Ⅰ 态势感知,懂的人不用解释,现在对于态势感知更多的是信息网络的安全态势感知,
大数据时代,除在信息网络的安全方面外,在无人机、无人驾驶、气象分析、军事、交通轨道等等方面,态势感知的应用研究日益广泛和必要!
一般来说,态势感知在大规模系统环境中,对能够引起系统状态发生变化的安全要素进行获取、理解、显示以及预测未来的发展趋势。联合作战、网络中心战的提出,推动了态势感知的产生和不断发展,作为实现态势感知的重要平台和物质基础,态势图对数据和信息复杂的需求和特性构成了突出的大数据问题.从大数据的高度思考,解决态势感知面临的信息处理难题,是研究联合作战态势感知的重要方法.通过分析联合作战态势感知的数据类型、结构和特点,得出态势感知面临着大数据挑战的结论.初步探讨了可能需要解决的问题和前沿信息技术的应用需求,最后对关键数据和信息处理技术进行了研究.该研究对于“大数据”在军事信息处理和数据化决策等领域的研究具有重要探索价值。
相关参考(摘录网上):
1 引言
随着计算机和通信技术的迅速发展, 计算机网络的应用越来越广泛, 其规模越来越庞大, 多层面的网络安全威胁和安全风险也在不断增加, 网络病毒、 Dos/DDos攻击等构成的威胁和损失越来越大, 网络攻击行为向着分布化、 规模化、 复杂化等趋势发展, 仅仅依靠防火墙、 入侵检测、 防病毒、 访问控制等单一的网络安全防护技术, 已不能满足网络安全的需求, 迫切需要新的技术, 及时发现网络中的异常事件, 实时掌握网络安全状况, 将之前很多时候亡羊补牢的事中、 事后处理,转向事前自动评估预测, 降低网络安全风险, 提高网络安全防护能力。
网络安全态势感知技术能够综合各方面的安全因素, 从整体上动态反映网络安全状况, 并对网络安全的发展趋势进行预测和预警。 大数据技术特有的海量存储、 并行计算、 高效查询等特点, 为大规模网络安全态势感知技术的突破创造了机遇, 借助大数据分析, 对成千上万的网络日志等信息进行自动分析处理与深度挖掘, 对网络的安全状态进行分析评价, 感知网络中的异常事件与整体安全态势。
2 网络安全态势相关概念
2.1 网络态势感知
态势感知(Situation Awareness, SA) 的概念是1988年Endsley提出的, 态势感知是在一定时间和空间内对环境因素的获取, 理解和对未来短期的预测。 整个态势感知过程可由图1所示的三级模型直观地表示出来。
所谓网络态势是指由各种网络设备运行状况、 网络行为以及用户行为等因素所构成的整个网络当前状态和变化趋势。
网络态势感知(Cyberspace Situation Awareness,CSA) 是1999年Tim Bass首次提出的, 网络态势感知是在大规模网络环境中, 对能够引起网络态势发生变化的安全要素进行获取、 理解、 显示以及预测最近的发展趋势。
态势是一种状态、 一种趋势, 是整体和全局的概念, 任何单一的情况或状态都不能称之为态势。 因此对态势的理解特别强调环境性、 动态性和整体性, 环境性是指态势感知的应用环境是在一个较大的范围内具有一定规模的网络; 动态性是态势随时间不断变化, 态势信息不仅包括过去和当前的状态, 还要对未来的趋势做出预测; 整体性是态势各实体间相互关系的体现,某些网络实体状态发生变化, 会影响到其他网络实体的状态, 进而影响整个网络的态势。
2.2 网络安全态势感知
网络安全态势感知就是利用数据融合、 数据挖掘、智能分析和可视化等技术, 直观显示网络环境的实时安全状况, 为网络安全提供保障。 借助网络安全态势感知, 网络监管人员可以及时了解网络的状态、 受攻击情况、 攻击来源以及哪些服务易受到攻击等情况, 对发起攻击的网络采取措施; 网络用户可以清楚地掌握所在网络的安全状态和趋势, 做好相应的防范准备, 避免和减少网络中病毒和恶意攻击带来的损失; 应急响应组织也可以从网 络安全态势中了解所服务网 络的安全状况和发展趋势, 为 制定有预见性的应急预案提供基础。
3 网络安全态势感知相关技术
对于大规模网络而言, 一方面网络节点众多、 分支复杂、 数据流量大, 存在多种异构网络环境和应用平台; 另一方面网络攻击技术和手段呈平台化、 集成化和自 动化的发展趋势, 网络攻击具有更强的隐蔽性和更长的潜伏时间, 网络威胁不断增多且造成的损失不断增大。 为了实时、 准确地显示整个网络安全态势状况, 检测出潜在、 恶意的攻击行为, 网络安全态势感知要在对网络资源进行要素采集的基础上, 通过数据预处理、 网络安全态势特征提取、 态势评估、 态势预测和态势展示等过程来完成, 这其中涉及许多相关的技术问题, 主要包括数据融合技术、 数据挖掘技术、 特征提取技术、 态势预测技术和可视化技术等。
3.1 数据融合技术
由于网络空间态势感知的数据来自众多的网络设备, 其数据格式、 数据内容、 数据质量千差万别, 存储形式各异, 表达的语义也不尽相同。 如果能够将这些使用不同途径、 来源于不同网络位置、 具有不同格式的数据进行预处理, 并在此基础上进行归一化融合操作,就可以为网络安全态势感知提供更为全面、 精准的数据源, 从而得到更为准确的网络态势。 数据融合技术是一个多级、 多层面的数据处理过程, 主要完成对来自网络中具有相似或不同特征模式的多源信息进行互补集成, 完成对数据的自动监测、 关联、 相关、 估计及组合等处理, 从而得到更为准确、 可靠的结论。 数据融合按信息抽象程度可分为从低到高的三个层次: 数据级融合、 特征级融合和决策级融合, 其中特征级融合和决策级融合在态势感知中具有较为广泛的应用。
3.2 数据挖掘技术
网络安全态势感知将采集的大量网络设备的数据经过数据融合处理后, 转化为格式统一的数据单元。这些数据单元数量庞大, 携带的信息众多, 有用信息与无用信息鱼龙混杂, 难以辨识。 要掌握相对准确、 实时的网络安全态势, 必须剔除干扰信息。 数据挖掘就是指从大量的数据中挖掘出有用的信息, 即从大量的、 不完全的、 有噪声的、 模糊的、 随机的实际应用数据中发现隐含的、 规律的、 事先未知的, 但又有潜在用处的并且最终可理解的信息和知识的非平凡过程( NontrivialProcess) [1 ]。 数据挖掘可分为描述性挖掘和预测性挖掘, 描述性挖掘用于刻画数据库中数据的一般特性; 预测性挖掘在当前数据上进行推断, 并加以预测。 数据挖掘方法主要有: 关联分析法、 序列模式分析法、 分类分析法和聚类分析法。 关联分析法用于挖掘数据之间的联系; 序列模式分析法侧重于分析数据间的因果关系;分类分析法通过对预先定义好的类建立分析模型, 对数据进行分类, 常用的模型有决策树模型、 贝叶斯分类模型、 神经网络模型等; 聚类分析不依赖预先定义好的类, 它的划分是未知的, 常用的方法有模糊聚类法、 动态聚类法、 基于密度的方法等。
3.3 特征提取技术
网络安全态势特征提取技术是通过一系列数学方法处理, 将大规模网络安全信息归并融合成一组或者几组在一定值域范围内的数值, 这些数值具有表现网络实时运行状况的一系列特征, 用以反映网络安全状况和受威胁程度等情况。 网络安全态势特征提取是网络安全态势评估和预测的基础, 对整个态势评估和预测有着重要的影响, 网络安全态势特征提取方法主要有层次分析法、 模糊层次分析法、 德尔菲法和综合分析法。
3.4 态势预测技术
网络安全态势预测就是根据网络运行状况发展变化的实际数据和历史资料, 运用科学的理论、 方法和各种经验、 判断、 知识去推测、 估计、 分析其在未来一定时期内可能的变化情况, 是网络安全态势感知的一个重要组成部分。 网络在不同时刻的安全态势彼此相关, 安全态势的变化有一定的内部规律, 这种规律可以预测网络在将来时刻的安全态势, 从而可以有预见性地进行安全策略的配置, 实现动态的网络安全管理, 预防大规模网络安全事件的发生。 网络安全态势预测方法主要有神经网络预测法、 时间序列预测法、 基于灰色理论预测法。
3.5 可视化技术
网络安全态势生成是依据大量数据的分析结果来显示当前状态和未来趋势, 而通过传统的文本或简单图形表示, 使得寻找有用、 关键的信息非常困难。 可视化技术是利用计算机图形学和图像处理技术, 将数据转换成图形或图像在屏幕上显示出来, 并进行交互处理的理论、 方法和技术。 它涉及计算机图形学、 图像处理、 计算机视觉、 计算机辅助设计等多个领域。 目前已有很多研究将可视化技术和可视化工具应用于态势感知领域, 在网络安全态势感知的每一个阶段都充分利用可视化方法, 将网络安全态势合并为连贯的网络安全态势图, 快速发现网络安全威胁, 直观把握网络安全状况。
4 基于多源日志的网络安全态势感知
随着网 络规模的 扩大以及网 络攻击复杂度的增加, 入侵检测、 防火墙、 防病毒、 安全审计等众多的安全设备在网络中得到广泛的应用, 虽然这些安全设备对网络安全发挥了一定的作用, 但存在着很大的局限,主要表现在: 一是各安全设备的海量报警和日志, 语义级别低, 冗余度高, 占用存储空间大, 且存在大量的误报, 导致真实报警信息被淹没。 二是各安全设备大多功能单一, 产生的报警信息格式各不相同, 难以进行综合分析整理, 无法实现信息共享和数据交互, 致使各安全设备的总体防护效能无法得以充分的发挥。 三是各安全设备的处理结果仅能单一体现网络某方面的运行状况, 难以提供全面直观的网络整体安全状况和趋势信息。 为了有效克服这些网络安全管理的局限, 我们提出了基于多源日志的网络安全态势感知。
4.1 基于多源日志的网络安全态势感知要素获取
基于多源日志的网络安全态势感知是对部署在网络中的多种安全设备提供的日志信息进行提取、 分析和处理, 实现对网络态势状况进行实时监控, 对潜在的、恶意的网络攻击行为进行识别和预警, 充分发挥各安全设备的整体效能, 提高网络安全管理能力。
基于多源日志的网络安全态势感知主要采集网络入口处防火墙日志、 入侵检测日志, 网络中关键主机日志以及主机漏洞信息, 通过融合分析这些来自不同设备的日志信息, 全面深刻地挖掘出真实有效的网络安全态势相关信息, 与仅基于单一日志源分析网络的安全态
势相比, 可以提高网络安全态势的全面性和准确性。
4.2 利用大数据进行多源日志分析处理
基于多源日志的网络安全态势感知采集了多种安全设备上以多样的检测方式和事件报告机制生成的海量数据, 而这些原始的日 志信息存在海量、 冗余和错误等缺陷, 不能作为态势感知的直接信息来源, 必须进行关联分析和数据融合等处理。 采用什么样的技术才能快速分析处理这些海量且格式多样的数据?
大数据的出现, 扩展了计算和存储资源, 大数据自身拥有的Variety支持多类型数据格式、 Volume大数据量存储、Velocity快速处理三大特征, 恰巧是基于多源日志的网络安全态势感知分析处理所需要的。 大数据的多类型数据格式, 可以使网络安全态势感知获取更多类型的日志数据, 包括网络与安全设备的日志、 网络运行情况信息、 业务与应用的日志记录等; 大数据的大数据量存储正是海量日志存储与处理所需要的; 大数据的快速处理为高速网络流量的深度安全分析提供了技术支持, 为高智能模型算法提供计算资源。 因此, 我们利用大数据所提供的基础平台和大数据量处理的技术支撑, 进行网络安全态势的分析处理。
关联分析。 网络中的防火墙日志和入侵检测日志都是对进入网络的安全事件的流量的刻画, 针对某一个可能的攻击事件, 会产生大量的日志和相关报警记录,这些记录存在着很多的冗余和关联, 因此首先要对得到的原始日志进行单源上的关联分析, 把海量的原始日志转换为直观的、 能够为人所理解的、 可能对网络造成危害的安全事件。 基于多源日志的网络安全态势感知采用基于相似度的报警关联, 可以较好地控制关联后的报警数量, 有利于减少复杂度。 其处理过程是: 首先提取报警日志中的主要属性, 形成原始报警; 再通过重复报警聚合, 生成聚合报警; 对聚合报警的各个属性定义相似度的计算方法, 并分配权重; 计算两个聚合报警的相似度, 通过与相似度阀值的比较, 来决定是否对聚合报警进行超报警; 最终输出属于同一类报警的地址范围和报警信息, 生成安全事件。
融合分析。 多源日志存在冗余性、 互补性等特点,态势感知借助数据融合技术, 能够使得多个数据源之间取长补短, 从而为感知过程提供保障, 以便更准确地生成安全态势。 经过单源日志报警关联过程, 分别得到各自的安全事件。 而对于来自防火墙和入侵检测日志的的多源安全事件, 采用D-S证据理论(由Dempster于1967年提出, 后由Shafer于1976年加以推广和发展而得名) 方法进行融合判别, 对安全事件的可信度进行评估, 进一步提高准确率, 减少误报。 D-S证据理论应用到安全事件融合的基本思路: 首先研究一种切实可行的初始信任分配方法, 对防火墙和入侵检测分配信息度函数; 然后通过D-S的合成规则, 得到融合之后的安全事件的可信度。
态势要素分析。 通过对网络入口处安全设备日 志的安全分析, 得到的只是进入目 标网络的可能的攻击信息, 而真正对网络安全状况产生决定性影响的安全事件, 则需要通过综合分析攻击知识库和具体的网络环境进行最终确认。 主要分为三个步骤: 一是通过对大量网络攻击实例的研究, 得到可用的攻击知识库, 主要包括各种网络攻击的原理、 特点, 以及它们的作用环境等; 二是分析关键主机上存在的系统漏洞和承载的服务的可能漏洞, 建立当前网络环境的漏洞知识库, 分析当前网络环境的拓扑结构、 性能指标等, 得到网络环境知识库; 三是通过漏洞知识库来确认安全事件的有效性, 也即对当前网络产生影响的网络攻击事件。 在网络安全事件生成和攻击事件确认的过程中, 提取出用于对整个网络安全态势进行评估的态势要素, 主要包括整个网络面临的安全威胁、 分支网络面临的安全威胁、 主机受到的安全威胁以及这些威胁的程度等。
5 结语
为了解决日益严重的网络安全威胁和挑战, 将态势感知技术应用于网络安全中, 不仅能够全面掌握当前网络安全状态, 还可以预测未来网络安全趋势。 本文在介绍网络安全态势相关概念和技术的基础上, 对基于多源日志的网络安全态势感知进行了探讨, 着重对基于多源日志的网络安全态势感知要素获取, 以及利用大数据进行多源日志的关联分析、 融合分析和态势要素分析等内容进行了研究, 对于态势评估、 态势预测和态势展示等相关内容, 还有待于进一步探讨和研究。
Ⅱ 网络安全可视化有什么好处
网络安全可视化之所以重要,可以从现实生活中的安全可视化进行类比。现实世界中,平安城市、雪亮工程等治安防控工程中,关于视频监控系统的可视化方面建设都十分突出,其意义体现在以下方面:
预警
通过对全局地区的可视化监控,可以进行针对性的人流量分析、人脸识别、信息采集等早期管理手段,通过这些手段能够进行早期预警,将安全问题控制在萌芽状态,做到防患于未然。
调度
在可视化平台的支撑下,一旦发生了安全隐患,可以通过多个区域的同时观测,及时地完成指挥调度和资源调配,对于问题严重的区域进行重点布防。
回放
在安全相关案件调查取证过程中,监控录像回放起到重要的作用,即使犯罪过程没有被发现或目标对象离开了布防区域,还是可以通过多个监控录像回放的配合准确定位作案事实和目标移动的路径,为抓捕和侦破提供了第一手材料。
提高犯罪难度和成本
使用以上全方位的可视化手段,结合经验丰富的分析人员,将犯罪的难度和成本变得极高,降低了治安事件发生的风险,即使问题发生也有完善的应对方法。
上述道理在网络安全领域也同样适用,随着攻击行为越来越复杂,APT(高级持续性威胁)、勒索病毒等事件频繁发生,这些攻击不是单点短时间攻击,而是持续时间长达十几个小时甚至几天,有多个复杂的环节组成,对付这些恶意行为,同样需要网络安全领域的可视化技术。
通过对安全路径、流量分析、数据安全、主机安全等多个层面的可视化展现,打造一张网络安全作战地图,同样可以起到以下作用:
攻击预测
通过设定正常访问情况下的路径和流量基线,对发生的异常状况进行及时发现和告警,并通过多个层面的关联分析迅速在攻击的早期解决问题。
路径和流量调度
发现攻击现象后,需要尽快通过可视化手段找出导致攻击的错误路径,并尽快配合流量调度系统将流量通过其它路径转发,再及时关闭错误路径,将攻击者打开的后门尽快关闭。
回溯
对于已经发生了安全事件,就像调取监控录像一样,需要调取事发当时的全部数据报文,通过精细化地分析取证,确保100%还原事件现场。通过多个流量采集器的配合,可以分析出攻击者的轨迹和路径,为追踪攻击者提供了事实依据。
通过网络安全可视化系统的部署,可以缩小攻击面、延长攻击时间、提高攻击者成本和防御成功率,起到震慑、预测、防御、处置、追溯的全方位作用。
Ⅲ 人工智能在网络安全领域的应用有哪些
近年来,在网络安全防御中出现了多智能体系统、神经网络、专家系统、机器学习等人工智能技术。一般来说,AI主要应用于网络安全入侵检测、恶意软件检测、态势分析等领域。
1、人工智能在网络安全领域的应用——在网络入侵检测中。
入侵检测技术利用各种手段收集、过滤、处理网络异常流量等数据,并为用户自动生成安全报告,如DDoS检测、僵尸网络检测等。目前,神经网络、分布式代理系统和专家系统都是重要的人工智能入侵检测技术。2016年4月,麻省理工学院计算机科学与人工智能实验室(CSAIL)与人工智能初创企业PatternEx联合开发了基于人工智能的网络安全平台AI2。通过分析挖掘360亿条安全相关数据,AI2能够准确预测、检测和防范85%的网络攻击。其他专注于该领域的初创企业包括Vectra Networks、DarkTrace、Exabeam、CyberX和BluVector。
2、人工智能在网络安全领域的应用——预测恶意软件防御。
预测恶意软件防御使用机器学习和统计模型来发现恶意软件家族的特征,预测进化方向,并提前防御。目前,随着恶意病毒的增多和勒索软件的突然出现,企业对恶意软件的保护需求日益迫切,市场上出现了大量应用人工智能技术的产品和系统。2016年9月,安全公司SparkCognition推出了DeepArmor,这是一款由人工智能驱动的“Cognition”杀毒系统,可以准确地检测和删除恶意文件,保护网络免受未知的网络安全威胁。在2017年2月举行的RSA2017大会上,国内外专家就人工智能在下一代防病毒领域的应用进行了热烈讨论。预测恶意软件防御的公司包括SparkCognition、Cylance、Deep Instinct和Invincea。
3、人工智能在网络安全领域的应用——在动态感知网络安全方面。
网络安全态势感知技术利用数据融合、数据挖掘、智能分析和可视化技术,直观地显示和预测网络安全态势,为网络安全预警和防护提供保障,在不断自我学习的过程中提高系统的防御水平。美国公司Invincea开发了基于人工智能的旗舰产品X,以检测未知的威胁,而英国公司Darktrace开发了一种企业安全免疫系统。国内伟达安防展示了自主研发的“智能动态防御”技术,以及“人工智能”与“动态防御”六大“魔法”系列产品的整合。其他参与此类研究的初创企业包括LogRhythm、SecBI、Avata Intelligence等。
此外,人工智能应用场景被广泛应用于网络安全运行管理、网络系统安全风险自评估、物联网安全问题等方面。一些公司正在使用人工智能技术来应对物联网安全挑战,包括CyberX、network security、PFP、Dojo-Labs等。
以上就是《人工智能在网络安全领域的应用是什么?这个领域才是最关键的》,近年来,在网络安全防御中出现了多智能体系统、神经网络、专家系统、机器学习等人工智能技术,如果你想知道更多的人工智能安全的发展,可以点击本站其他文章进行学习。
Ⅳ 可视化技术属于数据安全技术吗
网络安全可视化是一类新式的计算机可视化技术,主要是使用人类视觉对结构以及模型的信息提取功能,把较为抽象难懂的网络信息数据使用图像的方式进行表现,为网络信息分析人员提供帮助,使得分析人员能够更加便捷的判断网络中是否存在异常状况,在有危险因素入侵网络时能够及时发现并处理,同时还具有一定的网络安全事故预测能力。其关键应用范围如下:
1、科学计算可视化
科学计算可视化的理论基础为将规模较大的数据转变成为能够被人更加容易理解、更加具有直观性的图形或者图像,这一信息表现方式可以使人们能够更加直接的理解一些较为复杂的现象。并且,还具有计算以及模拟的视觉交互功能,操作起来简单便捷,并有着高效的网络安全防护能力。在计算机技术的持续发展背景下,这一技术具有广阔的应用前景,将来计算机图形学一定能够得到更好的发展,而科学计算可视化技术也将得到更好的完善。
2、信息可视化
信息可视化与人们平日的生产生活活动具有重要的联系,对于网络安全数据可视化而言具有十分重要的地位。计算机科学技术的发展,促进了信息可视化技术的提升,同时也是当前计算机技术领域内的重点研究对象。计算机可视化即指使用计算机技术将内容结构十分复杂难懂的信息进行简化,使其能够用一种更加直观的方式表现处理,信息可视化技术是由多种学科知识的综合所得。由于当前网络信息呈现爆发式增长的状态,造成信息的数量愈来愈庞大,复杂的、多余的信息使得人们甄选出的想要信息的效率越来越低,造成严重的信息危机。但是信息可视化的使用能够有效的处理上述问题,因为其具有能够将复杂的信息转变成直观、易懂的信息,从而降低了人们获取信息的难度,给人们的信息处理和查找带来了便利。
3、数据挖掘和可视化
数据挖掘可视化即在海量的数据中搜寻获得时效性好、潜能强且有效的信息。使用数据挖掘技术来获取信息主要依照下述步骤;数据管理、数据存储、数据分析、数据转换、数据挖掘、价值评价、数据显示。其在搜寻数据的同时能够与知识库以及使用者之间进行互动,从而使其获得数据更加具有正对性。数据可视化技术能够使用分析和观察数据表格的方式来获取想要的信息,能够更加全面的分析数据的内在含义,从而据此准确发现网络中存在的异常状况。数据可视化的使用能够使使用者更加直接的了解数据信息,同时分析数据的功能也比较强大,从而使用户获得更好的使用体验。
4、安全数据可视化
网络安全数据的可视化的原
Ⅳ 网络信息安全的主要表现形式从社会层面的角度分析哪三个方面�
个人:
增强了防范意识,保持一个良好上网习惯:如不要设置弱口令、常清空缓存、尽量不要填写真实信息。
企业:
就目前而已,还有很多企业的信息安全以老三样(防火墙、入侵监测和病毒防范)为主要构成的传统信息安全系统,是以防外与封堵为特征。要知道防火墙这类传统的信息安全系统是企业最基础的防护,所以建立一套完善的网络安全管理体系,利用如:UniAccess终端安全管理和UniBDP业务数据防泄露等这类系统,监控与审计 “内部人”的网络行为并进行操作流程的记录,实现管理的可视化。对于客户端来说,终端安全管理和业务数据防泄露系统不仅对控制“内部人”风险起到有效的防范作用,还能实时保护企业网络安全不受外部攻击。
国家:
除建立起网络安全审查制度外,还要从根本上提升中国网络安全自我防护能力,用自主可控的国产软硬件和服务来替代进口产品。只有建立起完全自主、安全可控的核心系统,才能确保国家网络安全和信息安全。
Ⅵ 大数据可视化设计到底是啥,该怎么用
大数据可视化是个热门话题,在信息安全领域,也由于很多企业希望将大数据转化为信息可视化呈现的各种形式,以便获得更深的洞察力、更好的决策力以及更强的自动化处理能力,数据可视化已经成为网络安全技术的一个重要趋势。
文章目录
一、什么是网络安全可视化
1.1 故事+数据+设计 =可视化
1.2 可视化设计流程
二、案例一:大规模漏洞感知可视化设计
2.1整体项目分析
2.2分析数据
2.3匹配图形
2.4确定风格
2.5优化图形
2.6检查测试
三、案例二:白环境虫图可视化设计
3.1整体项目分析
3.2分析数据
3.3 匹配图形
3.4优化图形
3.5检查测试
一、什么是网络安全可视化
攻击从哪里开始?目的是哪里?哪些地方遭受的攻击最频繁……通过大数据网络安全可视化图,我们可以在几秒钟内回答这些问题,这就是可视化带给我们的效率 。 大数据网络安全的可视化不仅能让我们更容易地感知网络数据信息,快速识别风险,还能对事件进行分类,甚至对攻击趋势做出预测。可是,该怎么做呢?
1.1 故事+数据+设计 =可视化
做可视化之前,最好从一个问题开始,你为什么要做可视化,希望从中了解什么?是否在找周期性的模式?或者多个变量之间的联系?异常值?空间关系?比如政府机构,想了解全国各个行业漏洞的分布概况,以及哪个行业、哪个地区的漏洞数量最多;又如企业,想了解内部的访问情况,是否存在恶意行为,或者企业的资产情况怎么样。总之,要弄清楚你进行可视化设计的目的是什么,你想讲什么样的故事,以及你打算跟谁讲。
有了故事,还需要找到数据,并且具有对数据进行处理的能力,图1是一个可视化参考模型,它反映的是一系列的数据的转换过程:
我们有原始数据,通过对原始数据进行标准化、结构化的处理,把它们整理成数据表。
将这些数值转换成视觉结构(包括形状、位置、尺寸、值、方向、色彩、纹理等),通过视觉的方式把它表现出来。例如将高中低的风险转换成红黄蓝等色彩,数值转换成大小。
将视觉结构进行组合,把它转换成图形传递给用户,用户通过人机交互的方式进行反向转换,去更好地了解数据背后有什么问题和规律。
最后,我们还得选择一些好的可视化的方法。比如要了解关系,建议选择网状的图,或者通过距离,关系近的距离近,关系远的距离也远。
总之,有个好的故事,并且有大量的数据进行处理,加上一些设计的方法,就构成了可视化。
1.2 可视化设计流程
一个好的流程可以让我们事半功倍,可视化的设计流程主要有分析数据、匹配图形、优化图形、检查测试。首先,在了解需求的基础上分析我们要展示哪些数据,包含元数据、数据维度、查看的视角等;其次,我们利用可视化工具,根据一些已固化的图表类型快速做出各种图表;然后优化细节;最后检查测试。
具体我们通过两个案例来进行分析。
二、案例一:大规模漏洞感知可视化设计
图2是全国范围内,各个行业漏洞的分布和趋势,橙黄蓝分别代表了漏洞数量的高中低。
2.1整体项目分析
我们在拿到项目策划时,既不要被大量的信息资料所迷惑而感到茫然失措,也不要急于完成项目,不经思考就盲目进行设计。首先,让我们认真了解客户需求,并对整体内容进行关键词的提炼。可视化的核心在于对内容的提炼,内容提炼得越精确,设计出来的图形结构就越紧凑,传达的效率就越高。反之,会导致图形结构臃肿散乱,关键信息无法高效地传达给读者。
对于大规模漏洞感知的可视化项目,客户的主要需求是查看全国范围内,各个行业的漏洞分布和趋势。我们可以概括为三个关键词:漏洞量、漏洞变化、漏洞级别,这三个关键词就是我们进行数据可视化设计的核心点,整体的图形结构将围绕这三个核心点来展开布局。
2.2分析数据
想要清楚地展现数据,就要先了解所要绘制的数据,如元数据、维度、元数据间关系、数据规模等。根据需求,我们需要展现的元数据是漏洞事件,维度有地理位置、漏洞数量、时间、漏洞类别和级别,查看的视角主要是宏观和关联。涉及到的视觉元素有形状、色彩、尺寸、位置、方向,如图4。
2.3匹配图形
2.4确定风格
匹配图形的同时,还要考虑展示的平台。由于客户是投放在大屏幕上查看,我们对大屏幕的特点进行了分析,比如面积巨大、深色背景、不可操作等。依据大屏幕的特点,我们对设计风格进行了头脑风暴:它是实时的,有紧张感;需要新颖的图标和动效,有科技感;信息层次是丰富的;展示的数据是权威的。
最后根据设计风格进一步确定了深蓝为标准色,代表科技与创新;橙红蓝分别代表漏洞数量的高中低,为辅助色;整体的视觉风格与目前主流的扁平化一致。
2.5优化图形
有了图形后,尝试把数据按属性绘制到各维度上,不断调整直到合理。虽然这里说的很简单,但这是最耗时耗力的阶段。维度过多时,在信息架构上广而浅或窄而深都是需要琢磨的,而后再加上交互导航,使图形更“可视”。
在这个任务中,图形经过很多次修改,图7是我们设计的过程稿,深底,高亮的地图,多颜色的攻击动画特效,营造紧张感;地图中用红、黄、蓝来呈现高、中、低危的漏洞数量分布情况;心理学认为上方和左方易重视,“从上到下”“从左至右”的“Z”字型的视觉呈现,简洁清晰,重点突出。
完成初稿后,我们进一步优化了维度、动效和数量。维度:每个维度,只用一种表现,清晰易懂;动效:考虑时间和情感的把控,从原来的1.5ms改为3.5ms;数量:考虑了太密或太疏时用户的感受,对圆的半径做了统一大小的处理。
2.6检查测试
最后还需要检查测试,从头到尾过一遍是否满足需求;实地投放大屏幕后,用户是否方便阅读;动效能否达到预期,色差是否能接受;最后我们用一句话描述大屏,用户能否理解。
三、案例二:白环境虫图可视化设计
如果手上只有单纯的电子表格(左),要想找到其中IP、应用和端口的访问模式就会很花时间,而用虫图(右)呈现之后,虽然增加了很多数据,但读者的理解程度反而提高了。
3.1整体项目分析
当前,企业内部IT系统复杂多变,存在一些无法精细化控制的、非法恶意的行为,如何精准地处理安全管理问题呢?我们的主要目标是帮助用户监测访问内网核心服务器的异常流量,概括为2个关键词:内网资产和访问关系,整体的图形结构将围绕这两个核心点来展开布局。
3.2分析数据
接下来分析数据,案例中的元数据是事件,维度有时间、源IP、目的IP和应用,查看的视角主要是关联和微观。
3.3 匹配图形
根据以往的经验,带有关系的数据一般使用和弦图和力导向布局图。最初我们采用的是和弦图,圆点内部是主机,用户要通过3个维度去寻找事件的关联。通过测试发现,用户很难理解,因此选择了力导向布局图(虫图)。第一层级展示全局关系,第二层级通过对IP或端口的钻取进一步展现相关性。
3.4优化图形
优化图形时,我们对很多细节进行了调整: – 考虑太密或太疏时用户的感受,只展示了TOP N。 – 弧度、配色的优化,与我们UI界面风格相一致。 – IP名称超长时省略处理。 – 微观视角中,源和目的分别以蓝色和紫色区分,同时在线上增加箭头,箭头向内为源,向外是目的,方便用户理解。 – 交互上,通过单击钻取到单个端口和IP的信息;鼠标滑过时相关信息高亮展示,这样既能让画面更加炫酷,又能让人方便地识别。
3.5检查测试
通过调研,用户对企业内部的流向非常清楚,视觉导向清晰,钻取信息方便,色彩、动效等细节的优化帮助用户快速定位问题,提升了安全运维效率。
四、总结
总之,借助大数据网络安全的可视化设计,人们能够更加智能地洞悉信息与网络安全的态势,更加主动、弹性地去应对新型复杂的威胁和未知多变的风险。
可视化设计的过程中,我们还需要注意:1、整体考虑、顾全大局;2、细节的匹配、一致性;3、充满美感,对称和谐。
Ⅶ 基于隐马尔可夫模型的网络安全态势预测方法
论文:文志诚,陈志刚.基于隐马尔可夫模型的网络安全态势预测方法[J].中南大学学报(自然科学版),2015,46(10):3689-3695.
摘要
为了给网络管理员制定决策和防御措施提供可靠的依据,通过考察网络安全态势变化特点,提出构建隐马 尔可夫预测模型。利用时间序列分析方法刻画不同时刻安全态势的前后依赖关系,当安全态势处于亚状态或偏离 正常状态时,采用安全态势预测机制,分析其变化规律,预测系统的安全态势变化趋势。最后利用仿真数据,对 所提出的网络安全态势预测算法进行验证。访真结果验证了该方法的正确性。
隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,其难点是从可观察的参数中确定该过程的隐含参数。隐马尔可夫模型是关于时序的概率模型,描述由一个隐藏的马尔科夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测而产生观测随机序列的过程。如果要利用隐马尔可夫模型,模型的状态集合和观测集合应该事先给出。
举个例子:有个孩子叫小明,小明每天早起上学晚上放学。假设小明在学校里的状态有三种,分别是丢钱了,捡钱了,和没丢没捡钱,我们记作{q0,q1,q2}。
那么对于如何确定他的丢钱状态?如果小明丢钱了,那他今天应该心情不好,如果捡钱了,他回来肯定心情好,如果没丢没捡,那他肯定心情平淡。我们将他的心情状态记作{v0,v1v2}。我们这里观测了小明一周的心情状态,心情状态序列是{v0,v0,v1,v1,v2,v0,v1}。那么小明这一周的丢捡钱状态是什么呢?这里引入隐马尔科夫模型。
隐马尔科夫模型的形式定义如下:
一个HMM模型可以由状态转移矩阵A、观测概率矩阵B、以及初始状态概率π确定,因此一个HMM模型可以表示为λ(A,B,π)。
利用隐马尔可夫模型时,通常涉及三个问题,分别是:
后面的计算啥的和马尔科夫差不多我就不写了。。。。。。
2.1网络安全态势
在网络态势方面,国内外相关研究多见于军事战 场的态势获取,网络安全领域的态势获取研究尚处于 起步阶段,还未有普遍认可的解决方法。张海霞等[9] 提出了一种计算综合威胁值的网络安全分级量化方 法。该方法生成的态势值满足越危险的网络实体,威 胁值越高。本文定义网络安全态势由网络基础运行性 (runnability)、网络脆弱性(vulnerability)和网络威胁性 (threat)三维组成,从 3 个不同的维度(或称作分量)以 直观的形式向用户展示整个网络当前安全态势 SA=( runnability, vulnerability, threat)。每个维度可通过 网络安全态势感知,从网络上各运行组件经信息融合 而得到量化分级。为了方便计算实验与降低复杂度, 本文中,安全态势每个维度取“高、中、差”或“1,2, 3”共 3 个等级取值。本文主要进行网络安全态势预测
2.2构建预测模型
隐马尔可夫模型易解决一类对于给定的观测符号序列,预测新的观测符号序列出现概率的基本问题。 隐马尔可夫模型是一个关于可观测变量O与隐藏变量 S 之间关系的随机过程,与安全态势系统的内部状态 (隐状态)及外部状态(可观测状态)相比,具有很大的相 似性,因此,利用隐马尔可夫模型能很好地分析网络 安全态势问题。本文利用隐马尔可夫的时间序列分析 方法刻画不同时刻安全态势的前后依赖关系。
已知 T 时刻网络安全态势,预测 T+1,T+2,⋯, T+n 时刻可能的网络安全态势。以网络安全态势的网络基础运行性(runnability)、网络脆弱性(vulnerability) 和网络威胁性(threat)三维组成隐马尔可夫模型的外在表现特征,即可观测状态或外部状态,它们分别具有 “高、中、差” 或“1, 2,3”取值,则安全态势共有 33=27 种外部组合状态。模型的内部状态(隐状态)为安全态 势 SA的“高、中高、中、中差、差”取值。注意:在本 文中外部特征的 3 个维度,每个维度三等取值,而内部 状态 SA为五等取值。模型示例如图 1 所示。
网络安全态势SA一般以某个概率aij在“高、中高、 中、中差、差”这 5 个状态之间相互转换,从一个状态 向另一个状态迁移,这些状态称为内部状态或隐状态, 外界无法监测到。然而,可以通过监测工具监测到安 全态势外在的表现特征,如网络基础运行性 (runnability)、网络脆弱性(vulnerability)和网络威胁性 (threat)三维。监测到的这些参数值组合一个整体可以 认为是一个可观测状态(外部状态,此观测状态由 L 个 分量构成,是 1 个向量)。图 1 中,设状态 1 为安全态 势“高”状态,状态 5 为安全态势“差”状态。在实际应 用中,根据具体情况可自行设定,本文取安全态势每 维外在表现特征 L=3,则有 27 种安全态势可观测外部 状态,而其内部状态(隐状态)N 共为 5 种。
定义 1: 设网络安全态势 SA内部隐状态可表示为S1,S2,⋯,S5,则网络安全态势将在这 5 个隐状态之 间以某个概率 aij自由转移,其中 0≤aij≤1。
定义 2: 网络安全态势 SA外在表现特征可用 L 个 随机变量 xi(1≤i≤L, 本处 L=3)表示,令 v=(x1, x2,⋯, xL)构成 1 个 L 维随机变量 v;在时刻 I,1 次具体观测 oi的观测值表示为 vi,则经过 T 个时刻对 v 观测得到 1 个安全态势状态观测序列 O={o1,o2,⋯,oT}。
本文基本思路是:建立相应的隐马尔可夫模型, 收集内、外部状态总数训练隐马尔可夫模型;当网络安全态势异常时,通过监测器收集网络外在表现特征数据,利用已训练好 HMM 的模型对网络安全态势进行预测,为管理员提供决策服务。
基本步骤如下:首先,按引理 1 赋 给隐马尔可夫模型 λ=(π,A,B)这 3 个参数的先验值; 其次,按照一定规则随机采集样本训练 HMM 模型直 至收敛,获得 3 个参数的近似值;最后,由一组网络 安全态势样本观测序列预测下一阶段态势。
本实验采集一组 10 个观测样本数据为:
<高、高、 高>,<高、高、高>,<高、中、高>,
<高、中、中>, <中、中、中>,<中、中、中>,
<中、中、高>,<中、 高、高>,<高、高、高>和<高、高、高>。
输入到隐马尔可夫模型中,经解码为安全态势隐状态: “高、高、 中高、中高、中、中、中高、中高、高、高”。最后 1 个隐状态 qT=“高”。由于 a11=0.682 6(上一次为高,下一次为高的状态转移概率),在所有的隐状态 转移概率中为最高,所以,在 T+1 时刻的安全态势 SA 为 qT+1=“高”。网络安全态势预测对比图如图 4 所示, 其中,纵轴表示安全态势等级,“5”表示“高”,“0”表 示“低”;横轴表示时间,在采样序号 10 时,安全态势 为高,经预测下一个时刻 11 时,安全态势应该为高, 可信度达 68.26%。通过本实验,依据训练好的隐马尔 可夫预测模式可方便地预测下一时刻的网络安全态势 发展趋势。从图 4 可明显看出本文的 HMM 方法可信 度比贝叶斯预测方法的高。
Ⅷ 知识普及-安全态势
随着网络规模和复杂性不断增大,网络的攻击技术不断革新,新型攻击工具大量涌现,传统的网络安全技术显得力不从心,网络入侵不可避免,网络安全问题越发严峻。
单凭一种或几种安全技术很难应对复杂的安全问题,网络安全人员的关注点也从单个安全问题的解决,发展到研究整个网络的安全状态及其变化趋势。
网络安全态势感知对影响网络安全的诸多要素进行获取、理解、评估以及预测未来的发展趋势,是对网络安全性定量分析的一种手段,是对网络安全性的精细度量,态势感知成已经为网络安全2.0时代安全技术的焦点,对保障网络安全起着非常重要的作用。
一、态势感知基本概念
1.1 态势感知通用定义
随着网络安全态势感知研究领域的不同,人们对于态势感知的定义和理解也有很大的不同,其中认同度较高的是Endsley博士所给出的动态环境中态势感知的通用定义:
态势感知是感知大量的时间和空间中的环境要素,理解它们的意义,并预测它们在不久将来的状态。
在这个定义中,我们可以提炼出态势感知的三个要素:感知、理解和预测,也就是说态势感知可以分成感知、理解和预测三个层次的信息处理,即:
感知:感知和获取环境中的重要线索或元素;
理解:整合感知到的数据和信息,分析其相关性;
预测:基于对环境信息的感知和理解,预测相关知识的未来的发展趋势。
1.2 网络安全态势感知概念
目前,对网络安全态势感知并未有一个统一而全面的定义,我们可以结合态势感知通用定义来对对网络安全态势感知给出一个基本描述,即:
网络安全态势感知是综合分析网络安全要素,评估网络安全状况,预测其发展趋势,并以可视化的方式展现给用户,并给出相应的报表和应对措施。
根据上述概念模型,网络安全态势感知过程可以分为一下四个过程:
1)数据采集:通过各种检测工具,对各种影响系统安全性的要素进行检测采集获取,这一步是态势感知的前提;
2)态势理解:对各种网络安全要素数据进行分类、归并、关联分析等手段进行处理融合,对融合的信息进行综合分析,得出影响网络的整体安全状况,这一步是态势感知基础;
3)态势评估:定性、定量分析网络当前的安全状态和薄弱环节,并给出相应的应对措施,这一步是态势感知的核心;
4)态势预测:通过对态势评估输出的数据,预测网络安全状况的发展趋势,这一步是态势感知的目标。
网络安全态势感知要做到深度和广度兼备,从多层次、多角度、多粒度分析系统的安全性并提供应对措施,以图、表和安全报表的形式展现给用户。
二、态势感知常用分析模型
在网络安全态势感知的分析过程中,会应用到很多成熟的分析模型,这些模型的分析方法虽各不相同,但多数都包含了感知、理解和预测的三个要素。
2.1 始于感知:Endsley模型
Endsley模型中,态势感知始于感知。
感知包含对网络环境中重要组成要素的状态、属性及动态等信息,以及将其归类整理的过程。
理解则是对这些重要组成要素的信息的融合与解读,不仅是对单个分析对象的判断分析,还包括对多个关联对象的整合梳理。同时,理解是随着态势的变化而不断更新演变的,不断将新的信息融合进来形成新的理解。
在了解态势要素的状态和变化的基础上,对态势中各要素即将呈现的状态和变化进行预测。
2.2 循环对抗:OODA模型
OODA是指观察(Oberve)、调整(Orient)、决策(Decide)以及行动(Act),它是信息战领域的一个概念。OODA是一个不断收集信息、评估决策和采取行动的过程。
将OODA循环应用在网络安全态势感知中,攻击者与分析者都面临这样的循环过程:在观察中感知攻击与被攻击,在理解中调整并决策攻击与防御方法,预测对手下一个动作并发起行动,同时进入下一轮的观察。
如果分析者的OODA循环比攻击者快,那么分析者有可能“进入”对方的循环中,从而占据优势。例如通过关注对方正在进行或者可能进行的事情,即分析对手的OODA环,来判断对手下一步将采取的动作,而先于对方采取行动。
2.3 数据融合:JDL模型
JDL(Joint Directors of Laboratories)模型是信息融合系统中的一种信息处理方式,由美国国防部成立的数据融合联合指挥实验室提出。
JDL模型将来自不同数据源的数据和信息进行综合分析,根据它们之间的相互关系,进行目标识别、身份估计、态势评估和威胁评估,融合过程会通过不断的精炼评估结果来提高评估的准确性。
在网络安全态势感知中,面对来自内外部大量的安全数据,通过JDL模型进行数据的融合分析,能够实现对分析目标的感知、理解与影响评估,为后续的预测提供重要的分析基础和支撑。
2.4 假设与推理:RPD模型
RPD(Recognition Primed Decision)模型中定义态势感知分为两个阶段:感知和评估。
感知阶段通过特征匹配的方式,将现有态势与过去态势进行对比,选取相似度高的过去态势,找出当时采取的哪些行动方案是有效的。评估阶段分析过去相似态势有效的行动方案,推测当前态势可能的演化过程,并调整行动方案。
以上方式若遇到匹配结果不理想的情况,则采取构造故事的方式,即根据经验探索潜在的假设,再评估每个假设与实际发生情况的相符度。在RPD模型中对感知、理解和预测三要素的主要体现为:基于假设进行相关信息的收集(感知),特征匹配和故事构造(理解),假设驱动思维模拟与推测(预测)。
三、态势感知应用关键点
当前,单维度的网络安全防御技术手段,已经难以应对复杂的网络环境和大量存在的安全问题,对网络安全态势感知具体模型和技术的研究,已经成为2.0时代网络安全技术的焦点,同时很多机构也已经推出了网络安全态势感知产品和解决方案。
但是,目前市场上的的相关产品和解决方案,都相对偏重于网络安全态势的某一个或某几个方面的感知,网络安全态势感知的数据分析的深度和广度还需要进一步加强,同时网络安全态势感知与其它系统平台的联动不足,无法将态势感知与安全运营深入融合。
为此,太极信安认为网络安全态势感知平台的建设,应着重考虑以下几个方面的内容:
1、在数据采集方面,网络安全数据来源要尽可能的丰富,应该包括网络结构数据、网络服务数据、漏洞数据、脆弱性数据、威胁与入侵数据、用户异常行为数据等等,只有这样态势评估结果才能准确。
2、在态势评估方面,态势感评估要对多个层次、多个角度进行评估,能够评估网络的业务安全、数据安全、基础设施安全和整体安全状况,并且应该针对不同的应用背景和不同的网络规模选择不同的评估方法。
3、在态势感知流程方面,态势感知流程要规范,所采用的算法要简单,应该选择规范化的、易操作的评估模型和预测模型,能够做到实时准确的评估网络安全态势。
4、在态势预测方面,态势感知要能支持对不同的评估结果预测其发展趋势,预防大规模安全事件的发生。
5、在态势感知结果显示方面,态势感知能支持多种形式的可视化显示,支持与用户的交互,能根据不同的应用需求生成态势评测报表,并提供相应的改进措施。
四、总结
上述几种模型和应用关键点对网络安全态势感知来讲至关重要,将这些基本概念和关键点进行深入理解并付诸于实践,才能真正帮助决策者获得网络安全态势感知能力。
太极信安认为,建设网络安全态势感知平台,应以“业务+数据定义安全”战略为核心驱动,基于更广、更深的数据来源分析,以用户实际需求为出发点,从综合安全、业务安全、数据安全、信息基础设施安全等多个维度为用户提供全面的安全态势感知,在认知、理解、预测的基础上,真正帮助用户实现看见业务、看懂威胁、看透风险、辅助决策。
摘自 CSDN 道法一自然
Ⅸ 态势分析是如何保障网络安全的
态势感知是一种基于环境的、动态、整体地洞悉安全风险的能力,是以安全大数据为基础,从全局视角提升对安全威胁的发现识别、理解分析、响应处置能力的一种方式,最终是为了决策与行动,是安全能力的落地。
Ⅹ 网络可视化什么意思
网络安全可视化是指在网络安全领域中的呈现技术,将网络安全加固、检测、防御、响应等过程中的数据和结果转换成图形界面,通过C/S或B/S方式呈现在屏幕或其它介质上,并通过人机交互的方式进行搜索、加工、汇总等操作的理论、方法和技术。
网络安全可视化是数据可视化研究中较为广泛的一个方向,利用人类视觉对模型和结构的获取能力,将抽象的网络和系统数据以图形图像的方式展现出来,协助分析网络状况,识别网络异常或入侵行为,预测网络安全事件的发展趋势。
网络态势可视化技术作为一项新技术,是网络安全态势感知与可视化技术的结合,将网络中蕴涵的态势状况通过可视化图形方式展示给用户,并借助于人在图形图像方面强大的处理能力,实现对网络异常行为的分析和检测。