‘壹’ 设置频点是多少
频点,指具体的绝对频率值。一般为调制信号的中心频率。频点是给固定频率的编号。
中文名
频点
外文名
Frequency
学科
信息工程
领域
工程技术
快速
导航
载波质差EQ作用设置原则
概念介绍
频率
这里指无线信号的发射频率。包含:手机发给基站的上行信号和基站发给手机的下行信号;GSM900的工作频段为890~960MHz,GSM1800的工作频段为1710~1880;其中:
Uplink(移动台向基站发信号的上行链路频段);
GSM 900 890~915 MHz
GSM 1800 1710~1785 MHz
Downlink(基站向移动台发信号的下行链路频段);
GSM 900 935~960 MHz
GSM 1800 1805~1880 MHz。
频点
频点是给固定频率的编号。
频率间隔都为200KHz。这样就依照200KHz的频率间隔从890MHz、890.2MHz、890.4MHz、890.6MHz、890.8MHz、891MHz … … 915MHz分为125个无线频率段,并对每个频段进行编号,从1、2、3、4 … … 125;这些对固定频率的编号就是我们所说的频点;反过来说:频点是对固定频率的编号。在GSM网络中我们用频点取代频率来指定收发信机组的发射频率。比如说:指定一个载波的频点为3,就是说该载波将接受频率为890.4MHz的上行信号并以935.4MHz的频率发射信号。(参考《爱立信RBS200》黑皮书第1.3节《频率的分配及复用》)
GSM900的频段可以分成125个频点(实际可用124个)。其中1~94属于中国移动、96~124属于中国联通,95保留以区分两家运营商[1
‘贰’ 手机总是显示选择连接网络是怎么回事
手机总是显示选择连接网络估计是将手机的网络选择设置成了手动模式,将该选项设置成自动模式,这样手机在寻找到合适的网络时会自动接入相应的运营商网络。
手机的网络选择设置成手动模式的话,将会不停出现连接网络的提示,并且遇见新的网络也会提醒,这会造成很大的不便。此外,当网络断开连接后也会提示你让你重新选择网络连接,这是正常的。转为自动模式即可。

(2)手机网络频点设置扩展阅读
手动跟自动的最终目的是没有区别的都是寻找网络,但是如果你IM是移动的,自动模式的时候手机就会注册到中国移动你就可以使用电话了。
如果是手动,手机可以搜索到中国移动的网络,中国联通的网络,然后让用户选择的,但是如果SIM卡是移动的,即使在联通注册也是没用的,所以还是使用自动即可。
手动模式下,手机开机后根据设定,以手动或自动方式选择网络。手机寻找选定网络中的合适小区,并调谐到该小区的控制频点。
如果需要,手机还将进行位置更新(LOCATION UPDATING)或国际移动用户识别码(IMSI)附着(ATTACH)。选择小区后,手机通过测量如发现更好的小区,则进行小区重选。当手机从网络覆盖的盲区回到覆盖区,手机将重新选网。
‘叁’ 什么是频点手机
通常所说的频点是给固定频率的编号。频率间隔都为200KHz。这样就依照200KHz的频率间隔从890MHz、890.2MHz、890.4MHz、890.6MHz、890.8MHz、891MHz … … 915MHz分为125个无线频率段,并对每个频段进行编号,从1、2、3、4 … … 125;这些对固定频率的编号就是我们所说的频点;反过来说:频点是对固定频率的编号。在GSM网络中我们用频点取代频率来指定收发信机组的发射频率。比如说:指定一个载波的频点为3,就是说该载波将接受频率为890.4MHz的上行信号并以935.4MHz的频率发射信号GSM900的频段可以分成125个频点(实际可用124个)。其中1~94属于中国移动、96~124属于中国联通,95保留以区分两家运营商。
‘肆’ 频点的频率与频点介绍
1、频率
这里指无线信号的发射频率。包含:手机发给基站的上行信号和基站发给手机的下行信号;GSM900的工作频段为890~960MHz,GSM1800的工作频段为1710~1880;其中:
Uplink(移动台向基站发信号的上行链路频段);
GSM 900 890~915 MHz
GSM 1800 1710~1785 MHz
Downlink(基站向移动台发信号的下行链路频段);
GSM 900 935~960 MHz
GSM 1800 1805~1880 MHz。
2、频点
频点是给固定频率的编号。
频率间隔都为200KHz。这样就依照200KHz的频率间隔从890MHz、890.2MHz、890.4MHz、890.6MHz、890.8MHz、891MHz … … 915MHz分为125个无线频率段,并对每个频段进行编号,从1、2、3、4 … … 125;这些对固定频率的编号就是我们所说的频点;反过来说:频点是对固定频率的编号。在GSM网络中我们用频点取代频率来指定收发信机组的发射频率。比如说:指定一个载波的频点为3,就是说该载波将接受频率为890.4MHz的上行信号并以935.4MHz的频率发射信号。(参考《爱立信RBS200》黑皮书第1.3节《频率的分配及复用》)
GSM900的频段可以分成125个频点(实际可用124个)。其中1~94属于中国移动、96~124属于中国联通,95保留以区分两家运营商。 1、BCCH与TCH载波的概念
依据物理信道所传递的信息内容不同,将物理信道分为不同类的逻辑信道;包含控制信道和业务信道(关于逻辑信道的具体分类,参考《爱立信RBS200》1.5.1节《逻辑信道的分类》)。
用于发送控制信息的载点我们叫做主频,即BCCH;
用于发送话音、数据信息的频点我们叫做TCH频点,即TCH。
2、BCCH载波与TCH载波的区别
BCCH载波:由于测量的正确性需求(切换机制的需要)与广播控制信道的工作模式,BCCH载波必需一直坚持最大功率发射(所有时隙),所以其输出能量是恒定不变的,从另一角度上看,它造成的干扰也是最严重的,整个无线网络最大的干扰源由BCCH载波所造成。
TCH载波:大部分优化无线环境的无线功能都只是对TCH载波有效而对BCCH载波无效。如下行不持续发射、下行动态功控、空闲模式下的发射机关闭,这些功效的共同作用下,TCH的输出能量将比BCCH载波大大弱化(最保守也有10dB以上的平均值),TCH造成的干扰迫害远远弱于BCCH载波,也就是说:上述无线功能启动后,TCH载波对整网的背境噪声将有极大的改善。但同时TCH载波也弱化了自身的输出能量(C/I中的C值载波信号强度变小),如果有来自于BCCH载波的同、邻频干扰源(I值由BCCH载波决议),则TCH载波本身将呈现较严重的质差。
3、BCCH载波与TCH载波应采取不同的频率复用模式
基于上述剖析,BCCH载波建议采取更大的频率复用因子。并使用一组独立的频率组,如高端频点中的持续12个至24个频点。长处在于:
一 、BCCH载波与TCH载波之间并没有同频存在,同时邻频也只有一个。则BCCH载波对TCH载波也就不会造成干扰。
二、BCCH载波之间因采纳了更大的复用因子,则BCCH载波之间的干扰也弱化了许多。
三、由于全网的所有小区都采取这一组中的某一个频点来做为BCCH频点,所以BA表的定义也极简略,即所有小区的IDLE BA表都是基础一致。这对刚开机的移动台或重新登录网络的移动台来说,极其有利,便于更快速选择最强的小区登录。
TCH载波则可以采纳更小的复用因子。因为TCH载波之间的干扰在各种无线功能合理启动后,将弱化许多。 测量频点
参数:MBCCHNO
指令:RLMFP,RLMFC,RLMFE
MBCCHNO指定了收集在IDLE、ACTIVE模式下必需监控和测量的频点,在IDLE MODE下通过BCCH信道传送给手机,在ACTIVE MODE下通过SACCH传送给手机;每个小区最多可以定义32个测量频点。
手机将所有测量频点的测量报告(包含服务小区的信号强度及质量、六个信号最强的相邻小区的频点、信号强度、BSIC)通过SACCH发给BSC;BSC通过切换算法肯定是否要切往其中某个相邻小区;
如果两个小区只定义了相邻关系但却没有定义彼此的主频作测量频点,那么手机就不会对这个邻区的信号进行测量,也就不会发生切换了;
同样,如果只定义了测量频点却没有定义相邻关系也不会产生切换,在路测历程中可以尝试将某个频点定为服务小区的测量频点来测量该主频的信号强度;
手机在IDLE模式和ACTIVE模式下的测量频点可以不一致,就是wo们所说的双BA表;比如有些小区只盼望在通话进程中产生切换但却不盼望在空闲状况下重选到该小区,那么可以在主小区的MBCCHNO-LISTTYPE = IDLE中删除该小区的测量频点。 一 、 话音质量等级(RXQUAL、包括上行和下行质差)
下行话音质量等级:依据下行测量进程中收到的干扰强度定义干扰等级(RXQUAL),0的干扰等级最小,7的干扰等级最大;
0、1:清楚无杂音
2:偶尔有杂音
3:话音尚可
4:杂音、金属声
5:断断续续
6:濒临掉话
7:无法通话
上行信号质量等级:对空闲信道进行测量,以收到的干扰强度为界定义干扰等级(ICMBAND),1的干扰等级最小,5的干扰等级最大;
GSM体系载干比门限:
·C/I >12dB (Non-Hopping System)
·C/I >9dB (Hopping System)
·C/A>3dB (Non-hopping System)
二 、断定质差是否为频率干扰引起(是否随频点转移)
1、上行干扰断定:
RLCRP:CELL=cellname;
观察上行干扰,查出icmband较高的信道对应的bcp;
RXTCP:MO=rxotg,cell=cellname;
查出小区对应的tg;
RXCDP:MO=rxotg-x;
查看小区对应tg每个时隙对应的bcp;
找到前面查出的icmband较高的bcp对应的时隙,如果大部分时隙所占用频点一致的话阐明上行干扰由频点引起;
2、下行干扰断定;
路测历程中发明小区信号质差,应立即关闭小区跳频,通过不断拨测查看手机占用到哪个频点时质差水平最严重; 1)关跳频测试、更换载波看质差是否随频点转移
路测中发现服务小区信号质差严重则应马上通知BSC操作人员关闭小区跳频功能进行测试;
指令:rlchc:cell=cellname,hop=off [,chgr=chgr];
(如果使用TEMS Investigation测试,则不用关闭跳频就可以看到频点的干扰情形;)
关闭跳频后,通过不断拨测占用到服务小区的所有频点,就可以定位到哪一个频点存在较严重的质差;
但有质差不等于是由频率干扰引起的,通知BSC操作人员将干扰频点更换到另外一个载波硬件上,再进行拨测看质差是否仍停留在本来的频点上,如果仍然是本来的频点质差严重,则解释该频点有频率干扰;如果质差随载波硬件产生转移,则阐明质差由硬件原由引起,需另作处置;
对齐载波与频点的操作:
1、通知网络监控室,halted小区;
指令:rlstc:cell=cellname,state=halted[,chgr=chgr];
2、闭塞所有载波及发射机;
指令:rxbli:mo=rxotrx-*-*&&-*; 闭塞trx
rxbli:mo=rxotx-*-*&&-* 闭塞发射机;
3、关闭小区跳频功能;
指令:rlchc:cell=cellname,hop=off; 注:如果不关闭跳频功效,重新解闭载波后频率又会凌乱;
4、激活小区;
指令:rlstc:cell=cellname,state=active[,chgr=chgr];
5、逐个解闭载波和对应的发射机;每解闭完一个载波和对应的发射机后,须等到该载波占用的某个频点后能力开端解闭下一个载波,以免两个载波的不同时隙占用同一个频点;
指令:rxble:mo=rxotrx-*-0(、-1、-2 … …) 解闭一个trx
rxble:mo=rxotx-*-0(、-1、-2 … …) 解闭对应的tx
rxcdp:mo=rxotg-*; 查看trx和tx是否占用到频点;如果已经占用到频点就可以开端解闭下一个载波;
2)使用扫频仪追踪上行干扰
3)扫频观察邻频信号强度、暂时删除有干扰频点再扫频看同频信号强度
实地扫频是在路测进程中查找干扰和找可用频点的一种方式;基础原理是通过扫频测试查看所有频点的信号强度,选择在测试地点信号强度最弱的频点作主小区的可用频点;(具体操作办法后面会详解)
4)通过地图推断干扰频点
在GSM2000中打开地图,通过同频、邻频查找,联合小区实际的地理地位和对周围建筑环境的了解来肯定干扰源的具体地位;
5)依据干扰不断加重的方向在地图上找干扰源
在路测历程中,离干扰源越近,频率干扰就会越严重;所以干扰水平不断增大的方向就必定是干扰源所在的方向。这样我们就可以在路测中肯定干扰源的大致地位,缩小定位干扰源的范畴。

‘伍’ 手机里面的网络设置中有个“频段”设置,怎么设置
不手动设置它会有更强的信号。这是手机的默认设置,选择不同的频段会对应不同的网络(2G、3G、4G)。手机会根据周围的网络信号自动选择最合适的网络来使用。
在使用手机时,手机默认的“频段”设置,会让手机自动获取周围的网络信号,如果手机同时支持2G、3G、4G网络,当2G网络强时,就自动选择2G网络;当3G网络强时,就自动选择3G网络;当4G网络强时,就自动选择4G网络,这是手机的默认设置。

(5)手机网络频点设置扩展阅读:
现在中国的手机网络分为2G网络、3G网络和4G网络而与它们相关的频段分别是:
1、2G网络:联通2G/移动2G(GSM),电信CDMA1X 。
频段:
GSM 850/900/1800/1900,
CDMA1X:800MHZ
2、3G网络:联通3G(WCDMA),电信3G(CDMA2000),移动3G(TD-SCDMA)。
频段:
3G:CDMA EVDO 800/1700/1900/2100
3G:WCDMA 900/2100
3G:TD-SCDMA 1880-1920
3、4G网络:移动TD-LTE,联通TD-LTE,电信TD-LTE,FDD-LTE 。
频段:
4G:FDD-LTE B1/2/3/4/5/7/8/13/17/18/19/20/25/26/28/29
以4G标准LTE为例,LTE的频段非常多,LTE FDD共有22个频段,标号为1~22。
而LTE TDD共有9个频段,标号为33~41,目前LTE分为四个频段:A频段、D频段、E频段和F频段,
频率范围依次为2010 MHz~2025 MHz、2570 MHz~2620 MHz和2320 MHz~2370 MHz(2300 MHz~2400 MHz)、1880 MHz~1920 MHz,分别对应国际上标号为34、38、40和39频段。
