❶ 对iCloud的同步逻辑一直不理解。
你要把自动同步勾选上,不能忍你就点个立即同步嘛。
❷ 关于QQ同步助手数据同步
您好,给您介绍一下一键同步的逻辑,首次打开会让你进行首次同步,首次同步时可以选择三个模式,云端为准,手机为准,合并。之后每次同步都是智能同步,都不会再有这个选项。会以你最新修改的为准。就是你刚修改完云端,点同步,就会同步下来手机。刚修改完手机,点同步,就会同步到云端。使用电脑或手机登录ic.qq.com,或登录我们的官网pim.qq.com,点击“管理已备份”,即可查看和管理通讯录和短信。
感谢您的对QQ同步助手的支持!
❸ 笔记本电脑时间不同步了怎么设置
1、让电脑自动通过互联网进行对时
通过“开始”菜单选择“控制面板”选项;在“控制面板”选项窗口中选择“日期、时间、语言和区域设置”一项;在“日期、时间、语言和区域设置”窗口中”选择“日期和时间”一项;在“日期和时间属性”窗口中设置自动对时。
2、自由更改电脑自动对时间隔时间
Windows XP中的时钟功能可以实现自动在互联网上进行时间校对,这样就不用担心电脑的时间不准了。
计算机(computer)俗称电脑,是现代一种用于高速计算的电子计算机器,可以进行数值计算,又可以进行逻辑计算,还具有存储记忆功能。是能够按照程序运行,自动、高速处理海量数据的现代化智能电子设备。由硬件系统和软件系统所组成,没有安装任何软件的计算机称为裸机。可分为超级计算机、工业控制计算机、网络计算机、个人计算机、嵌入式计算机五类,较先进的计算机有生物计算机、光子计算机、量子计算机等。
计算机发明者约翰·冯·诺依曼。计算机是20世纪最先进的科学技术发明之一,对人类的生产活动和社会活动产生了极其重要的影响,并以强大的生命力飞速发展。它的应用领域从最初的军事科研应用扩展到社会的各个领域,已形成了规模巨大的计算机产业,带动了全球范围的技术进步,由此引发了深刻的社会变革,计算机已遍及一般学校、企事业单位,进入寻常百姓家,成为信息社会中必不可少的工具。
❹ 什么是同步逻辑和异步逻辑
信号在FPGA器件内部通过连线和逻辑单元时,都有一定的延时。延时的大小与连线的长短和逻辑单元的数目有关,同时还受器件的制造工艺、工作电压、温度等条件的影响。信号的高低电平转换也需要一定的过渡时间。由于存在这两方面因素,多路信号的电平值发生变化时,在信号变化的瞬间,组合逻辑的输出有先后顺序,并不是同时变化,往往会出现一些不正确的尖峰信号,这些尖峰信号称为"毛刺"。如果一个组合逻辑电路中有"毛刺"出现,就说明该电路存在"冒险"。用D触发器,格雷码计数器,同步电路等优秀的设计方案可以消除。 就是把D触发器的输出端加非门接到D端。 将几个OC门结构与非门输出并联,当每个OC门输出为高电平时,总输出才为高,这种连接方式称为线与。 整个设计中只有一个全局时钟成为同步逻辑。 多时钟系统逻辑设计成为异步逻辑。 f) 请画出微机接口电路中,典型的输入设备与微机接口逻辑示意图(数据接口、控制接口、所存器/缓冲器)。 TTL,cmos,不能直连 LVDS:LVDS(Low Voltage Differential Signal)即低电压差分信号,LVDS接口又称RS644总线接口,是20世纪90年代才出现的一种数据传输和接口技术。 ECL:(EmitterCoupled Logic)即射极耦合逻辑,是带有射随输出结构的典型输入输出接口电路 CML: CML电平是所有高速数据接口中最简单的一种。其输入和输出是匹配好的,减少了外围器件,适合于更高频段工作。
❺ 同步时序逻辑电路的设计步骤
一、电平异步时序电路的设计步骤概述
第一步:根据问题的逻辑要求,建立原始流程表。
第二步;将原始流程表简化,得到最简流程表。
第三步:对最简流程表进行状态分配及不稳定状态的输出指定。
第四步:写出激励状态和输出状态表达式。
第五步:画出逻辑电路图。
下面对上述设计步骤分别予以介绍。
❻ 设计同步时序逻辑电路的一般步骤有哪些
同步计数器设计的一般步骤为:
1、分析设计要求,确定触发器数目和类型;
2、选择状态编码;
3、求状态方程,驱动方程;
4、根据驱动方程画逻辑图;
5、检查能否自启动。
(6)网络同步逻辑怎么设置扩展阅读
1、一个触发器有两个稳定状态:
“0”状态:Q=0,=1;
“1”状态:Q=1,=0。
2、触发器(FF)应具有以下功能:
在新数据输入之前(无触发信号)时,触发器一直保持原来的状态(原数据)不变。
输入信号触发下,它能从一种状态转换为另一种状态。即:FF能够“接收”“保持”并“输出”数字信息。
❼ 如何设置小米云服务的同步逻辑怎样设置为添加模式
嗨!
本来就是手机上的短信上传到云端,手机上删除云端不删除这样的保存逻辑
访问miui论坛了解更多www.miui.com
❽ 有关无线传感器网络中时间同步机制有哪些方法和策略
1 时间同步技术的重要性
传感器节点的时钟并不完美,会在时间上发生漂移,所以观察到的时间对于网络中的节点来说是不同的。但很多网络协议的应用,都需要一个共同的时间以使得网路中的节点全部或部分在瞬间是同步的。
第一,传感器节点需要彼此之间并行操作和协作去完成复杂的传感任务。如果在收集信息过程中,传感器节点缺乏统一的时间戳(即没有同步),估计将是不准确的。
第二,许多节能方案是利用时间同步来实现的。例如,传感器可以在适当的时候休眠(通过关闭传感器和收发器进入节能模式),在需要的时候再唤醒。在应用这种节能模式的时候,节点应该在同等的时间休眠和唤醒,也就是说当数据到来时,节点的接收器可以接收,这个需要传感器节点间精确的定时。
2 时间同步技术所关注的主要性能参数
时间同步技术的根本目的是为网络中节点的本地时钟提供共同的时间戳。对无线传感器
网络WSN(Wireless Sensor Networks)[1]
的时间同步应主要应考虑以下几个方面的问题:
(1)能量效率。同步的时间越长,消耗的能量越多,效率就越低。设计WSN的时间同步算法需以考虑传感器节点有效的能量资源为前提。
(2) 可扩展性和健壮性。时间同步机制应该支持网络中节点的数目或者密度的有效扩展,并保障一旦有节点失效时,余下网络有效且功能健全。
(3)精确度。针对不同的应用和目的,精确度的需求有所不用。
(4)同步期限。节点需要保持时间同步的时间长度可以是瞬时的,也可以和网络的寿命一样长。
(5)有效同步范围。可以给网络内所有节点提供时间,也可以给局部区域的节点提供时间。
(6)成本和尺寸。同步可能需要特定的硬件,另外,体积的大小也影响同步机制的实现。 (7)最大误差。一组传感器节点之间的最大时间差,或相对外部标准时间的最大差。 3 现有主要时间同步方法研究
时间同步技术是研究WSN的重要问题,许多具体应用都需要传感器节点本地时钟的同步,要求各种程度的同步精度。WSN具有自组织性、多跳性、动态拓扑性和资源受限性,尤其是节点的能量资源、计算能力、通信带宽、存储容量有限等特点,使时间同步方案有其特
殊的需求,也使得传统的时间同步算法不适合于这些网络[2]
。因此越来越多的研究集中在设
计适合WSN的时间同步算法[3]
。针对WSN,目前已经从不同角度提出了许多新的时间同步算法[4]
。
3.1 成对(pair-wise)同步的双向同步模式
代表算法是传感器网络时间同步协议TPSN(Timing-Sync Protocol for Sensor
Networks)[5~6]
。目的是提供WSN整个网络范围内节点间的时间同步。
该算法分两步:分级和同步。第一步的目的是建立分级的拓扑网络,每个节点有个级别。只有一个节点与外界通信获取外界时间,将其定为零级,叫做根节点,作为整个网络系统的时间源。在第二步,每个i级节点与i-1(上一级)级节点同步,最终所有的节点都与根节点同步,从而达到整个网络的时间同步。详细的时间同步过程如图 1 所示。
图1 TPSN 同步过程
设R为上层节点,S为下层节点,传播时间为d,两节点的时间偏差为θ。同步过程由节点R广播开始同步信息,节点S接收到信息以后,就开始准备时间同步过程。在T1时刻,节点S发送同步信息包,包含信息(T1),节点R在T2接收到同步信息,并记录下接收时间T2,这里满足关系:21TTd
节点R在T3时刻发送回复信息包,包含信息(T1,T2,T3)。在T4时刻S接收到同步信息包,满足关系:43TTd
最后,节点S利用上述2个时间表达式可计算出的值:(21)(43)2
TTTT
TPSN由于采用了在MAC层给同步包标记时间戳的方式,降低了发送端的不确定性,消除了访问时间带来的时间同步误差,使得同步效果更加有效。并且,TPSN算法对任意节点的同步误差取决于它距离根节点的跳数,而与网络中节点总数无关,使TPSN同步精度不会随节点数目增加而降级,从而使TPSN具有较好的扩展性。TPSN算法的缺点是一旦根节点失效,就要重新选择根节点,并重新进行分级和同步阶段的处理,增加了计算和能量开销,并随着跳数的增加,同步误差呈线性增长,准确性较低。另外,TPSN算法没有对时钟的频差进行估计,这使得它需要频繁同步,完成一次同步能量消耗较大。
3.2 接收方-接收方(Receiver-Receiver)模式
代表算法是参考广播时间同步协议RBS(Reference Broadcast Synchronization)[7]
。RBS是典型的基于接收方-接收方的同步算法,是Elson等人以“第三节点”实现同步的思想而提出的。该算法中,利用无线数据链路层的广播信道特性,基本思想为:节点(作为发
送者)通过物理层广播周期性地向其邻居节点(作为接收者)发送信标消息[10]
,邻居节点记录下广播信标达到的时间,并把这个时间作为参考点与时钟的读数相比较。为了计算时钟偏移,要交换对等邻居节点间的时间戳,确定它们之间的时间偏移量,然后其中一个根据接收
到的时间差值来修改其本地的时间,从而实现时间同步[11]
。
假如该算法在网络中有n个接收节点m个参考广播包,则任意一个节点接收到m个参考包后,会拿这些参考包到达的时间与其它n-1个接收节点接收到的参考包到达的时间进行比较,然后进行信息交换。图2为RBS算法的关键路径示意图。
网络接口卡
关键路径
接收者1
发送者
接收者2
图2 RBS算法的关键路径示意图
其计算公式如下:
,,1
1,:[,]()m
jkikkinjnoffsetijTTm
其中n表示接收者的数量,m表示参考包的数量,,rbT表示接收节点r接收到参考包b时的时钟。
此算法并不是同步发送者和接收者,而是使接收者彼此同步,有效避免了发送访问时间对同步的影响,将发送方延迟的不确定性从关键路径中排除,误差的来源主要是传输时间和接收时间的不确定性,从而获得了比利用节点间双向信息交换实现同步的方法更高的精确度。这种方法的最大弊端是信息的交换次数太多,发送节点和接收节点之间、接收节点彼此之间,都要经过消息交换后才能达到同步。计算复杂度较高,网络流量开销和能耗太大,不适合能量供应有限的场合。
3.3 发送方-接收方(Sender-Receiver)模式
基于发送方-接收方机制的时间同步算法的基本原理是:发送节点发送包含本地时间戳的时间同步消息,接收节点记录本地接收时间,并将其与同步消息中的时间戳进行比较,调整本地时钟。基于这种方法提出的时间同步算法有以下两种。
3.3.1 FTSP 算法[8]
泛洪时间同步协议FTSP(Flooding Time Synchronization Protocol)由Vanderbilt大学Branislav Kusy等提出,目标是实现整个网络的时间同步且误差控制在微秒级。该算法用单个广播消息实现发送节点与接收节点之间的时间同步。
其特点为:(1)通过对收发过程的分析,把时延细分为发送中断处理时延、编码时延、传播时延、解码时延、字节对齐时延、接收中断处理时延,进一步降低时延的不确定度;(2)通过发射多个信令包,使得接收节点可以利用最小方差线性拟合技术估算自己和发送节点的频率差和初相位差;(3)设计一套根节点选举机制,针对节点失效、新节点加入、拓扑变化
等情况进行优化,适合于恶劣环境[12]
。
FTSP算法对时钟漂移进行了线性回归分析。此算法考虑到在特定时间范围内节点时钟晶振频率是稳定的,因此节点间时钟偏移量与时间成线性关系,通过发送节点周期性广播时间同步消息,接收节点取得多个数据对,构造最佳拟合直线,通过回归直线,在误差允许的时间间隔内,节点可直接通过它来计算某一时间节点间的时钟偏移量而不必发送时间同步消息进行计算,从而减少了消息的发送次数并降低了系统能量开销。
FTSP结合TPSN和RBS的优点,不仅排除了发送方延迟的影响,而且对报文传输中接收方的不确定延迟(如中断处理时间、字节对齐时间、硬件编解码时间等)做了有效的估计。多跳的FTSP协议采用层次结构,根节点为同步源,可以适应大量传感器节点,对网络拓扑结构的变化和根节点的失效有健壮性,精确度较好。该算法通过采用MAC层时间戳和线性回归偏差补偿弥补相关的错误源,通过对一个数据包打多个时戳,进而取平均和滤除抖动较大的时戳,大大降低了中断和解码时间的影响。FTSP 采用洪泛的方式向远方节点传递时间基准节点的时间信息,洪泛的时间信息可由中转节点生成,因此误差累积不可避免。另外,FTSP的功耗和带宽的开销巨大。
3.3.2 DMTS 算法[9]
延迟测量时间同步DMTS (delay measurement time synchronization) 算法的同步机制是基于发送方-接收方的同步机制。DMTS 算法的实现策略是牺牲部分时间同步精度换取较低的计算复杂度和能耗,是一种能量消耗轻的时间同步算法。
DMTS算法的基本原理为:选择一个节点作为时间主节点广播同步时间,所有接收节点通过精确地测量从发送节点到接收节点的单向时间广播消息的延迟并结合发送节点时间戳,计算出时间调整值,接收节点设置它的时间为接收到消息携带的时间加上广播消息的传输延迟,调整自己的逻辑时钟值以和基准点达成同步,这样所有得到广播消息的节点都与主节点进行时间同步。发送节点和接收节点的时间延迟dt可由21()dtnttt得出。其中,nt为发送前导码和起始字符所需的时间,n为发送的信息位个数,t为发送一位所需时间;1t为接收节点在消息到达时的本地时间;2t为接收节点在调整自己的时钟之前的那一时刻记录的本地时间,21()tt是接收处理延迟。
DMTS 算法的优点是结合链路层打时间戳和时延估计等技术,消除了发送时延和访问时延的影响,算法简单,通信开销小。但DMTS算法没有估计时钟的频率偏差,时钟保持同步的时间较短,没有对位偏移产生的时间延迟进行估计,也没有消除时钟计时精度对同步精度的影响,因此其同步精度比FTSP略有下降,不适用于定位等要求高精度同步的应用。
基于发送方-接收方单向同步机制的算法在上述三类方法中需要发送的时间同步消息数目最少。发送节点只要发送一次同步消息,因而具有较低的网络流量开销和复杂度,减少了系统能耗。
4 结论
文章介绍了WSN时间同步算法的类型以及各自具有代表性的算法,分析了各算法的设计原理和优缺点。这些协议解决了WSN中时间同步所遇到的主要问题,但对于大型网络,已有的方法或多或少存在着一些问题:扩展性差、稳定性不高、收敛速度变慢、网络通信冲突、能耗增大。今后的研究热点将集中在节能和时间同步的安全性方面。这将对算法的容错性、有效范围和可扩展性提出更高的要求。
❾ 怪物动作使用rootmotion如何网络同步
首先
帧同步
简单来说,就是相同的状态+相同的指令+ 按帧顺序执行=相同的结果。
状态:所有客户端确保逻辑一致,接收一样的随机种子(randomseed),一样的房间信息;
指令:服务器只负责收集接收每个客户端操作指令(cmd),转发指令,服务器以恒定帧率(30帧1秒)派发指令,没有指令或指令没有变化也需要派发;
执行:真正游戏逻辑由各个客户端单独计算 ,客户端需要收到服务器派发的指令才能推进逻辑,没有收到指令时不能推进逻辑(LockStep)
顺序执行
帧同步会必定按到从第一帧开始一帧一帧的执行,才能保证运行结果一样,跳帧会导致逻辑不一样,如果玩家网络不好,则会在当前帧等待至下一帧的接受,如果丢包超时,则会再次发出需要帧的请求。
追帧
什么是追帧:当前玩家播放到帧比服务器的帧落后时,服务器下发多个帧,玩家便要开始快进到服务器当前帧
为什么要追帧:如果网络波动,服务器会有最晚的接受帧时间,
做法:超过则下次发送多个帧,然后快进播放(多次DoAction),快进期间,不播放特效音效等不影响运行结果的逻辑
重连
做法:接受从0开始所有帧重新快速播放到当前帧,如果帧列表count大于规定速度则按照最大速度播放,否则按照剩余的count播放相应次数的帧。
优点
第一,它的开发效率比较高。如果你开发思路的整体框架是验证可行的,如果你把它的缺点解决了,那么你的开发思路完全就跟写单机一样,你只需要遵从这样的思路,尽量保证性能,程序该怎么写就怎么写,服务端逻辑简单,只需要负责转发指令,压力也小。
资料来源于网络若侵权联系删除
❿ 以太网中,收,发双方如何实现数据帧的同步
以太网中,收,发双方实现数据帧的同步可以采用广播机制来实现同步。所有与网络连接的工作站都可以看到网络上传递的数据。
通过查看包含在帧中的目标地址,确定是否进行接收或放弃。如果证明数据确实是发给自己的,工作站将会接收数据并传递给高层协议进行处理。
以太网简介
以太网是现实世界中最普遍的一种计算机网络。以太网有两类:第一类是经典以太网,第二类是交换式以太网,使用了一种称为交换机的设备连接不同的计算机。经典以太网是以太网的原始形式,运行速度从3到10Mbps不等。
而交换式以太网正是广泛应用的以太网,可运行在100,1000和10000Mbps那样的高速率,分别以快速以太网,千兆以太网和万兆以太网的形式呈现。
以太网的标准拓扑结构为总线型拓扑,但快速以太网100BASET,1000BASET标准为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机来进行网络连接和组织。如此一来,以太网的拓扑结构就成了星型。
但在逻辑上,以太网仍然使用总线型拓扑和CSMACD,,即载波多重访问碰撞侦测的总线技术。