A. 如何看待大数据环境下的网络信息安全问题
大数据时代个人信息安全非常重要。可以说将来会成为制约行业发展的关健因素!因为个人信息泄露已经成为某些人盈利的手段!6月1号起实施的《网络安全法》或许可以规范一下大数据时代的个人信息安全!为大家的网络信息安全带来一定的保障。必须强制网络企业强化个人信息安全意识,信息由哪家企业泄漏的就应该由哪家企业来承担责任,而不是不痛不痒的口头警告。
B. 大数据与云计算,信息网络安全
大数据技术是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
大数据的应用:大数据是信息产业持续高速增长的新引擎,几乎各个行业都会逐步引入大数据技术,尤其是那些将要实现互联网信息化转型的传统企业。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
2.云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。
云计算的主要应用:云物联,“物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。
如果你的基础不是很好,再加上网络安全角势的严峻,国家政策对网络安全的偏向,个人建议可以选择网路安全方向,希望可以帮到您,谢谢!
C. 信息安全,互联网,大数据,与我们有着怎样的联系
互联网大数据与我们有着,密不可分的联系,因为信息安全,他就对于我们个人具有安全互联网大数据,与我们现在的这些生活当中的呃,这些东西的或有着很好的关系
D. 如何利用大数据来处理网络安全攻击
“大数据”已经成为时下最火热的IT行业词汇,各行各业的大数据解决方案层出不穷。究竟什么是大数据、大数据给信息安全带来哪些挑战和机遇、为什么网络安全需要大数据,以及怎样把大数据思想应用于网络安全技术,本文给出解答。
一切都源于APT
APT(Advanced Persistent Threat)攻击是一类特定的攻击,为了获取某个组织甚至是国家的重要信息,有针对性的进行的一系列攻击行为的整个过程。APT攻击利用了多种攻击手段,包括各种最先进的手段和社会工程学方法,一步一步的获取进入组织内部的权限。APT往往利用组织内部的人员作为攻击跳板。有时候,攻击者会针对被攻击对象编写专门的攻击程序,而非使用一些通用的攻击代码。此外,APT攻击具有持续性,甚至长达数年。这种持续体现在攻击者不断尝试各种攻击手段,以及在渗透到网络内部后长期蛰伏,不断收集各种信息,直到收集到重要情报。更加危险的是,这些新型的攻击和威胁主要就针对国家重要的基础设施和单位进行,包括能源、电力、金融、国防等关系到国计民生,或者是国家核心利益的网络基础设施。
现有技术为什么失灵
先看两个典型APT攻击案例,分析一下盲点在哪里:
1、 RSA SecureID窃取攻击
1) 攻击者给RSA的母公司EMC的4名员工发送了两组恶意邮件。邮件标题为“2011 Recruitment Plan”,寄件人是[email protected],正文很简单,写着“I forward this file to you for review. Please open and view it.”;里面有个EXCEL附件名为“2011 Recruitment plan.xls”;
2) 很不幸,其中一位员工对此邮件感到兴趣,并将其从垃圾邮件中取出来阅读,殊不知此电子表格其实含有当时最新的Adobe Flash的0day漏洞(CVE-2011-0609)。这个Excel打开后啥也没有,除了在一个表单的第一个格子里面有个“X”(叉)。而这个叉实际上就是内嵌的一个Flash;
3) 该主机被植入臭名昭着的Poison Ivy远端控制工具,并开始自BotNet的C&C服务器(位于 good.mincesur.com)下载指令进行任务;
4) 首批受害的使用者并非“位高权重”人物,紧接着相关联的人士包括IT与非IT等服务器管理员相继被黑;
5) RSA发现开发用服务器(Staging server)遭入侵,攻击方随即进行撤离,加密并压缩所有资料(都是rar格式),并以FTP传送至远端主机,又迅速再次搬离该主机,清除任何踪迹;
6) 在拿到了SecurID的信息后,攻击者就开始对使用SecurID的公司(例如上述防务公司等)进行攻击了。
2、 震网攻击
遭遇超级工厂病毒攻击的核电站计算机系统实际上是与外界物理隔离的,理论上不会遭遇外界攻击。坚固的堡垒只有从内部才能被攻破,超级工厂病毒也正充分的利用了这一点。超级工厂病毒的攻击者并没有广泛的去传播病毒,而是针对核电站相关工作人员的家用电脑、个人电脑等能够接触到互联网的计算机发起感染攻击,以此 为第一道攻击跳板,进一步感染相关人员的U盘,病毒以U盘为桥梁进入“堡垒”内部,随即潜伏下来。病毒很有耐心的逐步扩散,利用多种漏洞,包括当时的一个 0day漏洞,一点一点的进行破坏。这是一次十分成功的APT攻击,而其最为恐怖的地方就在于极为巧妙的控制了攻击范围,攻击十分精准。
以上两个典型的APT攻击案例中可以看出,对于APT攻击,现代安全防御手段有三个主要盲点:
1、0day漏洞与远程加密通信
支撑现代网络安全技术的理论基础最重要的就是特征匹配,广泛应用于各类主流网络安全产品,如杀毒、入侵检测/防御、漏洞扫描、深度包检测。Oday漏洞和远程加密通信都意味着没有特征,或者说还没来得及积累特征,这是基于特征匹配的边界防护技术难以应对的。
2、长期持续性的攻击
现代网络安全产品把实时性作为衡量系统能力的一项重要指标,追求的目标就是精准的识别威胁,并实时的阻断。而对于APT这种Salami式的攻击,则是基于实时时间点的检测技术难以应对的。
3、内网攻击
任何防御体系都会做安全域划分,内网通常被划成信任域,信任域内部的通信不被监控,成为了盲点。需要做接入侧的安全方案加固,但不在本文讨论范围。
大数据怎么解决问题
大数据可总结为基于分布式计算的数据挖掘,可以跟传统数据处理模式对比去理解大数据:
1、数据采样——>全集原始数据(Raw Data)
2、小数据+大算法——>大数据+小算法+上下文关联+知识积累
3、基于模型的算法——>机械穷举(不带假设条件)
4、精确性+实时性——>过程中的预测
使用大数据思想,可对现代网络安全技术做如下改进:
1、特定协议报文分析——>全流量原始数据抓取(Raw Data)
2、实时数据+复杂模型算法——>长期全流量数据+多种简单挖掘算法+上下文关联+知识积累
3、实时性+自动化——>过程中的预警+人工调查
通过传统安全防御措施很难检测高级持续性攻击,企业必须先确定日常网络中各用户、业务系统的正常行为模型是什么,才能尽早确定企业的网络和数据是否受到了攻击。而安全厂商可利用大数据技术对事件的模式、攻击的模式、时间、空间、行为上的特征进行处理,总结抽象出来一些模型,变成大数据安全工具。为了精准地描述威胁特征,建模的过程可能耗费几个月甚至几年时间,企业需要耗费大量人力、物力、财力成本,才能达到目的。但可以通过整合大数据处理资源,协调大数据处理和分析机制,共享数据库之间的关键模型数据,加快对高级可持续攻击的建模进程,消除和控制高级可持续攻击的危害。
E. 大数据时代的信息安全和未来展望
大数据时代的信息安全和未来展望
随着高级可持续性攻击的出现以及恶意软件的复杂性与日俱增,企业急需一种突破传统信息安全保障模式的、灵活的技术和方案来应对未来不断变化的安全威胁。大数据彻底的改变了信息安全行业,基于大数据分析的智能驱动型安全战略将帮助信息安全从业人员重获警惕性和时间的优势,以使他们更好地检测和防御高级网络威胁。
大数据时代信息安全面临挑战
在大数据时代,无处不在的智能终端、随时在线的网络传输、互动频繁的社交网络使得互联网时时刻刻都在产生着海量的数据。随着产生、存储、分析的数据量越来越大,在这些海量数据背后隐藏着大量的经济与政治利益。大数据如同一把双刃剑,在我们享受大数据分析带来的精准信息的同时,其所带来的安全问题也开始成为企业的隐患。
1、黑客更显着的攻击目标:在网络空间里,大数据是更容易被“发现”的大目标。一方面,大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。另一方面,数据的大量汇集,使得黑客成功攻击一次就能获得更多数据,无形中降低了黑客的攻击成本,增加了其“收益率”。
2、隐私泄露风险增加:大量数据的汇集不可避免地加大了用户隐私泄露的风险。一方面,数据集中存储增加了泄露风险,而这些数据不被滥用,也成为人身安全的一部分。另一方面,一些敏感数据的所有权和使用权并没有明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题。
3、威胁现有的存储和防护措施:大数据存储带来新的安全问题。数据大集中的后果是复杂多样的数据存储在一起,很可能会出现将某些生产数据放在经营数据存储位置的情况,致使企业安全管理不合规。大数据的大小也影响到安全控制措施能否正确运行。安全防护手段的更新升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。
4、大数据技术成为黑客的攻击手段:在企业用数据挖掘和数据分析等大数据技术获取商业价值的同时,黑客也在利用这些大数据技术向企业发起攻击。黑客会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使黑客的攻击更加精准。此外,大数据也为黑客发起攻击提供了更多机会。黑客利用大数据发起僵尸网络攻击,可能会同时控制上百万台傀儡机并发起攻击。
5、成为高级可持续攻击的载体:传统的检测是基于单个时间点进行的基于威胁特征的实时匹配检测,而高级可持续攻击(APT)是一个实施过程,无法被实时检测。此外,由于大数据的价值低密度特性,使得安全分析工具很难聚焦在价值点上,黑客可以将攻击隐藏在大数据中,给安全服务提供商的分析制造很大困难。黑客设置的任何一个会误导安全厂商目标信息提取和检索的攻击,都会导致安全监测偏离应有方向。
6、信息安全产业面临变革:大数据的到来也为信息安全产业的发展带来了新的契机,还没有意识到这场变革的安全厂商将在这场变革大潮中被抛弃。大数据正在为安全分析提供新的可能性,在未来的安全架构体系中,通过大数据智能分析有效的将原来分割的安全产品更好的融合起来,成为不同的安全智能节点,这将是在大数据时代安全产业需要研究突破的重点。
大数据安全未来趋势展望
据MacDonald预测,到2016年,40%的企业(银行、保险、医药和国防行业为主)将积极地对至少10TB数据进行分析,以找出潜在危险的活动。然而,供应商的产品格局却无法在短期内进行转变。现在,企业通常依赖于SIEM系统来关联和分析安全相关的数据,MacDonald表示目前的SIEM产品无法处理这么大的工作量,大多数SIEM产品提供接近实时数据,但只能处理规范化数据,还有些SIEM产品能够处理大量原始交易数据,但无法提供实时情报信息。
Gartner公司分析师表示,使用“大数据”来提高企业信息安全不完全是炒作,这在未来几年内这将成为现实。大数据将为安全团队带来新的工作方式,通过了解大数据的优势、制定切合实际的目标以及利用现有安全技术的优势,安全管理人员将会发现他们在大数据进行的投资是值得的。
RSA大中国区总经理胡军表示,“大数据将带动安全行业方向性的改变,安全与数据互相影响,未来共同促进发展。现今的安全需要更全面和广泛的可视性,敏捷的分析,可采取行动的情报和可扩展的基础设施。”
我们可以看到,大数据安全已经成为不可阻挡的趋势。在未来,不论是从商业需求角度,还是产业技术角度,大数据安全都将成为业界关注的热点。而在这场大数据安全的盛宴中,也必然会出现新老更替、推陈出新,这一切就让我们拭目以待吧!
F. 网络黄金的感谢信怎么写
你以为网络黄金是3M呀……还感谢信怎么写……
G. 大数据时代:如何守护我们的数据安全
大数据时代:如何守护我们的数据安全
不管你承认不承认,我们已经全面进入了大数据时代。无时无刻,我们的很多信息都被通过各种途径传播出去,这就必然导致安全问题的产生。
大数据的安全问题有多严重?在此前举办的“2016中国大数据产业峰会”上发生的一个实例,就可见一斑。
在360展区,市民严女士随手将钱包、手机放到安检筐里,空手走过安检门。她通过安检门,突然发现大屏幕上显示出自己银行卡的姓名拼音、身份证号、银行卡号、卡片有效期、最近10次的消费时间、消费地点、取现记录、转账记录等等。严女士惊呼:“遇到了魔术师”。
360安全专家刘洋解释,实际上,存放手机钱包的安检筐里存有一张具有NFC(近距离通信)功能的无线读卡器,旁边还有配套的信号接收器和电脑等设备,就像公交车刷卡器,只要银行卡靠近读卡器,卡片的信息就显示出来,安检门其实就是“安全魔术师”手中的障眼法。就在严女士将钱包放进安检筐的那一刻,严女士的个人信息就已经泄露了。
那么,我们靠什么来保障我们的数据安全呢?难道我们只能看着个人的数据和隐私到处泄露吗?
数据安全事件日益高发
近来,大数据安全事件呈高发之势。日前,广东警方破获一起高科技经济犯罪案件,17岁的“黑客”叶世广,攻破了多个商业银行网站,窃取了储户的身份证号、银行卡号、支付密码等数据,带领一批人在网上大肆盗刷别人的信用卡,涉案金额近15亿元,涉及银行49家。
今年2月,发生了世界上有史以来规模最大的网络盗窃案。黑客入侵了孟加拉国央行在纽约联邦储备银行的账户,盗走了8100万美元,后来孟加拉国官方表示,黑客出现了一个拼写错误,否则随后还将进行一笔近10亿美元的转账。
今年3月,与叙利亚有关联的激进黑客组织对一个自来水厂发起网络攻击。黑客操纵系统改变了进入到自来水中的化学物含量,阻碍净水过程。
类似的案例不胜枚举。
360公司总裁齐向东向《中国科学报》记者表示,接入互联网的设备越多,网络攻击的发生几率就越高,网络攻击首先瞄准大数据,攻击造成大数据丢失、情报泄密和破坏网络安全运行。大数据技术是一把双刃剑,既可以造福社会、造福人民,又可以被一些人用来损害社会公共利益和民众利益。
大数据安全体系构建势在必行
“在互联网乃至物联网时代,如果我们不能很好地解决安全问题,就会影响社会各方面的发展。因此,各级政府在鼓励发展大数据的同时,要同步考虑构建大数据安全体系。”齐向东表示。
值得注意的是,传统的网络安全思路已经无法保障大数据时代的安全。刘洋向记者介绍,传统网络安全的防护思路是划分边界,将内网、外网分开,业务网和公众网分离,用终端设备将潜在风险隔离。通过在每个边界设立网关设备和网络流量设备,来守住“边界”,以期解决安全问题。但随着移动互联网、云服务的出现,移动终端在4G信号、Wi-Fi信号、电缆之间穿梭,网络边界实际上已经消亡。
“很多传统的大企业认为,只要自己购买服务器并搭建独立的机房,安排专门的技术人员就能够保护企业的数据不被泄露,能够保护企业的信息安全。但实际上,在如今的互联网时代,这种传统的方法更加容易被不法分子所攻破。”阿里云安全资深总监肖力向《中国科学报》记者介绍,这是因为从技术实力来看,绝大部分企业并不是专门做网络安全、数据安全,其设置的技术壁垒难以阻挡专业的黑客。
齐向东介绍,360安全中心每天发现木马样本近千万个,每天发现的各种软硬件漏洞、网站漏洞超过120个,“每一个木马每一个漏洞,都可能攻破预先部署的安全设备和安全软件”。这种情况下,企业的传统防护的确难以奏效。
云平台和大数据需“双剑合璧”
在采访中,有专家认为,对付大数据时代的数据安全问题,防止信息泄露,除了完善相关法制法规,更加需要云平台的防护技术,结合大数据技术来应对数据安全。
“在云计算不断深入发展的当下,将数据存储在云平台上,或许比传统的企业信息防护更加安全。”肖力介绍,以阿里云为例,阿里云在架构设计之初就同步考虑了安全架构,不仅将安全的基因植入到整个云平台和各个云产品中,也将数据安全要求嵌入产品开发生命周期的各个环节。依靠专业的云计算平台,强大的技术团队能够更好地应付来自黑客的攻击。
不同用户之间,无论是CPU、内存,还是存储和网络,都默认相互隔离,既看不到对方的数据,也不会相互影响。“就像一间五星级酒店被分割成多个房间,他们之间是相互独立和封闭的,从而确保不同租户互不干扰和数据隔离。”肖力表示。
据介绍,目前全国35%的网站的数据安全防护都依托于阿里云平台的防护。阿里云的云盾,涵盖网络安全、服务器安全、数据安全、业务安全和移动安全这五个安全领域,来保护数据安全。
360也有自己的云安全管理平台。刘洋介绍,该平台将360独有的云安全漏洞挖掘能力输出给广大用户,通过统一管理、安全可见以及网络、主机、应用、数据的分层纵深防御,为用户全面解决云安全问题。
“用大数据技术来解决大数据时代的安全问题十分必要。”齐向东进一步指出,必须建立“数据驱动安全”的思维,搭建全新的互联网安全体系—“传统安全+互联网+大数据”。也就是说,要利用漏洞挖掘技术、网络攻击技术、软件样行为分析技术以及由网络地址解析数据库、网络访问日志数据库、文件黑白名单数据库等组成大数据系统与分析技术,构建全天候全方位感知网络安全态势。“要基于强大的大数据库、利用先进的大数据技术和广泛的用户覆盖率,提前感知网络威胁态势,为大众提供未知威胁的发现与回溯功能并进行有效防护。”齐向东说。
“未来还应当联合各方力量,共建互联网安全产业链生态,来应对大数据时代的安全风险。”肖力表示。
H. 大数据和网络安全哪个方向更好
随着工业物联网(IIoT)在制造企业的全面铺开,安全专家必须准备好弄懂这些网络应有的样子与操作。同时,所有安全计划都需拥有足够的弹性,要能扛住迎面而来的各种攻击。未来十年将给网络安全带来最大影响的是什么?简单讲,这个问题的答案有两个方向:人工智能(AI)和大数据分析。
鉴于这些技术发展会给未来时光带来重大影响,未来的安全环境,将取决于AI和分析如何融入囊括了网络及物理安全的全面弹性安全计划。
网络安全-工业物联网
至于如何构建该整体安全项目,能够赋予制造商资产清单与网络可见性的网络监视技术是个不错的开始。随着公司企业越来越依赖数字环境,拥有该总体安全观也变得越来越重要了。如果十年内发生的攻击类似乌克兰两次遭遇的大断电,或挪威铝业巨头NorskHydro遭遇的勒索软件攻击,公司企业需准备备用工厂,以便在必要的时候能够手动运营以阻止攻击。
未来5~10年,物联网对工业运营的意义愈加重大,工业系统也将接入可大幅降低设备间通信延迟的5G网络,因而工业系统联网程度增加几乎已成不争的事实。物联网设备安全通常天生不怎么强,所以当物联网设备大规模部署的时候,工业系统便面临相当棘手的设备安全管理挑战了。
网络安全-工业运营
更糟的是,连接性增加意味着能尝试突破系统的黑客也增加了,更高端的黑客或许能够窥探系统,而网络安全问题也随着连接性的增长而愈加恶化。而且,很多工业系统如果以特定方式操纵可能伤及人命,所以连接性增加不仅影响到工业系统管理和保护,也影响公共政策制定。
网络安全-数字转型
工业网络安全遭受的最大影响将是数字转型的非预期结果。数字转型很好,也很有必要,但同时伴随着风险。随着我们引入越来越多的数字终端,数据流随之产生。数据流的飞速增长将超出我们的处理范围,无法现场有效分析全部数据。而且,我们将以这些数据驱动有关过程的决策,甚或驱动过程本身。最终,我们或许会开始通过人工智能/机器学习将这些分析性数据产品馈送回过程。
换句话说,过程产生数据,数据离开过程网络流向云、雾、湖、现场、外部等等地方,被分析、重用再馈送回过程。所有这些都会以我们刚刚才开始考虑的方式,往过程数据及该控制/过程网络外部相关系统,引入新的风险。
I. 大数据和网络安全在今后的发展前景哪个会更好那
应该说,两个都是都是今后发展的重点,再加上人工智能,个人觉得将会是互联网乃至工业的一次革命。
1、大数据方面。大数据范围很广,每个行业都有相应的应用,但是投入也是很大的,例如铁路系统,车辆违章监控系统,ETC系统等都应用了大数据,这些大数据将进行提炼后,用于基础分析、客户引导、智能管理等。对于提高政府职能,降低能耗,开源节流,人工辅助等都有很大很深的应用。总的来说,大数据中所有的数据都是有价值的,但是采集数据有很多的路要走,更多的需要物联网、人工智能的配合。
2、网络安全方面。这个应该是当下整个社会的一个突出问题。网络改变了人们的使用方式,推动了一系列的变革,但问题也是很突出,它是一把双刃剑,有利有弊,但总体利大于弊,正因为网络的不断发展,才推动了大数据的进步。
3、人工智能方面。人工智能应该是一个 今后发展的这个重点及亮点。人工智能主要利用语言、图像识别、传感器等设备集中进行运算,发挥其特定的作用,来执行任务。