当前位置:首页 » 安全设置 » 水下传感器网络安全路由协议

水下传感器网络安全路由协议

发布时间: 2023-06-11 22:23:04

㈠ 目前无线传感器网络路由协议面临的威胁有哪些

暂时还没有威胁。

无线传感器网络(Wireless Sensor Networks, WSN)是一种分布式传感网络,它的末梢是可以感知和检查外部世界的传感器。WSN中的传感器通过无线方式通信,因此网络设置灵活,设备位置可以随时更改,还可以跟互联网进行有线或无线方式的连接。通过无线通信方式形成的一个多跳自组织的网络。
WSN的发展得益于微机电系统(Micro-Electro-Mechanism System, MEMS)、片上系统(System on Chip, SoC)、无线通信和低功耗嵌入式技术的飞速发展。
WSN广泛应用于军事、智能交通、环境监控、医疗卫生等多个领域。

㈡ 无线传感器网络上的安全问题几解决方案

无线传感器网络WSN(WirelessSensorNetwork)是一种自组织网络,通过大量低成本、资源受限的传感节点设备协同工作实现某一特定任务。

它是信息感知和采集技术的一场革命,是21世纪最重要的技术之一。它在气候监测,周边环境中的温度、灯光、湿度等情况的探测,大气污染程度的监测,建筑的结构完整性监控,家庭环境的异常情况,机场或体育馆的化学、生物威胁的检测与预报等方面,WSN将会是一个经济的替代方案,有着广泛的应用前景。

传感器网络为在复杂的环境中部署大规模的网络,进行实时数据采集与处理带来了希望。但同时WSN通常部署在无人维护、不可控制的环境中,除了具有一般无线网络所面临的信息泄露、信息篡改、重放攻击、拒绝服务等多种威胁外,WSN还面临传感节点容易被攻击者物理操纵,并获取存储在传感节点中的所有信息,从而控制部分网络的威胁。用户不可能接受并部署一个没有解决好安全和隐私问题的传感网络,因此在进行WSN协议和软件设计时,必须充分考虑WSN可能面临的安全问题,并把安全机制集成到系统设计中去。只有这样,才能促进传感网络的广泛应用,否则,传感网络只能部署在有限、受控的环境中,这和传感网络的最终目标——实现普遍性计算并成为人们生活中的一种重要方式是相违背的。

一种好的安全机制设计是建立在胡空对其所面临的威胁、网络特点等的深刻分析基础之上的,传感网络也不例外,本文将深入分析无线传感器网络特点以及其所可能面临的安全威胁,并对其相应的安全对策进行了研究和探讨。

2.传感器网络特点分析

WSN是一种大规模的分布式网络,常部署于无人维护、条件恶劣的环境当中,且大多数情况下传感节点都是一次性使用,从而决定了传感节点是价格低廉、资源极度受限的无线通信设备[2],它的特点主要体现在以下几个方面:(1)能量有限:能量是限制传感节点能力、寿命的最主要的约束性条件,现有的传感节点都是通过标准的AAA或AA电池进行供电,并且不能重新充电。(2)计算能力有限:传感节点CPU一般只具有8bit、4MHz~8MHz的处理能力。(3)存储能力有限:传感节点一般包括三种形式的存储器即RAM、程序存储器、工作存储器。RAM用于存放工作时的临时数据,一般不超过2k字节;程序存储器誉渗用于存储操作系统、应用程序以及安全函数等,工作存储器用于存放获取的传感信息,这两种存储器一般也只有几十k字节。(4)通信范围有限:为了节约信号传输时的能量消耗,传感节点的RF模块的传输能量一般为10mW到100mW之间,传输的范围也局限于100米到1公里之内。(5)防篡改性:传感节点是一种价格低廉、结构松散、开放的网络设备,攻击者一旦获取传感节点就很容易获得和修改存储在传感节点中的密钥信息以及程序代码等。

另外,大多数传感器网络在进行部署前,其网络拓扑是无法预知的,同时部署后,整个网络拓扑、传感节点在网络中的角色也是经常变化的,因而不像有线网、大部分无线网络那样对网络设备进行完全配置,对传感节点进行预配置的范围是有限的,很多网络参数、密钥等都是传感节点在部署后进行协商后形成的。

根据以上无线传感器特点分析可知,无线传感器网络易于遭受传感节点的物理操纵、传感信息的窃听、拒绝服务攻击、私有信息的泄露等多种威胁和攻击。下面将根据WSN的特点,对WSN所面临的潜在安全威胁进行分类描述与对策探讨。

3.威胁分析与对策

3.1传感节点的物理操纵

未来的传感器网络一般有成百上千个传感节点,很难对每个节点进行监控和保护,因而每个节点都是一个潜在的攻击点,都能被攻击者进行物理和逻辑攻击。另外,传感器通常部署在无人维护的环境当中,这更加方便了攻击者捕获传裤虚瞎感节点。当捕获了传感节点后,攻击者就可以通过编程接口(JTAG接口),修改或获取传感节点中的信息或代码,根据文献[3]分析,攻击者可利用简单的工具(计算机、UISP自由软件)在不到一分钟的时间内就可以把EEPROM、Flash和SRAM中的所有信息传输到计算机中,通过汇编软件,可很方便地把获取的信息转换成汇编文件格式,从而分析出传感节点所存储的程序代码、路由协议及密钥等机密信息,同时还可以修改程序代码,并加载到传感节点中。

很显然,目前通用的传感节点具有很大的安全漏洞,攻击者通过此漏洞,可方便地获取传感节点中的机密信息、修改传感节点中的程序代码,如使得传感节点具有多个身份ID,从而以多个身份在传感器网络中进行通信,另外,攻击还可以通过获取存储在传感节点中的密钥、代码等信息进行,从而伪造或伪装成合法节点加入到传感网络中。一旦控制了传感器网络中的一部分节点后,攻击者就可以发动很多种攻击,如监听传感器网络中传输的信息,向传感器网络中发布假的路由信息或传送假的传感信息、进行拒绝服务攻击等。

对策:由于传感节点容易被物理操纵是传感器网络不可回避的安全问题,必须通过其它的技术方案来提高传感器网络的安全性能。如在通信前进行节点与节点的身份认证;设计新的密钥协商方案,使得即使有一小部分节点被操纵后,攻击者也不能或很难从获取的节点信息推导出其它节点的密钥信息等。另外,还可以通过对传感节点软件的合法性进行认证等措施来提高节点本身的安全性能。

㈢ 传感器网络的作用

传感器网络主要包括三个方面:感应、通讯、计算(硬件、软件、算法)。其中的关键技术主要有无线数据库技术,比如使用在无线传感器网络的查询,和用于和其它传感器通讯的网络技术,特别是多次跳跃路由协议。例如摩托罗拉使用在家庭控制系统中的ZigBee无线协议。
传感器网络与传感器
传感器网络与传感器是什么关系呢?它究竟是一种传感器呢还是一种网络呢?在回答这个问题之前,我们先来看一下传感器网络中传感节点的系统组成吧。如图1所示,一般可以将传感节点分解为传感模块、微处理器最小系统、无线通信模块、电源模块和增强功能模块5个组成部分,其中增强功能模块为可选配置。

图1 传感器网络中传感节点的系统组成
可以把传感模块和电源模块看作传统的传感器,如果再加上微处理器最小系统就可对应于智能传感器,而无线通信模块是为了实现无线通信功能而比传统传感器新增加的功能模块。增强功能模块是可选配置,例如时间同步系统、卫星定位系统、用于移动的机械系统等。
从传感节点的系统组成上看,传感器网络可以看作是多个增加了无线通信模块的智能传感器组成的自组织网络。而从功能上看,传感器和传感器网络大致相同,都是用来感知监测环境信息的,不过显然传感器网络具备更高的可靠性。
传感器网络的发展
传感器网络是怎样发展起来的呢?
最早的传感器网络可以追溯到上世纪70年代美军在越战中使用的“热带树”传感器。为了遏制北越在胡志明小道的后勤补给,美军在这条小道上沿途投放了上万个“热带树”传感器,这是一种振动和声响传感器,当北越车队经过时传感器探测到振动和声响即向指挥中心发送感知信号,美军收到信号后即组织轰炸,有资料显示越战期间美军依靠“热带树”的帮助总共炸坏了4万多辆北越运输卡车。
“热带树”传感器之间没有通信能力,所以实际上还称不上网络的概念。20世纪80年代以来,美国军方陆续与高校开展传感器网络方面的研究合作,旨在建立能够用于军事用途的自组织的无线传感器网络,这期间在硬件、软件、标准化和产品化等方面取得了一系列的重大进展。
2000年,美国加州大学伯克利分校发布了传感器节点专用操作系统TinyOS,后续又推出专用程序设计语言nesC。2001年,伯克利分校又推出Mica系列传感器节点产品。TinyOS和Mica取得了巨大的成功,直到今天它们仍然得到了广泛的应用。
2001年,ZigBee联盟成立,并对无线传感器网络的通信协议进行了全面的标准化,后续多家公司发布了多款符合ZigBee协议标准的芯片和产品。
传感器网络未来的发展趋势
传感器网络未来的发展趋势又如何呢?
传感器网络技术诞生至今也不过几十年的时间,最近更是得到了美国之外欧洲、中国和日韩等国的重视和关注,目前其发展前沿也在不断延伸。总体说来,大致可以将其发展趋势划分为两大类:其一是设计用于完成特殊任务的无线传感器网络,例如无线多媒体传感器网络和无线传感执行网络。其二是设计用于特殊应用环境下工作的无线传感器网络,例如水下环境和地下环境。
无线多媒体传感器网络(WMSN, Wireless Multimedia Sensor Network)在传感器节点上借助多媒体传感单元将音频、视频、图像等多媒体信息传送到管理节点,能够实现对复杂多变环境的监测。
无线传感执行网络(WSAN, Wireless Sensor and Actor Network)在WSN的基础上加入了执行节点(Actor),执行节点根据收集到的监测信息做出决策并执行相关操作,从而在对环境监测的基础上进一步实现对环境的控制。
水声无线传感器网络(UW-ASN, Underwater Acoustic Sensor Network)采用水声无线通信技术实现水下传感器节点之间的通信连接,能够完成海洋采样、环境监测、水下开采、辅助航行等任务。

㈣ 无线传感器网络的访问控制协议有哪些

HTTP协议肯定有。

传感器网络用来感知客观物理世界,获取物理世界的信息量。客观世界的物理量多种多样,不可穷尽。不同的传感器网络应用关心不同的物理量,因此对传感器的应用系统也有多种多样的要求。
无线传感器网络
不同的应用对传感器网络的要求不同,其硬件平台、软件系统和网络协议必然会有很大差别。所以传感器网络不能像因特网一样,有统一的通信协议平台。对于不同的传感器网络应用虽然存在一些共性问题,但在开发传感器网络应用中,更关心传感器网络的差异。只有让系统更贴近应用,才能做出最高效的目标系统。针对每一个具体应用来研究传感器网络技术,这是传感器网络设计不同于传统网络的显着特征。
无线传感网络有着许多不同的应用。在工业界和商业界中,它用于监测数据,而如果使用有线传感器,则成本较高且实现起来困难。无线传感器可以长期放置在荒芜的地区,用于监测环境变量,而不需要将他们重新充电再放回去。

㈤ 无线传感器网络通信协议的目录

第1章 无线传感器网络概述
1.1 引言
1.2 无线传感器网络介绍
1.2.1 无线传感器网络体系结构
1.2.2 无线传感器网络的特点和关键技术
1.2.3 无线传感器网络的应用
1.3 无线传感器网络路由算法
1.3.1 无线传感器网络路由算法研究的主要思路
1.3.2 无线传感器网络路由算法的分类
1.3.3 无线传感器网络QoS路由算法研究的基本思想
1.3.4 无线传感器网络QoS路由算法研究的分类
1.3.5 平面路由的主流算法
1.3.6 分簇路由的主流算法
1.4 ZigBee技术
1.4.1 ZigBee技术的特点
1.4.2 ZigBee协议框架
1.4.3 ZigBee的网络拓扑结构
1.5 无线传感器安全研究
1.5.1 无线传感器网络的安全需求
1.5.2 无线传感器网络安全的研究进展
1.5.3 无线传感器网络安全的研究方向
1.6 水下传感器网络
1.7 无线传感器网络定位
1.7.1 存在的问题
1.7.2 性能评价
1.7.3 基于测距的定位方法
1.7.4 非测距定位算法
1.7.5 移动节点定位
第2章 无线传感器网络的分布式能量有效非均匀成簇算法
2.1 引言
2.2 相关研究工作
2.2.1 单跳成簇算法
2.2.2 多跳成簇算法
2.3 DEEUC成簇路由算法
2.3.1 网络模型
2.3.2 DEEUC成簇算法
2.3.3 候选簇头的产生
2.3.4 估计平均能量
2.3.5 最终簇头的产生
2.3.6 平衡簇头区节点能量
2.3.7 算法分析
2.4 仿真和分析
2.5 结论及下一步工作
参考文献
第3章 无线传感器网络分簇多跳能量均衡路由算法
3.1 无线传输能量模型
3.2 无线传感器网络路由策略研究
3.2.1 平面路由
3.2.2 单跳分簇路由算法研究
3.2.3 多跳层次路由算法研究
3.3 LEACH-L算法
3.3.1 LEACH-L的改进思路
3.3.2 LEACH-L算法模型
3.3.3 LEACH-L描述
3.4 LEACH-L的分析
3.5 实验仿真
3.5.1 评价参数
3.5.2 仿真环境
3.5.3 仿真结果
3.6 总结及未来的工作
3.6.1 总结
3.6.2 未来的工作
参考文献
第4章 基于生成树的无线传感器网络分簇通信协议
4.1 引言
4.2 无线传输能量模型
4.3 基于时间延迟机制的分簇算法(CHTD)
4.3.1 CHTD的改进思路
4.3.2 CHTD簇头的产生
4.3.3 CHTD簇头数目的确定
4.3.4 CHTD最优簇半径
4.3.5 CHTD描述
4.3.6 CHTD的特性
4.4 CHTD簇数据传输研究
4.4.1 引言
4.4.2 改进的CHTD算法(CHTD-M)
4.4.3 CHTD-M的分析
4.5 仿真分析
4.5.1 生命周期
4.5.2 接收数据包量
4.5.3 能量消耗
4.5.4 负载均衡
4.6 总结及未来的工作
4.6.1 总结
4.6.2 未来的工作
参考文献
第5章 基于自适应蚁群系统的传感器网络QoS路由算法
5.1 引言
5.2 蚁群算法
5.3 APAS算法的信息素自适应机制
5.4 APAS算法的挥发系数自适应机制
5.5 APAS算法的QoS改进参数
5.6 APAS算法的信息素分发机制
5.7 APAS算法的定向广播机制
5.8 仿真实验及结果分析
5.8.1 仿真环境
5.8.2 仿真结果及分析
5.9 总结及未来的工作
5.9.1 总结
5.9.2 未来的工作
参考文献
第6章 无线传感器网络簇头选择算法
6.1 引言
6.2 LEACH NEW算法
6.2.1 网络模型
6.2.2 LEACH NEW簇头选择机制
6.2.3 簇的生成
6.2.4 簇头间多跳路径的建立
6.3 仿真实现
6.4 结论及未来的工作
参考文献
第7章 水下无线传感网络中基于向量的低延迟转发协议
7.1 引言
7.2 相关工作
7.3 网络模型
7.3.1 问题的数学描述
7.3.2 网络模型
7.4 基于向量的低延迟转发协议
7.4.1 基于向量转发协议的分析
7.4.2 基于向量的低延迟转发算法
7.5 仿真实验
7.5.1 仿真环境
7.5.2 仿真分析
7.6 总结
参考文献
第8章 无线传感器网络数据融合算法研究
8.1 引言
8.2 节能路由算法
8.2.1 平面式路由算法
8.2.2 层状式路由算法
8.3 数据融合模型
8.3.1 数据融合系统
8.3.2 LEACH簇头选择算法
8.3.3 簇内融合路径
8.3.4 环境设定和能耗公式
8.4 数据融合仿真
8.4.1 仿真分析
8.4.2 仿真结果分析
8.5 结论
参考文献
第9章 无线传感器网络相关技术
9.1 超宽带技术
9.1.1 系统结构的实现比较简单
9.1.2 空间传输容量大
9.1.3 多径分辨能力强
9.1.4 安全性高
9.1.5 定位精确
9.2 物联网技术
9.2.1 物联网原理
9.2.2 物联网的背景与前景
9.3 云计算技术
9.3.1 SaaS软件即服务
9.3.2 公用/效用计算
9.3.3 云计算领域的Web服务
9.4 认知无线电技术
9.4.1 传统的Ad-hoc方式中无线传感器网络的不足
9.4.2 在ZigBee无线传感器网络中的应用
参考文献
第10章 无线传感器网络应用
10.1 军事应用
10.2 农业应用
10.3 环保监测
10.4 建筑应用
10.5 医疗监护
10.6 工业应用
10.6.1 工业安全
10.6.2 先进制造
10.6.3 交通控制管理
10.6.4 仓储物流管理
10.7 空间、海洋探索
10.8 智能家居应用