Ⅰ 请教,linux中访问一个网络链接,如何改变该链接DNS的缓存时间
需要在DNS服务器上设置:vi
/var/named/xxx.zone,修改
3H
;
refresh
的值
Ⅱ 请教Linux关于UDP最大缓冲区设置
1. tcp 收发缓冲区默认值 [root@ ]# cat /proc/sys/net/ipv4/tcp_rmem 4096 87380 4161536 87380 :tcp接收缓冲区的默认值 [root@ ]# cat /proc/sys/net/ipv4/tcp_wmem 4096 16384 4161536 16384 : tcp 发送缓冲区的默认值 2. tcp 或udp收发缓冲区最大值 [root@ ]# cat /proc/sys/net/core/rmem_max 131071 131071:tcp 或 udp 接收缓冲区最大可设置值的一半。 也就是说调用 setsockopt(s, SOL_SOCKET, SO_RCVBUF, &rcv_size, &optlen); 时rcv_size 如果超过 131071,那么 getsockopt(s, SOL_SOCKET, SO_RCVBUF, &rcv_size, &optlen); 去到的值就等于 131071 * 2 = 262142 [root@ ]# cat /proc/sys/net/core/wmem_max 131071 131071:tcp 或 udp 发送缓冲区最大可设置值得一半。 跟上面同一个道理 3. udp收发缓冲区默认值 [root@ ]# cat /proc/sys/net/core/rmem_default 111616:udp接收缓冲区的默认值 [root@ ]# cat /proc/sys/net/core/wmem_default 111616 111616:udp发送缓冲区的默认值 4. tcp 或udp收发缓冲区最小值 tcp 或udp接收缓冲区的最小值为 256 bytes,由内核的宏决定; tcp 或udp发送缓冲区的最小值为 2048 bytes,由内核的宏决定
Ⅲ linux中如何更改缓存大小
不清楚你用的哪个,AS/CentOS?DEBIAN?BSD?
AS:echo <n> > /proc/sys/vm/drop_caches
n == 1 : 释放page cache
2 : 释放dentries和inodes占用的
3 : 释放page cache和dentries、inodes
dirty的inodes和dentries是没法释放的,所以如果想释放更多的内存,需要先sync一下。
Ⅳ linux怎样设置共享缓存
当在Linux下频繁存取文件后,物理内存会很快被用光,当程序结束后,内存不会被正常释放,而是一直作为caching。这个问题,貌似有不少人在问,不过都没有看到有什么很好解决的办法。那么我来谈谈这个问题。
一、通常情况
先来说说free命令:
# free -m
total used free shared buffers cached
Mem: 249 163 86 0 10 94
-/+ buffers/Cache: 58 191
SWAP: 511 0 511
其中:
total 内存总数
used 已经使用的内存数
free 空闲的内存数
shared 多个进程共享的内存总额
buffers buffer Cache和cached Page Cache 磁盘缓存的大小
-buffers/cache (已用)的内存数:used - buffers - cached
+buffers/cache(可用)的内存数:free + buffers + cached
可用的memory=free memory+buffers+cached
有了这个基础后,可以得知,我现在used为163MB,free为86MB,buffer和cached分别为10MB,94MB。
那么我们来看看,如果我执行复制文件,内存会发生什么变化。
# cp -r /etc ~/test/
# free -m
total used free shared buffers cached
Mem: 249 244 4 0 8 174
-/+ buffers/cache: 62 187
Swap: 511 0 511
在我命令执行结束后,used为244MB,free为4MB,buffers为8MB,cached为174MB,天呐,都被cached吃掉了。别紧张,这是为了提高文件读取效率的做法。
为了提高磁盘存取效率,Linux做了一些精心的设计,除了对dentry进行缓存(用于VFS,加速文件路径名到inode的转换),还采取了两种主要Cache方式:Buffer Cache和Page Cache。前者针对磁盘块的读写,后者针对文件inode的读写。这些Cache有效缩短了 I/O系统调用(比如read,write,getdents)的时间。
那么有人说过段时间,linux会自动释放掉所用的内存。等待一段时间后,我们使用free再来试试,看看是否有释放?
# free -m
total used free shared buffers cached
Mem: 249 244 5 0 8 174
-/+ buffers/cache: 61 188
Swap: 511 0 511
似乎没有任何变化。(实际情况下,内存的管理还与Swap有关)那么我能否手动释放掉这些内存呢?回答是可以的!
Ⅳ 如何利用Linux构建免费的缓存DNS服务器
通常需要安装服务软件bind,Centos下:yum -y install bind* 命令安装。
然后修改主配置文件:
cp /etc/named.conf /etc/named.conf.bak
vi /etc/named.conf
//-------------------------内容为:-------------------------
options {
listen-on port 53 { any; }; // 监听在主机的53端口上。any代表监听所有的主机
directory "/var/named"; // 如果此档案底下有规范到正反解的zone file 档名时,该档名预设应该放置在哪个目录底下
// 下面三项是服务的相关统计信息
mp-file "/var/named/data/cache_mp.db";
statistics-file "/var/named/data/named_stats.txt";
memstatistics-file "/var/named/data/named_mem_stats.txt";
allow-query { any; }; // 谁可以对我的DNS服务器提出查询请求。any代表任何人
recursion yes;
dnssec-enable yes;
dnssec-validation yes;
dnssec-lookaside auto;
forwarders { // 指定上层DNS服务器
119.29.29.29; //这里使用OneDNS主服务器
};
bindkeys-file "/etc/named.iscdlv.key";
managed-keys-directory "/var/named/dynamic";
};
logging {
channel default_debug {
file "data/named.run";
severity dynamic;
};
};
zone "." IN {
type hint;
file "named.ca";
};
include "/etc/named.rfc1912.zones"; //这里是自定义解析区域;
include "/etc/named.root.key";
//---------------------结束---------------------------------
下面进行自定义解析:
vi /etc/named.rfc1912.zones
//-----------自定义解析开始:-------------------------------
zone "yumaozdy.com" IN { // 定义要解析主域名
type master;
file "xxx.com.zone"; // 具体相关解析的配置文件保存在 /var/named/xxx.com.zone 文件中
};
//-----------自定义解析结束:-------------------------------
编辑自定义xxx.com.zone文件:
vi /var/named/yumaozdy.com.zone
//-----------自定义开始:-----------------------------
$TTL 86400
@ IN SOA ns.yumaozdy.com. root (
1 ; serial
1D ; refresh
1H ; retry
1W ; expire
0 ) ; minimum
@ IN NS ns.xxx.com.
ns IN A 192.168.1.2
www IN A 192.168.1.3
bbs IN A 192.168.1.4
ttt IN A 192.168.1.5
//-----------自定义结束:------------------------------
以上,ns服务器ip即本机,www服务器ip即xxx.com主机……
Ⅵ linux下怎么设置udp接收缓存最大值
vi /etc/sysctl.conf
增加或修改 net.ipv4.udp_mem项
net.ipv4.udp_mem = min pressure max
再设一下 net.ipv4.udp_rmem_min
具体含义man udp 查看
完成后执行 sysctl -p 生效
Ⅶ 在linux环境里,怎么用命令删除网卡缓存
如何清空linux的DNS查询缓存一、Linux下清空DNS缓存Linux下DNS缓存实现通常有两种方式:一种是用DNS缓存程序NSCD(nameservicecachedaemon)负责管理DNS缓存。一种实现DNS缓存则是用Bind来架设CachingNameServer来实现。如果是清除NSCD上的Cache,可重新启动NSCD服务来达成清除DNSCache的效果。用这个命令:#servicenscdrestart或是#/etc/init.d/nscdrestart如果是清除BIND服务器上的CACHE,用这个命令:#rndcflush如果你的DNS服务器是用dnsmasq实现的,用下面这个命令:$sudo/etc/init.d/dnsmasqrestart注:DNSmasq是一个轻巧的,容易使用的DNS服务工具,它可以应用在内部网和Internet连接的时候的IP地址NAT转换,也可以用做小型网络的DNS服务。二、其它操作系统下清空DNS缓存的方法1、MacOSX下如何清空DNS缓存:在MacOSX中,你可以用以下命令来清空DNS缓存内容:bash-2.05a$lookupd-flushcache
Ⅷ linux怎么配置dns缓存服务器和主从服务器
BIND安装
软件下载地址:http://www.isc.org/software/bind,目前最新版本是BIND 9.8.1-P1。
安装依赖:
yum -y install gcc openssl-devel
开始安装bind.
wget ftp://ftp.isc.org/isc/bind9/9.8.1-P1/bind-9.8.1-P1.tar.gz
tar xzf bind-9.8.1-P1.tar.gz
cd bind-9.8.1-P1
./configure --prefix=/usr/local/bind
make && make install
执行完成后,bind已经安装到了/usr/local/bind目录。
配置主dns服务器
配置bind主要是两种文件,一是主配置文件named.conf,二是区域文件zone(包括正解析,反解析)。
在下面的配置中,我们的主dns服务器是ns1.qbtop.com 23.19.81.191,从dns服务器是ns2.qbtop.com 23.19.81.194(这两个dns都已经在godaddy注册好了)。
下面操作仅在主dns服务器23.19.81.191执行。
主配置文件named.conf
首先执行rndc-confgen -a生成/etc/rndc.key密钥文件。
/usr/local/bind/sbin/rndc-confgen -a
vi /usr/local/bind/etc/named.conf
写入如下内容:
include "/usr/local/bind/etc/rndc.key";
controls { inet 127.0.0.1 port 953 allow { 127.0.0.1; } keys { "rndckey"; }; };
logging {
channel default_syslog { syslog local2; severity notice; };
channel audit_log { file "/var/log/bind.log"; severity notice; print-time yes; };
category default { default_syslog; };
category general { default_syslog; };
category security { audit_log; default_syslog; };
category config { default_syslog; };
category resolver { audit_log; };
category xfer-in { audit_log; };
category xfer-out { audit_log; };
category notify { audit_log; };
category client { audit_log; };
category network { audit_log; };
category update { audit_log; };
category queries { audit_log; };
category lame-servers { audit_log; };
};
options {
directory "/usr/local/bind/etc";
pid-file "/usr/local/bind/var/run/bind.pid";
transfer-format many-answers;
interface-interval 0;
allow-query { any; };
};
zone "qbtop.com" {
type master;
file "qbtop.com.zone";
allow-transfer { 23.19.81.194; };
};
zone "81.19.23.in-addr.arpa" {
type master;
file "81.19.23.in-addr.arpa";
allow-transfer { 23.19.81.194; };
};
named.conf文件说明:
上面的named.conf文件包括三部分:key,controls,logging,options,zone。
logging:设置日志服务器和日志信息的发送地。
options:控制服务器的全局配置选项和为其它语句设置默认值
zone:定义一个域,比如正解析域和反解析域。
logging是定义日志的,不需要深究,主要是options和zone。
在options中:
directory "/usr/local/bind/etc":定义bind的工作目录为/usr/local/bind/etc,配置文件中所有使用的相对路径,指的都是在这里配置的目录下。
pid-file "/usr/local/bind/var/run/bind.pid":把bind程序运行的pid写入文件bind.pid。
transfer-format many-answers:使用更加有效的域传输格式many-answers。
allow-query { any; }:允许所有用户查询dns。
在zone中:
这里定义了两个zone,一个是正解析zone qbtop.com,一个是反解析zone 81.19.23.in-addr.arpa。
他们的参数基本相同:
type master:定义dns服务器为主dns。
file "qbtop.com.zone":定义此zone的文件名。
allow-transfer { 23.19.81.194; }:允许向从dns 23.19.81.194传输dns数据。
唯一不同的是zone名称的定义,正解析zone名称的定义是受权的域名,可以是顶级域名,也可以是二级域名,或多级。反解析zone名称定义规定前部分ip倒着写。如ip 192.168.1.2,名称定义为1.168.192.in-addr.arpa。
正解析qbtop.com.zone
vi /usr/local/bind/etc/qbtop.com.zone
写入如下内容:
$TTL 3600
@ IN SOA ns1.qbtop.com. hostmaster.qbtop.com. (
2012022301 ; Serial
3600 ; Refresh
900 ; Retry
3600000 ; Expire
3600 ) ; Minimum
@ IN NS ns1.qbtop.com.
@ IN NS ns2.qbtop.com.
ns1 IN A 23.19.81.191
ns2 IN A 23.19.81.194
aaa IN A 23.19.81.191
bbb IN A 23.19.81.191
文件说明:
$TTL 3600:指示为每个没有特殊TTL设置的RR给出了一个默认的TTL。
@ IN SOA ns1.qbtop.com. hostmaster.qbtop.com. (
2012022301 ; Serial
3600 ; Refresh
900 ; Retry
3600000 ; Expire
3600 ) ; Minimum
定义SOA记录,包括Zone的名字,一个技术联系人和各种不同的超时值。
@ IN NS ns1.qbtop.com.
@ IN NS ns2.qbtop.com.
设置两个ns记录ns1.qbtop.com和ns2.qbtop.com。
ns1 IN A 23.19.81.191
ns2 IN A 23.19.81.194
aaa IN A 23.19.81.191
bbb IN A 23.19.81.191
设置主机为ns1,ns2,aaa和bbb的A记录。
反解析文件81.19.23.in-addr.arpa
反解析zone可以不设置。
vi /usr/local/bind/etc/81.19.23.in-addr.arpa
写入如下内容:
$TTL 3600
@ IN SOA ns1.qbtop.com. hostmaster.qbtop.com. (
2012022301 ; Serial
3600 ; Refresh
900 ; Retry
3600000 ; Expire
3600 ) ; Minimum
@ IN NS ns1.qbtop.com.
@ IN NS ns2.qbtop.com.
191 IN PTR ns1.qbtop.com.
194 IN PTR ns2.qbtop.com.
说明:
上部分是定义SOA记录,下部分是设置IP反解析。
如设置IP 23.19.81.191反解析成ns1.qbtop.com,23.19.81.194反解析成ns2.qbtop.com。
配置从DNS服务器
下面我们来配置从DNS服务器。配置从DNS服务器只需要配置主配置文件named.conf,zone文件不需配置,因为这是从主DNS服务器获取的。
首先建立目录slaves用来存放从主dns获取的zone文件。
mkdir /usr/local/bind/etc/slaves
写入如下内容:
logging {
channel default_syslog { syslog local2; severity notice; };
channel audit_log { file "/var/log/bind.log"; severity notice; print-time yes; };
category default { default_syslog; };
category general { default_syslog; };
category security { audit_log; default_syslog; };
category config { default_syslog; };
category resolver { audit_log; };
category xfer-in { audit_log; };
category xfer-out { audit_log; };
category notify { audit_log; };
category client { audit_log; };
category network { audit_log; };
category update { audit_log; };
category queries { audit_log; };
category lame-servers { audit_log; };
};
options {
directory "/usr/local/bind/etc";
pid-file "/usr/local/bind/var/run/bind.pid";
transfer-format many-answers;
interface-interval 0;
allow-query { any; };
};
zone "qbtop.com" {
type slave;
file "slaves/qbtop.com.zone";
masters { 23.19.81.191; };
};
zone "81.19.23.in-addr.arpa" {
type slave;
file "slaves/81.19.23.in-addr.arpa";
masters { 23.19.81.191; };
};
文件说明:
从dns跟主dns主要的区别是zone的定义,type slave定义此dns服务器为从dns,masters { 23.19.81.191; }定义主dns的IP。
启动BIND
1、在启动BIND之前,我们需要执行/usr/local/bind/sbin/named-checkconf检查named.conf配置文
件,和执行/usr/local/bind/sbin/named-checkzone zone名称
zone文件名,如/usr/local/bind/sbin/named-checkzone qbtop.com
/usr/local/bind/etc/qbtop.com.zone。
然后调试模式启动bind,/usr/local/bind/sbin/named -g,g参数的意思是前台执行bind,这会输出启动的信息,发现没有严重的错误后,再把g参数删除重新以/usr/local/bind/sbin/named方式后台启动bind。
2、设置开机启动,在/etc/rc.d/rc.local中加入/usr/local/bind/sbin/named。
手动添加记录
1、直接添加删除或修改zone文件里的记录
2、执行rndc reload zone名称重载,如rndc reload qbtop.com
Ⅸ linux tcp 通过setsockopt设置接收缓存区有什么用
Socket的send函数在执行时报EAGAIN的错误
当客户通过Socket提供的send函数发送大的数据包时,就可能返回一个EGGAIN的错误。该错误产生的原因是由于send 函数中的size变量大小超过了tcp_sendspace的值。tcp_sendspace定义了应用在调用send之前能够在kernel中缓存的数据量。当应用程序在socket中设置了O_NDELAY或者O_NONBLOCK属性后,如果发送缓存被占满,send就会返回EAGAIN的错误。
为了消除该错误,有三种方法可以选择:
1.调大tcp_sendspace,使之大于send中的size参数
---no -p -o tcp_sendspace=65536
2.在调用send前,在setsockopt函数中为SNDBUF设置更大的值
3.使用write替代send,因为write没有设置O_NDELAY或者O_NONBLOCK
1. tcp 收发缓冲区默认值
[root@qljt core]# cat /proc/sys/net/ipv4/tcp_rmem
4096 87380 4161536
87380 :tcp接收缓冲区的默认值
[root@qljt core]# cat /proc/sys/net/ipv4/tcp_wmem
4096 16384 4161536
16384 : tcp 发送缓冲区的默认值
2. tcp 或udp收发缓冲区最大值
[root@qljt core]# cat /proc/sys/net/core/rmem_max
131071
131071:tcp 或 udp 接收缓冲区最大可设置值的一半。
也就是说调用 setsockopt(s, SOL_SOCKET, SO_RCVBUF, &rcv_size, &optlen); 时rcv_size 如果超过 131071,那么
getsockopt(s, SOL_SOCKET, SO_RCVBUF, &rcv_size, &optlen); 去到的值就等于 131071 * 2 = 262142
[root@qljt core]# cat /proc/sys/net/core/wmem_max
131071
131071:tcp 或 udp 发送缓冲区最大可设置值得一半。
跟上面同一个道理
3. udp收发缓冲区默认值
[root@qljt core]# cat /proc/sys/net/core/rmem_default
111616:udp接收缓冲区的默认值
[root@qljt core]# cat /proc/sys/net/core/wmem_default
111616
111616:udp发送缓冲区的默认值
. tcp 或udp收发缓冲区最小值
tcp 或udp接收缓冲区的最小值为 256 bytes,由内核的宏决定;
tcp 或udp发送缓冲区的最小值为 2048 bytes,由内核的宏决定
setsockopt设置socket状态
1.closesocket(一般不会立即关闭而经历TIME_WAIT的过程)后想继续重用该socket:
BOOL bReuseaddr=TRUE;
setsockopt(s,SOL_SOCKET ,SO_REUSEADDR,(const char*)&bReuseaddr,sizeof(BOOL));
2. 如果要已经处于连接状态的soket在调用closesocket后强制关闭,不经历TIME_WAIT的过程:
BOOL bDontLinger = FALSE;
setsockopt(s,SOL_SOCKET,SO_DONTLINGER,(const char*)&bDontLinger,sizeof(BOOL));
3.在send(),recv()过程中有时由于网络状况等原因,发收不能预期进行,而设置收发时限:
int nNetTimeout=1000;//1秒
//发送时限
setsockopt(socket,SOL_S0CKET,SO_SNDTIMEO,(char *)&nNetTimeout,sizeof(int));
//接收时限
setsockopt(socket,SOL_S0CKET,SO_RCVTIMEO,(char *)&nNetTimeout,sizeof(int));
4.在send()的时候,返回的是实际发送出去的字节(同步)或发送到socket缓冲区的字节(异步);系统默认的状态发送和接收一次为8688字节(约为8.5K);在实际的过程中发送数据
和接收数据量比较大,可以设置socket缓冲区,而避免了send(),recv()不断的循环收发:
// 接收缓冲区
int nRecvBuf=32*1024;//设置为32K
setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char*)&nRecvBuf,sizeof(int));
//发送缓冲区
int nSendBuf=32*1024;//设置为32K
setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char*)&nSendBuf,sizeof(int));
5. 如果在发送数据的时,希望不经历由系统缓冲区到socket缓冲区的拷贝而影响程序的性能:
int nZero=0;
setsockopt(socket,SOL_S0CKET,SO_SNDBUF,(char *)&nZero,sizeof(nZero));
6.同上在recv()完成上述功能(默认情况是将socket缓冲区的内容拷贝到系统缓冲区):
int nZero=0;
setsockopt(socket,SOL_S0CKET,SO_RCVBUF,(char *)&nZero,sizeof(int));
7.一般在发送UDP数据报的时候,希望该socket发送的数据具有广播特性:
BOOL bBroadcast=TRUE;
setsockopt(s,SOL_SOCKET,SO_BROADCAST,(const char*)&bBroadcast,sizeof(BOOL));
8.在client连接服务器过程中,如果处于非阻塞模式下的socket在connect()的过程中可以设置connect()延时,直到accpet()被呼叫(本函数设置只有在非阻塞的过程中有显着的
作用,在阻塞的函数调用中作用不大)
BOOL bConditionalAccept=TRUE;
setsockopt(s,SOL_SOCKET,SO_CONDITIONAL_ACCEPT,(const char*)&bConditionalAccept,sizeof(BOOL));
9.如果在发送数据的过程中(send()没有完成,还有数据没发送)而调用了closesocket(),以前我们一般采取的措施是"从容关闭"shutdown(s,SD_BOTH),但是数据是肯定丢失了,如何设置让程序满足具体应用的要求(即让没发完的数据发送出去后在关闭socket)?
struct linger {
u_short l_onoff;
u_short l_linger;
};
linger m_sLinger;
m_sLinger.l_onoff=1;//(在closesocket()调用,但是还有数据没发送完毕的时候容许逗留)
// 如果m_sLinger.l_onoff=0;则功能和2.)作用相同;
m_sLinger.l_linger=5;//(容许逗留的时间为5秒)
setsockopt(s,SOL_SOCKET,SO_LINGER,(const char*)&m_sLinger,sizeof(linger));
设置套接口的选项。
#include <winsock.h>
int PASCAL FAR setsockopt( SOCKET s, int level, int optname,
const char FAR* optval, int optlen);
s:标识一个套接口的描述字。
level:选项定义的层次;目前仅支持SOL_SOCKET和IPPROTO_TCP层次。
optname:需设置的选项。
optval:指针,指向存放选项值的缓冲区。
optlen:optval缓冲区的长度。
注释:
setsockopt()函数用于任意类型、任意状态套接口的设置选项值。尽管在不同协议层上存在选项,但本函数仅定义了最高的“套接口”层次上的选项。选项影响套接口的操作,诸如加急数据是否在普通数据流中接收,广播数据是否可以从套接口发送等等。
有两种套接口的选项:一种是布尔型选项,允许或禁止一种特性;另一种是整形或结构选项。允许一个布尔型选项,则将optval指向非零整形数;禁止一个选项optval指向一个等于零的整形数。对于布尔型选项,optlen应等于sizeof(int);对其他选项,optval指向包含所需选项的整形数或结构,而optlen则为整形数或结构的长度。SO_LINGER选项用于控制下述情况的行动:套接口上有排队的待发送数据,且 closesocket()调用已执行。参见closesocket()函数中关于SO_LINGER选项对closesocket()语义的影响。应用程序通过创建一个linger结构来设置相应的操作特性:
struct linger {
int l_onoff;
int l_linger;
};
为了允许SO_LINGER,应用程序应将l_onoff设为非零,将l_linger设为零或需要的超时值(以秒为单位),然后调用setsockopt()。为了允许SO_DONTLINGER(亦即禁止SO_LINGER),l_onoff应设为零,然后调用setsockopt()。
缺省条件下,一个套接口不能与一个已在使用中的本地地址捆绑(参见bind())。但有时会需要“重用”地址。因为每一个连接都由本地地址和远端地址的组合唯一确定,所以只要远端地址不同,两个套接口与一个地址捆绑并无大碍。为了通知WINDOWS套接口实现不要因为一个地址已被一个套接口使用就不让它与另一个套接口捆绑,应用程序可在bind()调用前先设置SO_REUSEADDR选项。请注意仅在bind()调用时该选项才被解释;故此无需(但也无害)将一个不会共用地址的套接口设置该选项,或者在bind()对这个或其他套接口无影响情况下设置或清除这一选项。
一个应用程序可以通过打开SO_KEEPALIVE选项,使得WINDOWS套接口实现在TCP连接情况下允许使用“保持活动”包。一个WINDOWS套接口实现并不是必需支持“保持活动”,但是如果支持的话,具体的语义将与实现有关,应遵守RFC1122“Internet主机要求-通讯层”中第 4.2.3.6节的规范。如果有关连接由于“保持活动”而失效,则进行中的任何对该套接口的调用都将以WSAENETRESET错误返回,后续的任何调用将以WSAENOTCONN错误返回。
TCP_NODELAY选项禁止Nagle算法。Nagle算法通过将未确认的数据存入缓冲区直到蓄足一个包一起发送的方法,来减少主机发送的零碎小数据包的数目。但对于某些应用来说,这种算法将降低系统性能。所以TCP_NODELAY可用来将此算法关闭。应用程序编写者只有在确切了解它的效果并确实需要的情况下,才设置TCP_NODELAY选项,因为设置后对网络性能有明显的负面影响。TCP_NODELAY是唯一使用IPPROTO_TCP层的选项,其他所有选项都使用SOL_SOCKET层。
如果设置了SO_DEBUG选项,WINDOWS套接口供应商被鼓励(但不是必需)提供输出相应的调试信息。但产生调试信息的机制以及调试信息的形式已超出本规范的讨论范围。
setsockopt()支持下列选项。其中“类型”表明optval所指数据的类型。
选项 类型 意义
SO_BROADCAST BOOL 允许套接口传送广播信息。
SO_DEBUG BOOL 记录调试信息。
SO_DONTLINER BOOL 不要因为数据未发送就阻塞关闭操作。设置本选项相当于将SO_LINGER的l_onoff元素置为零。
SO_DONTROUTE BOOL 禁止选径;直接传送。
SO_KEEPALIVE BOOL 发送“保持活动”包。
SO_LINGER struct linger FAR* 如关闭时有未发送数据,则逗留。
SO_OOBINLINE BOOL 在常规数据流中接收带外数据。
SO_RCVBUF int 为接收确定缓冲区大小。
SO_REUSEADDR BOOL 允许套接口和一个已在使用中的地址捆绑(参见bind())。
SO_SNDBUF int 指定发送缓冲区大小。
TCP_NODELAY BOOL 禁止发送合并的Nagle算法。
setsockopt()不支持的BSD选项有:
选项名 类型 意义
SO_ACCEPTCONN BOOL 套接口在监听。
SO_ERROR int 获取错误状态并清除。
SO_RCVLOWAT int 接收低级水印。
SO_RCVTIMEO int 接收超时。
SO_SNDLOWAT int 发送低级水印。
SO_SNDTIMEO int 发送超时。
SO_TYPE int 套接口类型。
IP_OPTIONS 在IP头中设置选项。
返回值:
若无错误发生,setsockopt()返回0。否则的话,返回SOCKET_ERROR错误,应用程序可通过WSAGetLastError()获取相应错误代码。
错误代码:
WSANOTINITIALISED:在使用此API之前应首先成功地调用WSAStartup()。
WSAENETDOWN:WINDOWS套接口实现检测到网络子系统失效。
WSAEFAULT:optval不是进程地址空间中的一个有效部分。
WSAEINPROGRESS:一个阻塞的WINDOWS套接口调用正在运行中。
WSAEINVAL:level值非法,或optval中的信息非法。
WSAENETRESET:当SO_KEEPALIVE设置后连接超时。
WSAENOPROTOOPT:未知或不支持选项。其中,SOCK_STREAM类型的套接口不支持SO_BROADCAST选项,SOCK_DGRAM 类型的套接口不支持SO_DONTLINGER 、SO_KEEPALIVE、SO_LINGER和SO_OOBINLINE选项。
WSAENOTCONN:当设置SO_KEEPALIVE后连接被复位。
WSAENOTSOCK:描述字不是一个套接口。
Ⅹ 如何清空linux中dns缓存
Linux下DNS缓存实现通常有两种方式:
一种是用DNS缓存程序NSCD(name service cache daemon)负责管理DNS缓存。
一种实现DNS缓存则是用Bind来架设Caching Name Server来实现。
如果是清除NSCD上的Cache,可重新启动NSCD服务来达成清除DNS Cache的效果。用这个命令:
# service nscd restart
或是
#/etc/init.d/nscd restart
如果是清除BIND服务器上的CACHE,用这个命令:
# rndc flush
如果你的DNS服务器是用dnsmasq实现的,用下面这个命令:
$ sudo /etc/init.d/dnsmasq restart
注:DNSmasq是一个轻巧的,容易使用的DNS服务工具,它可以应用在内部网和Internet连接的时候的IP地址NAT转换,也可以用做小型网络的DNS服务。