⑴ 学信息安全网络安全一定要学习密码学吗
是要学的,信息与网络安全是建立在密码学与网络基础之上的,密码学的发展比网络的发展来得早,密码学在二战时期发展很迅速,复杂度大幅度的提高,网络安全的维护需要使用到密码学知识,你自己应该也有体会,现在想要执行一个程序都要密码,例如:登qq要密码,银行取钱要密码才能取,应该说网络安全是信息安全的一个领域,网络安全把密码学充分利用起来了.所以你还是好好学吧,密码学都是有数学知识转化过来的,运算量可能很大,从小到大一直在学数学.密码学也就不难学,就是需要多点耐心~~~
⑵ 密码学在网络信息安全中有哪些作用
密码学在网络信息安全中的作用有保护数据和保证信息安全。
密码学是研究编制密码和破译密码的技术科学。研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。电报最早是由美国的摩尔斯在1844年发明的,故也被叫做摩尔斯电码。
密码学也促进了计算机科学,特别是在于电脑与 网络安全所使用的技术,如访问控制与信息的机密性。密码学已被应用在日常生活:包括自动柜员物首机的芯片卡、电脑使用者存取密码、 电子商务等等搭敏。
着名的密码学者Ron Rivest解释道:“密码学是关于如何在敌人存在的环境中通讯”,自工程学的角度,这相当于密码学与纯数学的异同。密码学是信息安全等相关议题,如认证、访问控制的核心。密码学的首要目的是隐藏信息的涵义,并不是隐藏信息的存在。
⑶ 网络安全密码学 消息认证码的实现方式有哪两种
MAC或hash函数都可以的
消息认证(messageauthentication)就是验证消息的完整性,当接收方收到发送方的报文时,接收方能够验证收到的报文是真实的和未被篡改的。它包含两层含义:一是验证信息的发送者是真正的而不是冒充的,即数据起源认证;二是验证信息在传送过程中未被篡改、重放或延迟等。
消息认证是指通过对消息或者消息有关的信息进行加密或签名变换进行的认证,目的是为了防止传输和存储的消息被有意无意的篡改,包括消息内容认证(即消息完整性认证)、消息的源和宿认证(即身份认证0)、及消息的序号和操作时间认证等。它在票据防伪中具有重要应用(如税务的金税系统和银行的支付密码器)。
消息认证所用的摘要算法与一般的对称或非对称加密算法不同,它并不用于防止信息被窃取,而是用于证明原文的完整性和准确性,也就是说,消息认证主要用于防止信息被篡改。
消息认证中常见的攻击和对策:
①重放攻击:截获以前协议执行时传输的信息,然后在某个时候再次使用。对付这种攻击的一种措施是在认证消息中包含一个非重复值,如序列号、时戳、随机数或嵌入目标身份的标志符等。
②冒充攻击:攻击者冒充合法用户发布虚假消息。为避免这种攻击可采用身份认证技术。
③重组攻击:把以前协议执行时一次或多次传输的信息重新组合进行攻击。为了避免这类攻击,把协议运行中的所有消息都连接在一起。
④篡改攻击:修改、删除、添加或替换真实的消息。为避免这种攻击可采用消息认证码MAC或hash函数等技术。
⑷ 密码学与网络安全的目录
第1章 导言
1.1 安全目标
1.1.1 机密性
1.1.2 完整性
1.1.3 可用性
1.2 攻击
1.2.1 威胁机密性的攻击
1.2.2 威胁完整性的攻击
1.2.3 威胁可用性的攻击
1.2.4 被动攻击与主动攻击
1.3 服务和机制
1.3.1 安全服务
1.3.2 安全机制
1.3.3 服务和机制之间的关系
1.4 技术
1.4.1 密码术
1.4.2 密写术
1.5 本书的其余部分
第Ⅰ部分 对称密钥加密
第Ⅱ部分 非对称密钥加密
第Ⅲ部分 完整性、验证和密钥管理
第Ⅳ部分 网络安全
1.6 推荐阅读
1.7 关键术语
1.8 概要
1.9 习题集
第Ⅰ部分 对称密钥加密
第2章 密码数学 第Ⅰ部分:模算法、同余和矩阵
2.1 整数算法
2.1.1 整数集
2.1.2 二进制运算
2.1.3 整数除法
2.1.4 整除性
2.1.5 线性丢番图方程
2.2 模运算
2.2.1 模算符
2.2.2 余集:Zn
2.2.3 同余
2.2.4 在集合Zn当中的运算
2.2.5 逆
2.2.6 加法表和乘法表
2.2.7 加法集和乘法集的不同
2.2.8 另外两个集合
2.3 矩阵
2.3.1 定义
2.3.2 运算和关系
2.3.3 行列式
2.3.4 逆
2.3.5 剩余阵
2.4 线性同余
2.4.1 单变量线性方程
2.4.2 线性方程组
2.5 推荐阅读
2.6 关键术语
2.7 概要
2.8 习题集
第3章 传统对称密钥密码
3.1 导言
3.1.1 Kerckhoff原理
3.1.2 密码分析
3.1.3 传统密码的分类
3.2 代换密码
3.2.1 单码代换密码
3.2.2 多码代换密码
3.3 换位密码
3.3.1 无密钥换位密码
3.3.2 有密钥的换位密码
3.3.3 把两种方法组合起来
3.4 流密码和分组密码
3.4.1 流密码
3.4.2 分组密码
3.4.3 组合
3.5 推荐阅读
3.6关键术语
3.7 概要
3.8 习题集
第4章 密码数学 第Ⅱ部分:代数结构
4.1 代数结构
4.1.1 群
4.1.2 环
4.1.3 域
4.1.4 小结
4.2 GF(2n)域
4.2.1 多项式
4.2.2 运用一个生成器
4.2.3 小结
4.3 推荐阅读
4.4 关键术语
4.5 概要
4.6 习题集
第5章 现代对称密钥密码
5.1 现代分组密码
5.1.1 代换与换位
5.1.2 作为置换群的分组密码
5.1.3 现代分组密码的成分
5.1.4 换字盒
5.1.5 乘积密码
5.1.6 两类乘积密码
5.1.7 关于分组密码的攻击
5.2 现代流密码
5.2.1 同步流密码
5.2.2 异步流密码
5.3 推荐阅读
5.4 关键术语
5.5 概要
5.6 习题集
第6章 数据加密标准(DES)
6.1 导言
6.1.1 数据加密标准(DES)简史
6.1.2 概观
6.2 DES的结构
6.2.1 初始置换和最终置换
6.2.2 轮
6.2.3 密码和反向密码
6.2.4 示例
6.3 DES分析
6.3.1 性质
6.3.2 设计标准
6.3.3 DES的缺陷
6.4 多重 DES
6.4.1 双重DES
6.4.2 三重DES
6.5 DES的安全性
6.5.1 蛮力攻击
6.5.2 差分密码分析
6.5.3 线性密码分析
6.6 推荐阅读
6.7 关键术语
6.8 概要
6.9 习题集
第7章 高级加密标准(AES)
7.1 导言
7.1.1 高级加密标准(AES)简史
7.1.2 标准
7.1.3 轮
7.1.4 数据单位
7.1.5 每一个轮的结构
7.2 转换
7.2.1 代换
7.2.2 置换
7.2.3 混合
7.2.4 密钥加
7.3 密钥扩展
7.3.1 在AES-128中的密钥扩展
7.3.2 AES-192和AES-256中的密钥扩展
7.3.3 密钥扩展分析
7.4 密码
7.4.1 源设计
7.4.2 选择性设计
7.5 示例
7.6 AES的分析
7.6.1 安全性
7.6.2 可执行性
7.6.3 复杂性和费用
7.7 推荐阅读
7.8 关键术语
7.9 概要
7.10 习题集
第8章 应用现代对称密钥密码的加密
8.1 现代分组密码的应用
8.1.1 电子密码本模式
8.1.2 密码分组链接(CBC)模式
8.1.3 密码反馈(CFB)模式
8.1.4 输出反馈(OFB)模式
8.1.5 计数器(CTR)模式
8.2 流密码的应用
8.2.1 RC4
8.2.2 A5/1
8.3 其他问题
8.3.1 密钥管理
8.3.2 密钥生成
8.4 推荐阅读
8.5 关键术语
8.6 概要
8.7 习题集
第Ⅱ部分 非对称密钥加密
第9章 密码数学 第Ⅲ部分:素数及其相关的同余方程
9.1 素数
9.1.1 定义
9.1.2 素数的基数
9.1.3 素性检验
9.1.4 Euler Phi-(欧拉?(n))函数
9.1.5 Fermat(费尔马)小定理
9.1.6 Euler定理
9.1.7 生成素数
9.2 素性测试
9.2.1 确定性算法
9.2.2概率算法
9.2.3 推荐的素性检验
9.3 因数分解
9.3.1 算术基本定理
9.3.2 因数分解方法
9.3.3 Fermat方法 248
9.3.4 Pollard p – 1方法
9.3.5 Pollard rho方法
9.3.6 更有效的方法
9.4 中国剩余定理
9.5 二次同余
9.5.1 二次同余模一个素数
9.5.2 二次同余模一个复合数
9.6 指数与对数
9.6.1 指数
9.6.2 对数
9.7 推荐阅读
9.8 关键术语
9.9 概要
9.10 习题集
第10章 非对称密钥密码学
10.1 导言
10.1.1 密钥
10.1.2 一般概念
10.1.3 双方的需要
10.1.4 单向暗门函数
10.1.5 背包密码系统
10.2 RSA密码系统
10.2.1 简介
10.2.2 过程
10.2.3 一些普通的例子
10.2.4 针对RSA的攻击
10.2.5 建议
10.2.6 最优非对称加密填充(OAEP)
10.2.7 应用
10.3 RABIN密码系统
10.3.1 过程
10.3.2 Rabin系统的安全性
10.4 ELGAMAL密码系统
10.4.1 ElGamal密码系统
10.4.2 过程
10.4.3 证明
10.4.4 分析
10.4.5 ElGamal的安全性
10.4.6 应用
10.5 椭圆曲线密码系统
10.5.1 基于实数的椭圆曲线
10.5.2 基于GF( p)的椭圆曲线
10.5.3 基于GF(2n)的椭圆曲线
10.5.4 模拟ElGamal的椭圆曲线加密系统
10.6 推荐阅读
10.7 关键术语
10.8 概要
10.9 习题集
第Ⅲ部分 完整性、验证和密钥管理
第11章 信息的完整性和信息验证
11.1 信息完整性
11.1.1 文档与指纹
11.1.2 信息与信息摘要
11.1.3 区别
11.1.4 检验完整性
11.1.5 加密hash函数标准
11.2 随机预言模型
11.2.1 鸽洞原理
11.2.2 生日问题
11.2.3 针对随机预言模型的攻击
11.2.4 针对结构的攻击
11.3 信息验证
11.3.1 修改检测码
11.3.2 信息验证代码(MAC)
11.4 推荐阅读
11.5 关键术语
11.6 概要
11.7 习题集
第12章 加密hash函数
12.1 导言
12.1.1 迭代hash函数
12.1.2 两组压缩函数
12.2 SHA-512
12.2.1 简介
12.2.2 压缩函数
12.2.3 分析
12.3 WHIRLPOOL
12.3.1 Whirlpool密码
12.3.2 小结
12.3.3 分析
12.4 推荐阅读
12.5 关键术语
12.6 概要
12.7 习题集
第13章 数字签名
13.1 对比
13.1.1 包含性
13.1.2 验证方法
13.1.3 关系
13.1.4 二重性
13.2 过程
13.2.1 密钥需求
13.2.2 摘要签名
13.3 服务
13.3.1 信息身份验证
13.3.2 信息完整性
13.3.3 不可否认性
13.3.4 机密性
13.4 针对数字签名的攻击
13.4.1 攻击类型
13.4.2 伪造类型
13.5 数字签名方案
13.5.1 RSA数字签名方案
13.5.2 ElGamal数字签名方案
13.5.3 Schnorr数字签名方案
13.5.4 数字签名标准(DSS)
13.5.5 椭圆曲线数字签名方案
13.6 变化与应用
13.6.1 变化
13.6.2 应用
13.7 推荐阅读
13.8 关键术语
13.9 概要
13.10 习题集
第14章 实体验证
14.1 导言
14.1.1 数据源验证与实体验证
14.1.2 验证的类型
14.1.3 实体验证和密钥管理
14.2 口令
14.2.1 固定口令
14.2.2 一次性密码
14.3 挑战—应答
14.3.1 对称密钥密码的运用
14.3.2 带密钥hash函数的应用
14.3.3 非对称密钥密码的应用
14.3.4 数字签名的应用
14.4 零知识
14.4.1 Fiat-Shamir协议
14.4.2 Feige-Fiat-Shamir协议
14.4.3 Guillou-Quisquater协议
14.5 生物测试
14.5.1 设备
14.5.2 注册
14.5.3 验证
14.5.4 技术
14.5.5 准确性
14.5.6 应用
14.6 推荐阅读
14.7 关键术语
14.8 概要
14.9 习题集
第15章 密钥管理
15.1 对称密钥分配
15.2 KERBEROS
15.2.1 服务器
15.2.2 操作
15.2.3 不同服务器的运用
15.2.4 Kerberos第五版
15.2.5 领域
15.3 对称密钥协定
15.3.1 Diffie-Hellman密钥协定
15.3.2 站对站密钥协定
15.4 公钥分配
15.4.1 公钥公布
15.4.2 可信中心
15.4.3 可信中心的控制
15.4.4 认证机关
15.4.5 X.509
15.4.6 公钥基础设施(PKI)
15.5 推荐阅读
15.6 关键术语
15.7 概要
15.8 习题集
第Ⅳ部分 网 络 安 全
第16章 应用层的安全性:PGP和S/MIME
16.1 电子邮件
16.1.1 电子邮件的构造
16.1.2 电子邮件的安全性
16.2 PGP
16.2.1 情景
16.2.2 密钥环
16.2.3 PGP证书
16.2.4 密钥撤回
16.2.5 从环中提取消息
16.2.6 PGP包
16.2.7 PGP信息
16.2.8 PGP的应用
16.3 S/MIME
16.3.1 MIME
16.3.2 S/MIME
16.3.3 S/MIME的应用
16.4 推荐阅读
16.5 关键术语
16.6 概要
16.7 习题集
第17章 传输层的安全性:SSL和TLS
17.1 SSL结构
17.1.1 服务
17.1.2 密钥交换算法
17.1.3 加密/解密算法
17.1.4 散列算法
17.1.5 密码套件
17.1.6 压缩算法
17.1.7 加密参数的生成
17.1.8 会话和连接
17.2 4个协议
17.2.1 握手协议
17.2.2 改变密码规格协议
17.2.3 告警协议
17.2.4 记录协议
17.3 SSL信息构成
17.3.1 改变密码规格协议
17.3.2 告警协议
17.3.3 握手协议
17.3.4 应用数据
17.4 传输层安全
17.4.1 版本
17.4.2 密码套件
17.4.3 加密秘密的生成
17.4.4 告警协议
17.4.5 握手协议
17.4.6 记录协议
17.5 推荐阅读
17.6 关键术语
17.7 概要
17.8 习题集
第18章 网络层的安全:IPSec
18.1 两种模式
18.2 两个安全协议
18.2.1 验证文件头(AH)
18.2.2 封装安全载荷(ESP)
18.2.3 IPv4和IPv6
18.2.4 AH和ESP
18.2.5 IPSec提供的服务
18.3 安全关联
18.3.1 安全关联的概念
18.3.2 安全关联数据库(SAD)
18.4 安全策略
18.5 互联网密钥交换(IKE)
18.5.1 改进的Diffie-Hellman密钥交换
18.5.2 IKE阶段
18.5.3 阶段和模式
18.5.4 阶段Ⅰ:主模式
18.5.5 阶段Ⅰ:野蛮模式
18.5.6 阶段Ⅱ:快速模式
18.5.7 SA算法
18.6 ISAKMP
18.6.1 一般文件头
18.6.2 有效载荷
18.7 推荐阅读
18.8 关键术语
18.9 概要
18.10 习题集
附录A ASCII
附录B 标准与标准化组织
附录C TCP/IP套件
附录D 初等概率
附录E 生日问题
附录F 信息论
附录G 不可约多项式与本原多项式列举
附录H 小于10 000的素数
附录I 整数的素因数
附录J 小于1000素数的一次本原根列表
附录K 随机数生成器
附录L 复杂度
附录M ZIP
附录N DES差分密码分析和DES线性密码分析
附录O 简化DES(S-DES)
附录P 简化AES(S-AES)
附录Q 一些证明
术语表
参考文献
……
-------------------------------------------------
作者: (印)卡哈特着,金名等译
出 版 社: 清华大学出版社
出版时间: 2009-3-1
版次: 1
页数: 427
开本: 16开
I S B N : 9787302193395
包装: 平装
所属分类: 图书 >> 计算机/网络 >> 信息安全 本书以清晰的脉络、简洁的语言,介绍了各种加密技术、网络安全协议与实现技术等内容,包括各种对称密钥算法与AES,非对称密钥算法、数字签名与RSA,数字证书与公钥基础设施,Internet安全协议,用户认证与Kerberos,Java、.NET和操作系统的加密实现,网络安全、防火墙与VPN,并给出了具体的加密与安全的案例实现分析,是—本关于密码学与网络安全的理论结合实践的优秀教材。
本书特点
本书语言表达流畅、简洁,使本书的阅读不再枯燥。
全书多达425幅插图,极大地方便了读者的学习和理解。
全书提供了丰富的多项选择题、练习题、设计与编程题,有利于加深读者对所学知识的理解和掌握。 第1章计算机攻击与计算机安全
1.1简介
1.2安全需求
1.3安全方法
1.4安全性原则
1.5攻击类型
1.6本章小结
1.7实践练习
第2章加密的概念与技术
2.1简介
2.2明文与密文
2.3替换方法
2.4变换加密技术
2.5加密与解密
2.6对称与非对称密钥加密
2.7夹带加密法
2.8密钥范围与密钥长度
2.9攻击类型
2.10本章小结
2.11实践练习
第3章对称密钥算法与AES
3.1简介
3.2算法类型与模式
3.3对称密钥加密法概述
3.4数据加密标准
……
第4章非对称密钥算法、数字签名与RSA
第5章数字证书与公钥基础设施
第6章Internet安全协议
第7章用户认证与Kerberos
第8章Java、NET和操作系统的加密实现
第9章网络安全、防火墙与VPN
第10章加密与安全案例分析
附录A数学背景知识
附录B数字系统
附录C信息理论
附录D实际工具
附录EWeb资源
附录FASN、BER、DER简介
参考文献
术语表
⑸ 网络安全和密码学的区别
网络安全有前途,也要学点简单的密码学。
密码学是实现信息安全的数学理论,属于最底层的东西。主要研究安全算法。
⑺ 椭圆曲线密码学就业方向
椭圆曲线密码学是一种现代密码学技术,涉及到许多领域,包括计算机科学、数学、密码学、网络安全等,因此有许多就业方向。
以下是椭圆曲线密码学的主要就业方向:
1.密码学研究员: 密码学研究员是专门研究各种加密算法的人员,其中包括椭圆曲线密码学。他们主要的任务是进行密码学算法的研究、设计、分析和实现等操作。
2.网络安全工程师:网络安全工程师是保障数字系统安全的专门人才,负责积极的网络安全策略,包括推广有效的安全控制和技术,监视网络安全程序的实施,并及时发现和解决网络安全问题等。
3.加密算法工程师:利用椭圆曲线密码学技术设计,在网络、手机、平板等移动设备中广泛应用。负责设计、开发、实施和测试加密算法,确保信息的保密性、完整性和可用性。
4.密码学顾问:为公司、机构、政府等提供安全咨询服轿粗务,帮助他们评估安全风险、制定安全策略,以及保护他们的信息安全资产等。
5.大数据分析师:大数据分析师是专门收集、整理和分析数据并得出结论的专家团帆缺塌辩。在椭圆曲线密码学领域,他们主要负责对密码学算法进行数据分析和优化等操作。
总之,随着网络安全需求的不断增加,椭圆曲线密码学相关职位
⑻ 网站安全防护措施有哪些
网站安全措施有软件保护的也有网络维护工作人员
⑼ 网络安全的核心是信息安全
网络安全的核心是信息安全
网络安全的核心是信息安全。网络信息安全与保密主要是指保护目标网络信息系统,使其没有危险,网络信息安全里每个环节每个点都很重要。下面来看看网络安全的核心是信息安全。
网络安全的核心是信息安全1
网络安全核心是网络的信息安全,确保网络信息的可靠传输,不被窃取与篡改。网络安全的基本功能是要保证网络系统的正常运行,具有良好的可用性。
网络信息安全的核心是通过计算机、网络技术、密码技术和安全技术,保护在公用网络信息系统中传输、交换和存储消息的保密性、完整性、真实性、可靠性、可用性、不可抵赖性和可控性等。其中最核心的是信息加密技术。
关于网络安全的两个观点:
一)攻击方式决定了网络安全技术的发展方向;
二)目前阶段防守方大多抵挡不住来自黑客的攻击(我们姑且以进到内网为衡量标准)。这两个观点尤其第二个观点带有明确的实效性,随着技术的不断更新迭代,若干年后可能就会发生改变,只是在目前是比较明显的。如果让我给当前关键信息基础设施的单位的防护情况打个分,在满分100的情况下,也就打个50分离及格还差一点。
深刻理解一个概念:攻击者关心的永远不是你的IP资产,而是你IP资产上对应的漏洞。漏洞也不过是一个入口,至于是破坏还是偷取数据那是以后可以从长计议的事情,至少要先打下一个入口。漏洞也不一定非得是0day,一个1day在时间差达到一个小时的情况下基本就能结束战斗了。
在一段不短的时间内,攻防双方表面上达成了一定的平衡:你攻击我主要的服务器入口我就盯好主要的入口,你用漏洞扫描器半个小时扫描一个IP,我也用漏洞扫描器半个小时检查一个IP,所以大家是对等的贴身肉搏,不分伯仲。因为攻击者确实也没有特别好的方法能够比防守方更多更快的发现薄弱点。
当时大家的逻辑都是:针对IP列表不定期的用全漏洞库去匹配。漏洞扫描器得到了攻防两端的共同认可是有它的道理的。
网络安全的核心是信息安全2
网络信息安全里每个环节每个点都很重要。
但非要说哪个是核心,核心只有一个的话,那就是密码技术是网络信息安全与保密的核心和关键。
网络信息安全与保密主要是指保护目标网络信息系统,使其没有危险、不出事故、不受威胁。
网络信息安全与保密的目标主要表现在系统的保密性、完整性、真实性、可靠性、可用性、不可抵赖性等方面。
而密码学是研究如何隐密地传递信息的学科。在现代特别指对信息以及其传输的数学性研究,常被认为是数学和计算机科学的.分支,和信息论也密切相关。密码学是关干如何在敌人存在的环境中通讯,自工程学的角度,这相当于密码学与纯数学的异同。密码学是信息安全等相关议题,如认证、访问控制的核心。
密码学的首要目是隐藏信息的涵义,并不是将隐藏信息的存在。密码学也促进了计算机科学,特别是在干电脑与网络安全所使用的技术,如访问控制与信息的机密性。
密码学已被应用在日常生活:包括自动柜员机的芯片卡、电脑使用者存取密码、各种网站ssl证书,加密虚拟隧道专网,电子商务平台等等。
网络安全的核心是信息安全3
设备接入安全
视频专网的感知层需接入大量摄像头等前端设备,数量众多且地点分布广泛。因此,设备安全主要考虑从前端感知节点到网关节点之间的安全问题,应从前端、终端和主机三个方面采取安全措施。
前端方面,由于摄像头等前端设备功能单一、计算能力弱、缺乏安全防护能力,当前端设备出现异常时管理员往往无法做出及时有效的处理,会面临数据泄露风险,恶意软件感染等。
因此,前端安全应建立接入数据协议白名单准入机制、前端设备接入认证机制,采取主动扫描、手工设置和实时检测等有效手段,及时发现非法接入的未知、仿冒、违规设备,并基于协议白名单,对非法接入数据进行识别和过滤, 从而实现对非法恶意行为的识别、告警和实时阻断 。
终端方面,为强化对系统运行状况的监控, 减少不必要的系统服务,增强系统自身对各类攻击、病毒的抵御能力,提高终端系统整体安全性,可采取系统安全加固、安装杀毒软件、使用上网行为管理、部署准入控制设备等措施, 降低系统自身的安全风险。同时,由于管理员是终端的主要使用者,应通过制定使用规范等安全管理制度,加强对终端使用人员的安全管理。
主机方面,视频专网的主机主要是指视频监控平台中各视频管理系统,其安全防护的目标是保障各视频管理系统在数据存储和处理过程中的保密性、完整性和可用性 。由于这些主机系统存在安全漏洞、缺乏攻击抵御能力、缺少漏洞修复能力以及人为误操作等安全风险, 因此,主机安全防护不仅要考虑硬件、固件、系统软件的自身安全,还需要考虑采取适当的安全技术和安全管理措施。
网络安全
视频专网的网络安全主要聚焦于网络边界安全和网络传输安全,具体可以从边界访问控制、互联网接入安全、链路安全和数据安全等方面采取安全措施。
边界访问控制主要是通过部署下一代防火墙、安全网关等设备,实现网络纵深防护,是实现可信网络的首要前提。此外,应从源 IP 地址、源端口、目的 IP 地址、目的端口和协议的边界安全防护五元组策略的角度进行有效建设, 限制对网络的非法访问,并对目标网络系统漏洞、协议弱点、恶意攻击、异常流量、病毒蠕虫、间谍软件等网络威胁进行一体化深度防御 。
由于互联网中存在大量的攻击、病毒等网络安全威胁,视频专网在接入互联网时需要在视频专网边界加强安全防护措施。为防止越权访问和非法攻击,应部署防火墙等边界防护产品并按照严格的安全策略和安全规则进行检测过滤;同时针对互联网中各种攻击行为,部署入侵防御设备和抗 DDoS 攻击设备,重点监控和检测网络的攻击行为及防御网络应用攻击。
保障链路安全是确保专网网络安全传输的重要基础。数据传输过程中若发生网络设备或者链路故障,极易造成视频传输中断,无法满足视频实时监控的要求。因此,应采用硬件冗余方式对数据链路和网络设备进行备份冗余, 在发生物理故障时确保视频数据传输不中断。
数据安全性主要强调视频数据本身的安全性保障。从数据机密性、数据完整性和数据可用性的安全目标出发,应采取适当的安全技术措施以确保数据传输和数据存储的安全性。
其中,为更好地应对数据传输过程中可能涉及的数据监听窃取等安全风险,应采取基于 Https 的Web 管理平台访问和基于加 / 解密机的加密传输等加密技术应用交互过程、数据传输过程对数据进行加密;数据存储方面则需要对数据相关设备操作的管理员实施访问控制,并通过硬件冗余方式实现数据存储安全。
⑽ 网络安全方案,除增强安全设施投资外,还应该考虑哪些
还应该考虑用户的方便性,管理的复杂性,对现有系统的影响及对不同平台的支持。
网络安全性问题关系到未来网络应用的深入发展,它涉及安全策略、移动代码、指令保护、密码学、操作系统、软件工程和网络安全管理等内容。一般专用的内部网与公用的互联网的隔离主要使用“防火墙”技术。
“防火墙”是一种形象的说法,其实它是一种计算机硬件和软件的组合,使互联网与内部网之间建立起一个安全网关,从而保护内部网免受非法用户的侵入。
(10)网络安全策略密码学扩展阅读:
真正意义的“防火墙”有两类,一类被称为标准“防火墙”;一类叫双家网关。标准“防火墙”系统包括一个Unix工作站,该工作站的两端各有一个路由器进行缓冲。
其中一个路由器的接口是外部世界,即公用网;而另一个则联接内部网,标准“防火墙”使用专门的软件,并要求较高的管理水平,而且在信息传输上有一定的延迟。
而双家网关则是对标准“防火墙”的扩充。双家网关又称堡垒主机或应用层网关,它是一个单个的系统,但却能同时完成标准“防火墙”的所有功能。