❶ 汽车互联中 怎么保障网络信息安全
可以通过使用厦门雅迅公司研发生产的汽车信息安全系列产品,包括车联网安全网关、安全中控、安全T-BOX网联终端、汽车信息安全支撑系统等产品来实现。
1、车联网安全网关是国内首个采用SM1/SM2/SM3自主密码技术进行车内总线安全保护的汽车网关产品,可有效解决车内网络与车外网络设备的安全认证和数据保密问题,抵御各种针对车联网的网络攻击。
2、安全智能中控是一款通过日志与审计、访问控制与管理等层层防御来实现纵深安全防御的智能中控设备,包括多媒体应用娱乐、车载蓝牙、导航、4G上网、主动智能报警、智能触控、故障诊断、远程车辆控制和手机车机互控等功能。
3、安全T-box是一款响应高安全级别车联网应用的车载终端,内置高安全等级硬件安全模块,支持北斗/GPS定位、安全加密与通信认证等业务功能。所有业务关联的通信接口,均采用密码技术进行认证与信息加密。
4、信息安全支撑系统可为高安全级别车联网应用需求提供安全解决方案,主要关注呼叫中心服务、车辆远程控制、车辆诊断、车况实时查询等车辆安防类应用服务。
❷ 汽车的智能网联化面临着极大的网络安全挑战
你点的每个赞,我都认真当成了喜欢
随着互联网 科技 的发展, 汽车 产业也逐渐向智能化、网联化、共享化的方向发展,车辆本身已从封闭的系统变成了开放的系统,智能网联 汽车 将逐渐成为像手机一样的智能终端设备。当 汽车 成为网络空间的一个组成部分,也像其他联网的电子设备和计算机系统一样,成为黑客攻击的目标,面临严峻的网络安全挑战。近几年针对 汽车 的众多攻击事例表明,黑客攻击不仅会造成数据和隐私泄露,还能通过接管和控制车辆驾驶系统,给驾乘人员的人身和财产安全都带来了重大隐患。
值得重视的安全问题
早在2015年,两名白帽黑客就通过远程入侵一辆正在路上行驶的切诺基,对其做出减速、关闭引擎、突然制动或者制动失灵等操控,这次事件造成克莱斯勒公司在全球召回了140万辆车并安装了相应补丁。2019年4月,腾讯科恩实验室发布的报告显示,利用特斯拉Autopilot自动辅助驾驶系统存在的缺陷,通过欺骗Autopilot系统,可以实现让车辆驶入反向车道;即使Autopilot系统没有被车主主动开启,黑客利用已知漏洞获取Autopilot控制权之后,也可以利用Autopilot功能通过 游戏 手柄对车辆行驶方向进行操控。
此外, 汽车 安全漏洞不仅会对用户的人身和财产安全构成威胁,还有可能造成城市交通瘫痪,给 社会 公共安全管理带来治理挑战。例如,佐治亚理工学院的研究人员通过数学模型分析发现,在交通高峰期,只要20%的 汽车 被黑客入侵导致熄火,就能有效地让城市交通瘫痪,并导致交通事故、人员伤亡等城市混乱,而救护车和消防车也因交通停滞而无法赶到。虽然让数百万辆 汽车 同时遭到协同攻击具有一定的技术难度,但这项研究成果显示了 汽车 网络安全风险可能导致的严重后果。
随着车联网的发展,智能网联 汽车 受到的攻击面非常广泛。例如,黑客可通过移动App、车联网云平台、OTA空中软件升级、车载T-BOX、车载信息 娱乐 系统、车载诊断系统接口、V2X车路通信等环节和节点存在的漏洞实现对车辆内数据的窃取、对车辆的盗窃以及对车辆驾驶系统自动控制。
同时,除网络安全风险外,加载自动驾驶功能的智能网联 汽车 在功能安全性方面也存在重大隐患。截至目前,特拉斯、谷歌Waymo、Uber等公司研制的自动驾驶 汽车 在上路测试过程中都发生过交通事故,Uber公司的自动驾驶 汽车 还曾在2018年3月造成一名行人死亡,特拉斯开发的加载辅助驾驶系统的 汽车 更是造成多起严重的交通事故。这些安全事件都为智能网联 汽车 产业发展蒙上了阴影。
科技 “病”还需要用 科技 “药”来治
智能网联 汽车 产业链长、防护界面众多,安全问题复杂,为此,产业链各方纷纷加快安全技术研发,提升 汽车 安全防御能力。
整车厂安全意识明显提升,特拉斯连续4年在Pwn2own国际黑客大赛上举办漏洞悬赏计划,已向发现其系统漏洞的黑客提供了数十万美元奖励。2019年,其奖金更是提高为赠送一辆Model 3轿车。国内长安 汽车 、比亚迪、蔚来 汽车 也都纷纷建立信息安全部门,或与网络安全厂商加强合作。
汽车 配套产品供应商积极在产品设计和研发侧嵌入网络安全能力,以满足整车厂的安全需求。大陆集团2017年收购以色列 汽车 网络安全公司Argus,并把网络安全放在产品与服务开发的核心位置,目前已发布了端到端安全解决方案,涵盖电子部件安全、部件间通信安全、车辆与外界接口安全、云端安全等。哈曼国际2016年收购 汽车 网络安全公司TowerSec,快速加强网络安全技术研发,推出了HARMAN SHIELD网络安全解决方案,并积极为标致雪铁龙等整车厂商提供智能网联 汽车 平台的网络安全策略。
IT互联网公司以及网络安全企业也积极应对 汽车 网络安全风险。腾讯旗下科恩实验室依靠自身多年的漏洞挖掘经验长期致力于车联网系统的漏洞挖掘与研究。网络2018年4月启动网络安全实验室,负责为自动驾驶 汽车 开发安全解决方案,2018年11月发布一站式 汽车 信息安全解决方案,可解决黑客攻击和隐私泄露等安全问题。此外,国内外网络安全厂商纷纷拓展 汽车 安全业务,360推出“ 汽车 安全大脑”解决方案,通过监控、分析、响应的动态防御手段,为智能网联 汽车 的安全运营提供保障。
此外,Arxan Technologies、Mocana、Intertrust Technologies等国外安全厂商,亚信安全、梆梆安全、绿盟 科技 等国内安全厂商都将 汽车 安全作为新增业务。同时,国外也涌现多家专注于 汽车 网络安全的初创企业,例如CarsDome、GuardKnox、CyMotive等。
汽车 网络安全的立法挑战
除产业界积极应对 汽车 网络安全挑战外,针对该领域的法案、指南、标准等也在积极推进过程中。美国众议院2017年9月通过的《自动驾驶法案》将网络安全作为单独一个章节,要求自动驾驶车辆厂商必须制定网络安全计划,包括如何应对网络攻击、未授权入侵以及虚假或者恶意控制指令等安全策略,用以保护关键的控制、系统和程序,并根据环境的变化对此类系统进行更新。此外,还要求自动驾驶 汽车 制造商必须制定隐私保护计划,明确对车主和乘客信息的收集、使用、分享和存储的相关做法,包括在收集方式、数据最小化、去识别化以及数据留存等方面的做法。
英国政府于2017年8月发布《网联 汽车 和自动驾驶 汽车 的网络安全关键原则》,提出包括加强企业内部网络安全管理、安全风险评估与管理、产品售后服务与应急响应机制、整体安全性要求、系统设计、软件安全管理、数据安全、弹性设计在内的 8 项关键原则。随后,在英国交通部和英国国家网络安全中心以及众多 汽车 企业的支持下,英国标准协会于2018年12月发布自动驾驶 汽车 网络安全标准,英国由此成为首个发布此类标准的国家。目前,我国 汽车 标准化技术委员会和信息安全标准化技术委员会等标准制定机构也在加紧制定 汽车 信息安全标准。
针对功能安全问题,目前国内外都利用法律法规进行规制。各国针对自动驾驶 汽车 上路的立法都非常谨慎。例如出于安全考虑,目前国内外大部分自动驾驶道路测试法规都要求自动驾驶 汽车 测试时必须配备经过严格培训的测试人员,测试驾驶人应当始终处于测试车辆的驾驶座位上,要在必要时干预或接管车辆,并强制要求测试主体在测试前购买相关保险,且必须通过封闭道路测试验证后方可在公共和开放道路上进行测试。
当前,全球范围内进入智能网联 汽车 快速发展阶段,企业之间跨界融合、产业重构的趋势已经非常明显,产业生态正在快速形成与发展。未来,人工智能、5G、物联网、云计算等新一代信息技术的飞速发展,将在智能网联 汽车 技术发展中产生巨大协同效应,重塑 汽车 产业业态和商业模式,为人类出行方式带来根本性变革。但在当前发展阶段,国内外智能网联 汽车 厂商尚没有构建面向中高级无人驾驶阶段的可信安全体系,无论在功能安全,还是网络安全方面,智能网联 汽车 的安全可靠性都亟待加强。若无安全性保障,将极大地限制智能网联 汽车 的普及应用。因此,安全是智能网联 汽车 发展的基础,产业界各方应进一步提升安全意识,在产品设计、研发、测试的过程中,将安全内嵌其中,并在产品全生命周期中做到持续的安全保障,实现安全与产业发展同步建设。
人民交通》杂志是我国交通领域大型时政类期刊
以传播国家方针政策,展现交通发展进程
助力中国交通事业快速发展成长为办刊目标
网址:http://www.rmjtxw.com
电话:010—67637567
地址:北京市丰台区东铁营顺三条2号
邮政编码:100079
编辑|贡昶
图文|网络
❸ 车载以太网(上)
车载以太网的出现背景楼主就不多做赘述了,其实主要是因汽车E/E架构和功能的复杂度提升而带来的对车辆数据传输带宽提高和通讯方式改变(基于服务的通讯-SOA)的需求。
就目前汽车总线的应用情况,成本低、可靠性高、应用普遍的有Lin、CAN通讯,CAN FD也是最近几年才逐渐得到应用,而FlexRay、车载Ethernet等基于成本因素,目前主要在高端车型中使用。
其中楼主之前介绍的FlexRay后续得到普遍应用的可能性楼主认为不是很大,首先成本方面与车载以太网差不多而通讯速率又远低于它,而伴随着未来智能化、网联化的趋势,车载Ethernet在未来得到推广的可能性要比FlexRay高很多。需要注意的是CAN FD在市场推广实施还没有几年,第三代CAN总线-CAN XL也即将登场,CAN XL传输速率将达到10Mbit/s,可填补CAN FD和百兆车载以太网(100BASE-T1)之间的鸿沟,从这点也可以看出车载通讯的快速发展及对通讯带宽的越来越高的要求,同时也可从另一方面说明FlexRay的尴尬。当然所有总线的应用都是分所在的域和场景的,例如对于安全要求很高的场合,采用了基于时间触发机制的FlexRay因实时性和确定性更高则更合适。
在车载网络方面,玩家是很多的,也推出了各自的标准,如下:
其中OPEN Alliance和电气与电子工程师协会(IEEE)制定的标准是车载以太网领域比重最大和应用最广泛的,例如我们熟知的100BASE-T1和1000BASE-T1。
自1980年以来,IEEE一直负责以太网的维护、开发和标准化。尽管各个公司都可提供专有的以太网解决方案,但大多数时候公司都会交给IEEE进行标准化以确保更广泛的应用。802工作组则专门负责以太网,因此,所有与以太网相关的标准都以802开头(例如,IEEE 802.1,IEEE 802.2,IEEE 802.3等)。
OPEN Alliance SIG是由汽车制造商和供应商组成的联盟,目的是促进以太网在汽车工业中的进一步发展。OPEN Alliance SIG与IEEE合作,将汽车以太网转换为通用标准。就目前的车载以太网标准方面,主流标准的是如下几个,目前主要是第二个100BASE-T1:用单对双绞线实现100Mbit/s的数据传输,走的靠前的OEM则使用更快的千兆以太网。
OSI七层网络模型(OSI=Open Systems Interconnection)是互联网发展过程中一个很重要的模型。OSI是一个开放性的通信系统互连参考模型,其含义就是建议所有公司使用这个规范来控制网络。只有统一通信规范时,才能实现真正的互联化。OSI 七层模型及通信互联的传输过程,如下图所示:
OSI 七层网络模型是一个理想的网络参考模型, TCP/IP模型 是已经被实际广泛应用于因特网的网络分层模型。 TCP/IP 模型没有对 OSI 的 5~7 层做严格区分,统称为应用层 。
车载以太网是基于 TCP/IP 的网络分层模型 ,并由 OPEN 和 AUTOSAR 等联盟对以太网相关协议进行了规范和补充。
以太网的网络拓扑结构有点对点形式、类似于CAN或LIN的总线形式、链式和星型等形式:
也有由上面几种形式的组合形式:
当然现在多个节点的车载以太网的互联互通需要交换机Switch, Switch的作用 如下:
从硬件的角度看,以太网接口电路主要由 MAC(Media Access Control)控制器和物理层接口PHY(Physical Layer,PHY) 两大部分构成,如下图所示:
MAC及PHY工作在OSI七层模型的数据链路层和物理层, 如下
PHY和MAC之间是如何传送数据和相互沟通的呢?MAC与PHY之间通过两个接口连接,分别为SMI接口和MII接口。
MII(Media Independent Interface)即媒体独立接口,MII接口是MAC与PHY连接的标准接口,以太网MAC通过该接口发出数据帧经过PHY后传输到其他网络节点上,同时其他网络节点的数据先经过PHY后再由MAC接收。MII是IEEE-802.3定义的以太网行业标准,MII接口提供了MAC与PHY之间、PHY与STA(Station Management)之间的互联技术,该接口支持10Mb/s与100Mb/s的数据传输速率,数据传输的位宽为4位。 "媒体独立"表明在不对MAC硬件重新设计或替换的情况下,任何类型的PHY设备都可以正常工作 。802.3协议最多支持32个PHY,但有一定的限制:要符合协议要求的connector特性。
SMI叫串行管理接口,以太网MAC通过该接口可以访问PHY的寄存器,通过对这些寄存器操作可对PHY进行控制和管理。SMI接口包括MDIO(控制和管理PHY以获取PHY的状态)和MDC(为MDIO提供时钟)。MDC由MAC提供,MDIO是一根双向的数据线。用来传送MAC层的控制信息和物理层的状态信息。MDIO数据与MDC时钟同步,在MDC上升沿有效。
由此可见,MAC 和PHY,一个是数据链路层,一个是物理层;两者通过MII传送数据。 因此 Ethernet的接口实质是MAC通过MII总线控制PHY的过程 。
MII接口后续又衍生了很多其他版本,如RMII、GMII、SGMII、RGMII等。这里简要介绍其中的MII和RMII,如下图所示。 MII共使用了16根线。其中CRS与COL只在半双工模式有效,而车载以太网固定工作在全双工模式下,故应用在汽车环境需要14根线 。
RMII是精简版的MII,数据发送接收均为两根,相比MII减少了4根,另外它整合或减去了一些线,最终RMII只有8根线RMII的接口如下:
在实际的设计中,以上三部分并不一定独立分开的。由于,PHY整合了大量模拟硬件,而MAC是典型的全数字器件。考虑到芯片面积及模拟/数字混合架构的原因,通常, 将MAC集成进微控制器而将PHY留在片外 。更灵活、密度更高的芯片技术已经可以实现MAC和PHY的单芯片整合,可分为下列几种类型:
CPU集成MAC与PHY,目前来说并不多见:
CPU集成MAC,PHY采用独立芯片,这种在车载以太网上是主流方式,因嵌入式芯片厂商一般都将MAC集成在MCU内部,而PHY芯片则由OEM或控制器供应商自己选择:
CPU不集成MAC与PHY,MAC与PHY采用集成芯片。这种在消费用以太网上比较比较常见,如电脑的网卡有这种方式的。
在以太网连接线束上,车载以太网与消费用以太网也是不同的,首先消费用以太网的标准主要采用10BASE-2、10/100BASE-TX和1000BASE-T,其中 1000BASE-T是使用RJ45接口,需要四对双绞线共8根线 进行数据传输,而 10/100BASE-TX则是只使用四对双绞线其中的两对共4根线 进行数据传输,如下是100BASE-TX的示意图(使用了两对双绞线)。
在很早之前的10BASE-2则是同轴电缆进行数据传输,因此消费类以太网采用线束总结如下:
而 车载以太网一般都基本采用带T1的标准 ,如IEEE 100BASE-T1(以前称为OABR)、IEEE 1000BASE-T1,这些都使用 一对双绞线共两根线 进行数据传输:
其次在编码方式上, 1000BASE-T主要采用PAM5 的编码方式:
而 车载以太网100BASE-T1和1000BASE-T1主要采用PAM3 的编码方式。
从上面可知,车载以太网主要采用基于一对双绞线进行数据传输的100BASE-T1或1000BASE-T1标准,而我们电脑则使用RJ45接口采用基于4对双绞线进行数据传输的1000BASE-TX标准,因此当我们用电脑测量控制器以太网时,有时需要转换器,如下:
参考文献:
1、Ethernet introction(BOSCH、Tektronix、Vector、CSDN等资料)
❹ 谁为安全护航当智能网联汽车遭遇黑客
[汽车之家行业]?“今年以来,针对车联网企业的恶意攻击达到280余万次。”“假如20万辆汽车同时被黑客控制,车辆将变成攻击人类的武器,带来的灾难无法想象。”这并非危言耸听,在汽车智能网联功能越发强大的同时,汽车网络信息安全问题也逐渐浮出水面。
‘华为“进不来、拿不走、看不懂、改不了、瘫不成、赖不掉”目标’
国汽(北京)智能网联汽车研究院有限公司总经理助理兼整车事业部部长刘卫国给出政策层面的建议:第一,智能网联汽车的安全问题是系统性问题;第二,智能网联汽车的发展要上升到国家战略并且具有属地化,需要有中国特色的方案;第三,中国需要发展智能网联汽车共性的基础技术平台,为整个智能网联产业做支撑;第四,产品准入政策的制定不要过死,增强企对自身产品负责的意识。
编辑总结:
“新四化”背景下,汽车产业链正在加速深度合作步伐。车联网技术向着智能化、网联化方向演进,车载操作系统、新型汽车电子、车载通信、服务平台等产业链玩家正在加速融合,产业格局正在被重塑。在这样的产业格局下,我们的政策取向务必要优先考虑安全:人身与财产安全、网络安全、隐私及数据安全。这是一个“软件定义汽车”的时代,也是“安全定义汽车”的时代。(文/汽车之家李争光)
❺ 智能网联汽车有风险85%关键部件存网络安全漏洞
[汽车之家行业]?随着车联网的蓬勃发展,网络安全已成为一个不可忽视的问题。9月5日,在2020泰达论坛期间,工业和信息化部网络安全管理局局长赵志国在发言时指出,与车联网蓬勃发展,网联化、智能化加速深化相比,车联网网络安全仍处于探索起步阶段,对相关安全本质特点和规律的认识还需进一步深化。
为了解决行业关注的问题,提升智能网联汽车总体信息安全保障能力,9月4日,中国汽车技术研究中心有限公司牵头,联合汽车企业、科研机构等16家企事业单位共同建设的汽车行业车联网网络信任支撑平台正式上线。平台主要应用数字证书、国产密码算法技术,为车联网V2X通信提供安全证书签发、统一身份认证、安全消息加密多方面的服务。
中国汽车行业车联网网络信任支撑平台作为汽车行业首个CA服务中心,已完成网络信任平台根节点基础设施的建设及生产系统的部署、测试,实现了多行业、多地域、多车型、多场景的网络信任应用,平台上线后将实现多行业、多企业智能汽车的网络身份互信互认。(文/汽车之家肖莹)
❻ 汽车车载网络系统故障诊断检测方法有哪些
您好! 汽车出现故障码有些是临时出现用解码仪清除就好,但有些则不同具体还是要检测才能得出结论。为保障车辆安全还是最好去正规维修门店用解码仪进行检查。祝您用车愉快!
❼ 网络安全测试方案
从三个方面来进行
1物理层从承载服务器操作系统(OS)来进行
2网络层从网络构架安全来进行(包括ROUTER SWITCH IDS等)
3应用层根据应用系统进行测试包括数据库,IIS以及具体的应用
❽ 工信部:车联网网络安全和数据安全标准体系建设指南发布
易车讯 近日,工业和信息化部印发《车联网网络安全和数据安全标准体系建设指南》,目标到2023年底,初步构建起车联网网络安全和数据安全标准体系。重点研究基础共性、终端与设施网络安全、网联通信安全、数据安全、应用服务安全、安全保障与支撑等标准,完成50项以上急需标准的研制。到2025年,形成较为完善的车联网网络安全和数据安全标准体系。完成100项以上标准的研制,提升标准对细分领域的覆盖程度,加强标准服务能力,提高标准应用水平,支撑车联网产业安全健康发展。
标准体系框架包括总体与基础共性、终端与设施网络安全、网联通信安全、数据安全、应用服务安全、安全保障与支撑等6个部分。在重点领域及方向,提出以下内容:
1、总体与基础共性标准
总体与基础共性标准是车联网网络安全和数据安全的总体性、通用性和指导性标准,包括术语和定义、总体架构、密码应用等3类标准。
术语和定义标准主要规范车联网网络安全和数据安全主要概念,为相关标准中的术语和定义提供依据支撑。
总体架构标准主要规范车联网网络安全总体架构要求,明确和界定防护对象、防护方法、防护机制,指导企业体系化开展网络安全防护工作。
密码应用标准主要规范车联网密码应用通用要求,明确数字证书格式、数字证书应用、设备密码应用等要求。
2、终端与设施网络安全标准终端与设施网络安全标准
主要规范车联网终端和基础设施等相关网络安全要求,包括车载设备网络安全、车端网络安全、路侧通信设备网络安全、网络设施与系统安全等4类标准。
车载设备网络安全标准主要规范智能网联汽车关键智能设备和组件的安全防护与检测要求,包括汽车网关、电子控制单元、车用安全芯片、车载计算平台等安全标准。
车端网络安全标准主要规范整车电子电气架构、总线架构、系统架构等安全防护与检测要求。
路侧通信设备网络安全标准主要规范联网路侧设备的安全防护与检测要求。网络设施与系统安全标准主要规范车联网网络设施与系统的安全防护与检测要求。
3、网联通信安全标准
网联通信安全标准主要规范车联网通信网络安全、身份认证等相关安全要求,包括通信安全、身份认证等2类标准。信安全标准主要规范蜂窝车联网(C-V2X),以及应用于车联网的蜂窝移动通信(4G/5G)、卫星通信、无线射频识别、车内无线局域网、蓝牙低能耗(BLE)紫蜂(Zigbee)、超宽带(UWB)等安全防护与检测要求。身份认证标准主要规范车联网数字身份认证相关的证书应用接口、证书管理系统、安全认证技术及测试方法、关键部件轻量级认证等技术要求。
4、数据安全标准
数据安全标准主要规范智能网联汽车、车联网平台、车载应用服务等数据安全和个人信息保护要求,句括通用要求、分类分级、出境安全、个人信息保护、应用数据安全等5类标准。通用要求标准主要规范车联网可采集和处理的数据类型、范围、质量、颗粒度等,包括数据最小化采集、数据安全存储、数据加密传输、数据安全共享等标准。分类分级标准主要规范车联网数据分类分级保护要求,制定数据分类分级的维度、方法、示例等标准,明确重要数据类型和安全保护要求。数据出境安全标准主要规范车联网行业依法依规落实数据出境安全要求,句括数据出境安全评估要点、评估方法等标准。个人信息保护标准主要规范车联网用户个人信息保护机制及相关技术要求,明确用户敏感数据和个人信息保护的场景、规则、技术方法,包括匿名化、去标识化、数据脱敏、异常行为识别等标准。应用数据安全标准主要规范车联网相关应用所开展的数据采集和处理使用等活动,包括车联网平台、网约车、车载应用程序等数据安全标准。
5、应用服务安全标准
应用服务安全标准主要规范车联网服务平台和应用程序的安全要求,以及典型业务应用服务场景下的安全要求,包括平台安全、应用程序安全和服务安全等3类标准。平台安全标准主要规范车联网信息服务平台、远程升级(OTA)服务平台、边缘计算平台、电动汽车远程信息服务与管理等安全防护与检测要求。应用程序安全标准主要规范车联网应用程序等安全防护与检测要求。服务安全标准主要规范车联网典型业务服务场景下的安全要求,包括汽车远程诊断、高级辅助驾驶、车路协同等服务安全要求。
6、安全保障与支撑标准
安全保障与支撑标准主要规范车联网网络安全管理与支撑相关的安全要求,包括风险评估、安全监测与应急管理和安全能力评估等3类标准。风险评估标准主要规范车联网网络安全风险分类与安全等级划分要求,明确安全风险评估流程和方法,提出车联网服务平台、整车网络安全风险评估规范等相关要求。安全监测与应急管理标准主要规范车联网网络安全监测、数据安全监测、应急管理、网络安全漏洞分类分级、安全事件追踪溯源等相关要求,以及安全管理接口、车联网卡实名登记、车联网业务递交网关(HI)接口等相关规范。安全能力评估标准主要规范车联网服务平台运营企业、智能网联汽车生产企业、基础电信企业等安全防护措施部署安全服务实施,提出网络安全成熟度模型、数据安全成熟度模型、安全能力成熟度评价准则、评估实施方法、机构能力认定、道路车辆信息安全工程等相关要求。
❾ 工信部要求建立车联网安全标准体系 360两项牵头标准纳入标准明细表
近日,工信部印发《车联网网络安全和数据安全标准体系建设指南》(以下简称《建设指南》),提出到2025年,形成较为完善的车联网网络安全和数据安全标准体系。完成100项以上标准的研制,提升标准对细分领域的覆盖程度,加强标准服务能力,提高标准应用水平,支撑车联网产业安全 健康 发展。
《建设指南》公布了“车联网网络安全和数据安全相关标准项目明细表”,360牵头制定的国际标准ITU-T X.1376《联网 汽车 安全异常行为检测机制》的国家标准转化、YD/T 3737-2020《基于公众电信网的联网 汽车 信息安全技术要求》两项 汽车 安全标准被纳入。其中,X.1376在联合国下属标准组织ITU-T正式发布,是国际上首个将大数据分析用于智能交通系统网络安全的标准,能持续地对联网 汽车 进行分析,可以在攻击阶段甚至攻击之前,有效识别系统中存在的异常行为,将攻击扼杀在摇篮之中。
“软件定义 汽车 使得数字安全问题不可避免,其危害性不亚于传统安全问题。”今年两会,全国政协委员、360公司创始人周鸿祎递交了《关于建立智能网联 汽车 “数字空间碰撞测试”长效机制的建议》提案,内容正是聚焦解决车联网带来的安全新挑战。他指出,车联网面临的安全风险主要在于,代码数量增加使得车载系统安全缺陷激增;网络连接 汽车 导致攻击面增加;车企网联程度不断提高,云端是最大安全隐患;数据驱动 汽车 ,带来数据安全风险攀升。
建设车联网安全标准体系,能够给予企业更好的指导和规范,推进网络安全信息的互联互通,对提升车联网安全至关重要。
对于如何更好地制定车联网安全标准,360标准化部高级总监张屹提出两点建议。一方面,车联网网络安全的技术、管理体系研究、试验和建设,是标准体系的根基。车联网标准要以急用先行为原则,聚焦重点领域及方向,聚集智能网联 汽车 、网络安全、数据安全、安全标准等多领域专家,以需求导向、共同推进的原则,紧密结合产业需求,务实地制定出支撑智能网联 汽车 安全上路的标准。
另一方面,车联网网络安全和数据安全标准体系,涉及技术领域广泛,有多个全国标准化技术委员会,还有很多行业、团体标准组织。建议在国家制造强国建设领导小组车联网产业发展专项委员会下面,成立一个车联网网络安全和数据安全标准总体组,拉通标准研制试点、宣贯实施、国际协调等相关工作。
深度参与标准研制、做好行业顶层设计已经成为360的重要工作之一。作为全球最大的数字安全公司,目前360参加了30多个车联网网络安全标准,将在 汽车 网络安全方面的领先优势标准化,贡献到业界,提供给产业共享、利用已有的安全成果,快速提升安全技术能力。
此外,360积极参加全国 汽车 标准化技术委员会、全国通信标准化技术委员会、全国智能运输系统标准化技术委员会、中国通信标准化协会等国家、行业、团体标准制定,将360多年积累的 汽车 网络和数据安全技术方案、产品和服务实践经验,贡献到标准中,帮助提升产业的安全水平,应对网联化和智能化带来的风险。
未来360也将继续通过标准化工作,积极推动车联网安全发展,提升我国车联网产业的 科技 竞争力。