❶ 简述tcpip协议模型
摘要 目前使用的互联网大都是基于TCP/IP协议栈的,TCP/IP参考模型包含四层结构:
和以太网一个层面。
❸ 简要说明TCP/IP参考模型五个层次的名称,各层的传输格式和使用的设备是什么
TCP/IP参考模型是ARPANET及其后继的因特网使用的参考模型。其将协议分为:网络接入层、网际互连层、传输层以及应用层。
1.应用层:对应OSI参考模型的上层,为用户提供所需的各种服务,如FTP,Telnet,DNS,SMTP等。
2.传输层:传输层对应于OSI参考模型的传输层,为应用层实体提供端到端通信功能,确保数据包的顺序传输和数据的完整性。该层定义了两个主要协议:传输控制协议(TCP)和用户数据报协议(UDP)。
TCP协议提供可靠的,面向连接的数据传输服务;而UDP协议提供不可靠的无连接数据传输服务。
3.互联网互联层:互联网互联层对应OSI参考模型的网络层,主要解决从主机到主机的通信问题。它包含通过网络逻辑传输的协议设计数据包。重点是重新给主机一个IP地址来完成主机的寻址,它还负责在各种网络中路由数据包。
该层有三个主要协议:Internet协议(IP),Internet组管理协议(IGMP)和Internet控制消息协议(ICMP)。 IP协议是Internetworking层中最重要的协议。它提供可靠的无连接数据报传送服务。
4.网络接入层:网络接入层(即主机 - 网络层)对应于OSI参考模型中的物理层和数据链路层。它负责监视主机和网络之间的数据交换。
实际上,TCP / IP本身并没有定义该层的协议,但参与互连的每个网络都使用自己的物理层和数据链路层协议,然后与TCP / IP的网络接入层连接。地址解析协议(ARP)在此层(OSI参考模型的数据链路层)上工作。
(3)路由器网络协议参考模型扩展阅读:
OSI参考模型与TCP/IP参考模型的异同点:
1. OSI参考模型和TCP / IP参考模型都使用分层结构,但OSI使用的七层模型和TCP / IP是四层结构。
2. TCP / IP参考模型的网络接口层实际上没有真正的定义,但是是概念性描述。 OSI参考模型不仅分为两层,而且每层的功能都非常详细。即使在数据链路层,也分离媒体访问子层以解决局域网中共享媒体的问题。
3. TCP / IP的网络互连层等同于OSI参考模型的网络层中的无连接网络服务。
4. OSI参考模型基本上类似于TCP / IP参考模型的传输层功能。它负责为用户提供真正的端到端通信服务,并且还从高层屏蔽底层网络的实现细节。
不同之处在于TCP / IP参考模型的传输层基于网络互连层,网络互连层仅提供无连接网络服务,因此面向连接的功能完全在TCP协议中实现,当然, TCP / IP的传输层还提供UDP等无连接服务;
相反,OSI参考模型的传输层基于网络层,它提供面向连接和无连接的服务,但传输层仅提供面向连接的服务。
5.在TCP / IP参考模型中,没有会话层和表示层。事实证明,这两层的功能可以完全包含在应用层中。
6. OSI参考模型具有高抽象能力,适用于描述各种网络。 TCP / IP是首先开发TCP / IP模型的协议。
7. OSI参考模型的概念明显不同,但它过于复杂;虽然TCP / IP参考模型在服务,接口和协议之间的区别中不清楚,但功能描述和实现细节是混合的。
8. TCP / IP参考模型的网络接口层不是真实层; OSI参考模型的缺点是层数太多,划分意义不大但增加了复杂性。
9.尽管OSI参考模型是乐观的,但由于缺乏时间安排,该技术尚不成熟且难以实施;相反,虽然TCP / IP参考模型有许多令人不满意的地方,但它非常成功。
❹ 请问大家OSI参考模型的7层都是什么交换机,路由器,HUB分别处于哪一层
路由器在网络层工作,也就是第3层.交换机在数据链路层工作,也就是第2层,而HUB,也就是集线器,工作在物理层,也就是第1层.
OSI/RM模型
第一层:物理层(PhysicalLayer),规定通信设备的机械的、电气的、功能的和过程的特性,用以建立、维护和拆除物理链路连接。具体地讲,机械特性规定了网络连接时所需接插件的规格尺寸、引脚数量和排列情况等;电气特性规定了在物理连接上传输bit流时线路上信号电平的大小、阻抗匹配、传输速率距离限制等;功能特性是指对各个信号先分配确切的信号含义,即定义了DTE和DCE之间各个线路的功能;规程特性定义了利用信号线进行bit流传输的一组操作规程,是指在物理连接的建立、维护、交换信息是,DTE和DCE双放在各电路上的动作系列。
在这一层,数据的单位称为比特(bit)。
属于物理层定义的典型规范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45等。
第二层:数据链路层(DataLinkLayer):在物理层提供比特流服务的基础上,建立相邻结点之间的数据链路,通过差错控制提供数据帧(Frame)在信道上无差错的传输,并进行各电路上的动作系列。
数据链路层在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。
在这一层,数据的单位称为帧(frame)。
数据链路层协议的代表包括:SDLC、HDLC、PPP、STP、帧中继等。
第三层是网络层(Network layer)
在计算机网络中进行通信的两个计算机之间可能会经过很多个数据链路,也可能还要经过很多通信子网。网络层的任务就是选择合适的网间路由和交换结点, 确保数据及时传送。网络层将数据链路层提供的帧组成数据包,包中封装有网络层包头,其中含有逻辑地址信息- -源站点和目的站点地址的网络地址。
如果你在谈论一个IP地址,那么你是在处理第3层的问题,这是“数据包”问题,而不是第2层的“帧”。IP是第3层问题的一部分,此外还有一些路由协议和地址解析协议(ARP)。有关路由的一切事情都在第3层处理。地址解析和路由是3层的重要目的。网络层还可以实现拥塞控制、网际互连等功能。
在这一层,数据的单位称为数据包(packet)。
网络层协议的代表包括:IP、IPX、RIP、OSPF等。
第四层是处理信息的传输层(Transport layer)。第4层的数据单元也称作数据包(packets)。但是,当你谈论TCP等具体的协议时又有特殊的叫法,TCP的数据单元称为段(segments)而UDP协议的数据单元称为“数据报(datagrams)”。这个层负责获取全部信息,因此,它必须跟踪数据单元碎片、乱序到达的数据包和其它在传输过程中可能发生的危险。第4层为上层提供端到端(最终用户到最终用户)的透明的、可靠的数据传输服务。所为透明的传输是指在通信过程中传输层对上层屏蔽了通信传输系统的具体细节。
传输层协议的代表包括:TCP、UDP、SPX等。
第五层是会话层(Session layer)
这一层也可以称为会晤层或对话层,在会话层及以上的高层次中,数据传送的单位不再另外命名,统称为报文。会话层不参与具体的传输,它提供包括访问验证和会话管理在内的建立和维护应用之间通信的机制。如服务器验证用户登录便是由会话层完成的。
第六层是表示层(Presentation layer)
这一层主要解决拥护信息的语法表示问题。它将欲交换的数据从适合于某一用户的抽象语法,转换为适合于OSI系统内部使用的传送语法。即提供格式化的表示和转换数据服务。数据的压缩和解压缩, 加密和解密等工作都由表示层负责。
第七层应用层(Application layer),应用层为操作系统或网络应用程序提供访问网络服务的接口。
应用层协议的代表包括:Telnet、FTP、HTTP、SNMP等。
❺ 路由器工作在OSI/RM网络协议参考模型的什么
网络层。。。路由,也就是指路,找一条相对最优的路径出来让数据包沿着传送。
❻ 为何说路由器工作在第三层rip,ftp,http协议属于应用层协议,而路由
这么理解吧。路由器作为一台网络设备,有硬件(cpu,内存,转发芯片,输入输出接口),有bios(boot loader),有操作系统( ios)组成。其中,操作系统内置了大量的应用程序与功能,有静态路由,有策略路由,有rip,有ospf等。
在路由器内部,rip和ospf运行在应用层。然后看动态路由协议的功能,是分析ip数据报的目的地址,然后选择路径转发。所以我们说动态路由协议运行在osi参考模型的第三层。
路由器工作分为控制层面和数据层面
控制层面的协议:
比如RIP,OSPF,BGP,LDP,全是工作在IP层以上,这个时候路由器和普通的主机没有什么区别,都是靠CPU来处理这些协议,而且路由器还可以提供如HTTP server 的功能,这也是CPU来处理。控制层面的流量有一个特征:即目的IP地址是路由器的接口IP,路由器发现是自己的,就会punt上来,给TCP/IP协议栈来处理,然后在通知各个control plane protocol 来最终处理。我们一般还称之为: For_Us traffic , Local traffic
数据层面:
当控制层面建立成功,即路由收敛完成,路由器一般把这些路由表项下发到硬件,可以完成硬件转发,这个时候如果有IP包从这里过路,会检查IP头里的destination IP,和路由表进行匹配,找到出接口,然后完成二层封装,再从接口发送出去。数据层面的流量我们一般称其为过路流量,即 目的IP地址不是本路由器的任何接口的IP。
❼ 路由器是构成因特网的关键设备,按照OSI参考模型,他工作于网络层 对还是错
按照OSI参考模型的话,路由器工作在网络层,是对的~!
❽ OSI参考模型中实现路由选择功能的是
网络层。
OIS参考模型共分7层,它们的功能分别是:①物理层:处于OSI参考模型的最底层。物理层的主要功能是利用物理传输介质为数据链路层提供物理连接,以便透明地传送比特流。②数据链路层:在此层将数据分帧,并处理流控制。本层指定拓扑结构并提供硬件寻址;③网络层:本层通过寻址来建立两个结点之间的连接,它包括通过互联网络来路由和中继数据;④传输层:常规数据传送面向连接或无连接。包括全双工或半双工、流控制和错误恢复服务;⑤会话层:在两个结点之间建立端连接。此服务包括建立连接是以全双工还是以半双工的方式进行设置,尽管可以在层4中处理双工方式;⑥表示层:主要用于处理两个通信系统中交换信息的表示方式。它包括数据格式交换、数据加密与解密、数据压缩与恢复等功能;⑦应用层:应用层是开放系统的最高层,是直接为应用进程提供服务的。包括虚拟终端、作业传送与操作、文卷传送及访问管理、远程数据库访问、图形核心系统、开放系统互连管理等。
❾ 简要介绍TCP/IP协议及常见的路由协议.
TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为:
应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。
传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。
互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。
网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。
静态路由、RIP
类路由选择协议和无类路由选择协议
、IGRP、RIPv2、EIGRP、OSPF和BGP等
。
---- 1.有类路由选择协议
---- 一般把路由信息协议
由选择协议中,只在路由器之间
各路由器通过下面2种方法判定
(RIP)和内部网关路由选择协议(I
传送路由和它的度量值,对每个转发
目的地网络掩码。
GRP)等称为有类路由协议。在有类路
报文,路由器从报文中取出目的地址,
---- (1)如果有一个接口连到目的地网络,
须相同。
则使用此接口的网络掩码。隶属网络的所有子网的大小必
---- (2)否则,使用对应目的地址类的网络
网络使用24位掩码。
掩码。A类网络使用8位掩码,B类网络使用16位掩码,C类
---- 根据设置掩码的规则
,转发报文。因为路由选择基于
端网络使用的掩码,从而决定目
,除去目的地址中的“局部操纵”位
IP地址类(有A类、B类、C类和D类等
的地的网络地址,故此类路由选择协
,在路由选择表中查寻产生的网络地址
4类)或与之相连的网络接口来决定远
议被称为有类路由选择协议。
---- 2.无类路由选择协议
---- RIPv2、EIGRP、OSPF和BGP等是一些比较
与路径一起广播出去,这时网络掩码也称为前缀屏
为255.255.255.0,可标识为192.168.1.0/24。由
址类型和缺省掩码,这就是无类地址及无类路由选
新的路由选择协议,它们在路由更新过程中,将网络掩码
蔽或前缀。例如,如果C类IP地址192.168.1.0的网络掩码
于在路由器之间传送掩码(前缀),因而没有必要判断地
择,也是目前Internet上所基于的路由选择协议。
---- 在无类路由中,IP地
都由前缀来决定用于网络标识的
码对。通过使用无类路由,用户
外,新的IP编址标准IPv6也使用
的是,通过使用无类路由协议,
网化。
址之间不再有类型差别,如A类地址
位数,IP地址不再归属于某一个类,
可以更充分地利用已有的IP地址空间
无类路由协议,通过使用无类路由,
用户在子网化时非常方便,尤其是可
、B类地址或C类地址等之分,所有地址
取而代之的是将它们看作一个地址和掩
,从而避免浪费宝贵的IP地址资源。另
有助于向下一代IP协议过渡。更为重要
以使用可变长子网掩码(VLSM)进行子