重;θ为处理单元的内部阈值;y为处理单元的输出。

常用的人工神经网络是BP网络,它由输入层、隐含层和输出层三部分组成。BP算法是一种有监督的模式识别方法,包括学习和识别两部分,其中学习过程又可分为正向传播和反向传播两部分。正向传播开始时,对所有的连接权值置随机数作为初值,选取模式集的任一模式作为输入,转向隐含层处理,并在输出层得到该模式对应的输出值。每一层神经元状态只影响下一层神经元状态。此时,输出值一般与期望值存在较大的误差,需要通过误差反向传递过程,计算模式的各层神经元权值的变化量

。这个过程不断重复,直至完成对该模式集所有模式的计算,产生这一轮训练值的变化量Δωij。在修正网络中各种神经元的权值后,网络重新按照正向传播方式得到输出。实际输出值与期望值之间的误差可以导致新一轮的权值修正。正向传播与反向传播过程循环往复,直到网络收敛,得到网络收敛后的互联权值和阈值。

(二)BP神经网络计算步骤

(1)初始化连接权值和阈值为一小的随机值,即W(0)=任意值,θ(0)=任意值。

(2)输入一个样本X。

(3)正向传播,计算实际输出,即根据输入样本值、互联权值和阈值,计算样本的实际输出。其中输入层的输出等于输入样本值,隐含层和输出层的输入为

地球物理勘探概论

输出为

地球物理勘探概论

式中:f为阈值逻辑函数,一般取Sigmoid函数,即

地球物理勘探概论

式中:θj表示阈值或偏置;θ0的作用是调节Sigmoid函数的形状。较小的θ0将使Sigmoid函数逼近于阈值逻辑单元的特征,较大的θ0将导致Sigmoid函数变平缓,一般取θ0=1。

(4)计算实际输出与理想输出的误差

地球物理勘探概论

式中:tpk为理想输出;Opk为实际输出;p为样本号;k为输出节点号。

(5)误差反向传播,修改权值

地球物理勘探概论

式中:

地球物理勘探概论

地球物理勘探概论

(6)判断收敛。若误差小于给定值,则结束,否则转向步骤(2)。

(三)塔北雅克拉地区BP神经网络预测实例

以塔北雅克拉地区S4井为已知样本,取氧化还原电位,放射性元素Rn、Th、Tc、U、K和地震反射

构造面等7个特征为识别的依据。

构造面反映了局部构造的起伏变化,其局部隆起部位应是油气运移和富集的有利部位,它可以作为判断含油气性的诸种因素之一。在该地区投入了高精度重磁、土壤微磁、频谱激电等多种方法,一些参数未入选为判别的特征参数,是因为某些参数是相关的。在使用神经网络方法判别之前,还采用K-L变换(Karhaem-Loeve)来分析和提取特征。

S4井位于测区西南部5线25点,是区内唯一已知井。该井在5390.6m的侏罗系地层获得40.6m厚的油气层,在5482m深的震旦系地层中获58m厚的油气层。取S4井周围9个点,即4~6线的23~25 点作为已知油气的训练样本;由于区内没有未见油的钻井,只好根据地质资料分析,选取14~16线的55~57点作为非油气的训练样本。BP网络学习迭代17174次,总误差为0.0001,学习效果相当满意。以学习后的网络进行识别,得出结果如图6-2-4所示。

图6-2-4 塔北雅克拉地区BP神经网络聚类结果

(据刘天佑等,1997)

由图6-2-4可见,由预测值大于0.9可得5个大封闭圈远景区,其中测区南部①号远景区对应着已知油井S4井;②、③号油气远景区位于地震勘探所查明的托库1、2号构造,该两个构造位于沙雅隆起的东段,其西段即为1984年钻遇高产油气流的Sch2井,应是含油气性好的远景区;④、⑤号远景区位于大涝坝构造,是yh油田的组成部分。