㈠ 计算机控制系统的计算机控制系统在我国的发展趋势
微型计算机控制系统的发展是与组成该控制系统的核心部分 — 微型计算机的发展紧密相连的。微型计算机和微处理器自从 20 世纪 70 年代崛起以来,发展极为迅猛:芯片的集成度越来越高;半导体存储器的容量越来越大;控制和计算机性能,几乎每两年就提高一个数量级。另外,大量新型接口和专用芯片不断涌现、软件的日益完善和丰富,大大扩大了微型计算机的功能,这为促进微型计算机机系统的发展创造了条件。
目前,计算机控制技术正向智能化、网络化和集成化的方向发展。微型计算机控制系统的发展趋势右以下几个方面
· 以工业 PC 为基础的低成本工业控制自动化将成为主流。
· PLC 在向微型化、网络化、 PC 化合开放性方向发展。
· 面向测控管一体化设计的 DCS 系统。
· 控制系统正向现场总线( FCS )方向发展。
· 仪器仪表技术在向数字化、智能化、网络化、微型化方向发展。
· 工业控制网络将向有线和无线相结合的方向发展。
· 工业控制软件正向先进控制方向发展。
以工业 PC为基础的低成本工业控制自动化将成为主流:
工业控制自动化主要包含三个层次,从下往上依次是基础自动化、过程自动化和管理自动化,其核心是基础自动化和过程自动化。传统的自动化系统,基础自动化部分基本被 PLC和DCS所垄断,过程自动化和管理自动化部分主要是由小型机组成。20世纪90年代以来,由于PC-based的工业计算机(工业PC)的发展,以工业PC、I/O装置、监控装置、控制网络组成的PC-based的自动化系统得到了迅速普及,成为实现低成本工业自动化的重要途径
由于基于 PC的控制器被证明可以像PLC一样可靠,并且被操作和维护人员接受,所以,一个接一个的制造商至少在部分生产中正在采用PC控制方案。基于PC的控制系统易于安装和使用,有高级的诊断功能,为系统集成商提供了更灵活的选择,从长远角度看,PC控制系统维护成本低。
工业 PC主要包含两种类型:IPC工控机和CompactPCI工控机以及它们的变形机。由于基础自动化和过程自动化对工业PC的运行稳定性、热插拔和冗余配置要求很高,现有的IPC已经不能完全满足要求,将逐渐退出该领域,取而代之的将是 CompactPCI-based工控机,而IPC将占据管理自动化层。
当 “ 软 PLC ” 出现时,曾认为工业 PC将会取代PLC。然而,时至今日工业PC并没有代替PLC,主要有两个原因:一个是系统集成商的原因;另一个是软件操作系统的原因。一个成功的PC-based控制系统要具备两点:一是所有工作要由一个平台上的软件完成;二是向客户提供所需要的所有东西。工业PC与PLC的竞争将主要在高端应用上,其数据复杂且设备集成度高。工业PC不可能与低价的微型PLC竞争,这也是PLC市场增长最快的一部分。从发展趋势看,控制系统的将来很可能存在于工业PC 和 PLC之间。
PLC在向微型化、网络化、PC化和开放性方向发展:
长期以来,PLC始终处于工业控制自动化领域的主战场,为各种各样的自动化控制设备提供非常可靠的控制方案,与DCS和工业PC形成了三足鼎立之势。同时,PLC也承受着来自其它技术产品的冲击,尤其是工业PC所带来的冲击。
微型化、网络化、PC化和开放性是PLC未来发展的主要方向。在基于PLC自动化的早期,PLC体积大而且价格昂贵。但在最近几年,微型PLC已经出现,价格只有几百元。随着软PLC控制组态软件的进一步完善和发展,安装有软PLC组态软件和PC-based控制的市场份额将逐步得到增长。
当前,过程控制领域最大的发展趋势之一就是Ethernet技术的扩展,PLC也不例外。现在越来越多的PLC供应商开始提供Ethernet接口。可以相信,PLC将继续向开放式控制系统方向转移,尤其是基于工业PC的控制系统。
面向测控管一体化设计的 DCS系统:
小型化、多样化、PC化和开放性是未来DCS发展的主要方向。目前小型DCS所占有的市场,已逐步与PLC、工业PC、FCS共享。今后小型DCS可能首先与这三种系统融合,而且 “ 软 DCS ” 技术将首先在小型 DCS中得到发展。PC-based控制将更加广泛地应用于中小规模的过程控制,各DCS厂商也将纷纷推出基于工业PC的小型DCS系统。开放性的DCS系统将同时向上和向下双向延伸,使来自生产过程的现场数据在整个企业内部自由流动,实现信息技术与控制技术的无缝连接,向测控管一体化方向发展。
控制系统正在向现场总线( FCS)方向发展:
由于3C技术的发展,过程控制系统将由DCS发展到FCS。FCS可以将PID控制彻底分散到现场设备中。基于现场总线的FCS又是全分散、全数字化、全开放和可互操作的新一代生产过程自动化系统,它将取代现场一对一的4-20mA模拟信号线,给传统的工业自动化控制系统体系结构带来革命性的变化。
根据IEC61158的定义,现场总线是安装在制造或过程区域的现场装置与控制室内的自动控制装置之间的数字式、双向传输、多分支结构的通信网络。现场总线使测控设备具备了数字计算和数字通信能力,提高了信号的测量、传输和控制精度,提高了系统与设备的功能、性能。除了 IEC61158的8种现场总线外,IEC TC17B通过了三种总线标准:SDS、ASI、Device NET。另外,ISO公布了ISO 11898 CAN标准。目前在各种现场总线的竞争中,以Ethernet为代表的COTS通信技术正成为现场总线发展中新的亮点。采用现场总线技术构造低成本的现场总线控制系统,促进现场仪表的智能化、控制功能分散化、控制系统开放化,符合工业控制系统的技术发展趋势。总之,计算机控制系统的发展在经历了基地式气动仪表控制系统、电动单元组合式模拟仪表控制系统、集中式数字控制系统以及集散控制系统( DCS)后,将朝着现场总线控制系统(FCS)的方向发展。虽然以现场总线为基础的FCS发展很快,但FCS发展还有很多工作要做,如统一标准、仪表智能化等。另外,传统控制系统的维护和改造还需要DCS,因此FCS完全取代传统的DCS还需要一个较长的过程,同时DCS本身也在不断的发展与完善。可以肯定的是,结合DCS、工业以太网、先进控制等新技术的FCS将具有强大的生命力。工业以太网以及现场总线技术作为一种灵活、方便、可靠的数据传输方式,在工业现场得到了越来越多的应用,并将在控制领域中占有更加重要的地位。
计算机网络技术、无线技术以及智能传感器技术的结合,产生了 “ 基于无线技术的网络化智能传感器 ” 的全新概念。这种基于无线技术的网络化智能传感器使得工业现场的数据能够通过无线链路直接在网络上传输、发布和共享。无线局域网技术能够在工厂环境下,为各种智能现场设备、移动机器人以及各种自动化设备之间的通信提供高带宽的无线数据链路和灵活的网络拓扑结构,在一些特殊环境下有效地弥补了有线网络的不足,进一步完善了工业控制网络的通信性能 。
㈡ 工业控制网络的目录
第1章绪论11.1工业自动控制系统历史11.1.1模拟仪表控制系统11.1.2直接数字控制系统21.1.3集散控制系统21.1.4现场总线控制系统31.2工业控制网络特点41.3传统控制网络——现场总线41.3.1现场总线的定义41.3.2现场总线的发展历程51.3.3工业控制网络国际标准51.4现代控制网络——工业以太网71.4.1工业以太网定义71.4.2工业以太网的发展历程71.4.3工业以太网的特点81.4.4工业以太网的标准81.4.5工业以太网的发展前景91.5常用工业控制网络介绍91.5.1基金会现场总线(FF)91.5.2PROFIBUS101.5.3CIP111.5.4Modbus121.5.5CAN总线131.5.6LonWorks141.6工业控制网络发展趋势14
第2章数据通信与计算机网络基础162.1数据通信系统概述162.1.1数据通信系统组成162.1.2数据通信系统的性能指标172.2数据编码技术172.2.1数字数据的模拟信号编码172.2.2数字数据的数字信号编码182.2.3数据同步方式192.3传输差错及其检测212.3.1奇偶校验码222.3.2校验和232.3.3循环冗余校验码242.4工业控制网络的节点252.4.1可编程控制器252.4.2传感器与变送器262.4.3执行器与驱动器262.4.4人机界面272.4.5网络互连设备272.5通信传输介质282.5.1双绞线282.5.2同轴电缆282.5.3光纤292.5.4无线传输介质302.6网络拓扑结构302.6.1星型拓扑302.6.2总线型拓扑312.6.3环型拓扑312.6.4树型拓扑322.7网络传输介质的访问控制方式322.7.1载波监听多路访问/冲突检测332.7.2令牌访问控制方式332.7.3时分复用342.7.4轮询342.7.5集总帧方式342.8OSI参考模型352.8.1OSI参考模型简介352.8.2OSI参考模型的功能划分362.8.3几种典型控制网络的通信模型38
第3章Modbus现场总线403.1概述403.1.1Modbus的特点403.1.2Modbus的通信模型403.1.3通用Modbus帧413.1.4Modbus通信原理413.2Modbus物理层423.2.1RS-232接口标准423.2.2RS-485接口标准443.3Modbus串行链路层标准463.3.1Modbus的传输模式463.3.2Modbus差错检验493.3.3Modbus的功能码513.3.4Modbus协议编程实现593.4台达工业自动化设备603.4.1台达PLC简介613.4.2台达触摸屏623.4.3台达变频器623.5Modbus系统组态643.5.1WPLSoft软件介绍643.5.2Screen Editor软件介绍663.5.3PLC与变频器Modbus通信68实验1Modbus网络系统设计72
第4章PROFIBUS现场总线734.1PROFIBUS概述734.1.1PROFIBUS简介734.1.2PROFIBUS的通信参考模型744.1.3PROFIBUS的家族成员744.2PROFIBUS-DP的通信协议764.2.1PROFIBUS-DP的物理层764.2.2PROFIBUS-DP的数据链路层804.2.3PROFIBUS-DP的用户层854.3PROFIBUS-DP设备简介874.3.1西门子S7-300 PLC874.3.2远程I/O904.3.3西门子触摸屏TP 177B924.4PROFIBUS-DP系统924.4.1STEP7软件介绍924.4.2WinCC flexible软件介绍964.4.3PROFIBUS-DP系统组态97实验2PROFIBUS系统设计101
第5章CAN总线1035.1CAN总线特点1035.2CAN总线通信模型1045.2.1CAN总线的物理层1045.2.2CAN总线的数据链路层1085.3CAN总线帧结构1095.3.1数据帧1095.3.2远程帧1115.3.3出错帧1115.3.4超载帧1125.3.5帧间空间1125.4CAN总线的错误处理机制1135.4.1错误类型1135.4.2错误界定规则1145.5SJA1000 CAN控制器1155.5.1SJA1000引脚功能1155.5.2SJA1000内部功能结构1165.5.3SJA1000内部存储区分配1175.5.4SJA1000寄存器功能1185.6CAN总线收发器PCA82C2501265.6.1PCA82C250引脚功能1275.6.2PCA82C250内部功能结构1275.6.3PCA82C250的工作模式1285.7CAN总线节点设计1295.7.1CAN总线节点的硬件设计1295.7.2CAN总线节点的软件设计132实验3CAN总线节点一对一通信实验134
第6章DeviceNet现场总线1356.1DeviceNet概述1356.1.1设备级的网络1356.1.2DeviceNet的特性1366.1.3DeviceNet的通信模式1366.2DeviceNet通信模型1366.2.1DeviceNet的物理层1376.2.2DeviceNet的数据链路层1406.2.3DeviceNet的应用层1406.3DeviceNet设备描述1436.3.1DeviceNet设备的对象模型1436.3.2DeviceNet设备的对象描述1446.3.3DeviceNet设备组态的数据源1456.4DeviceNet连接1456.4.1重复MAC ID检测1466.4.2建立连接1476.4.3DeviceNet预定义主从连接组1516.4.4预定义主从连接的工作过程1526.5预定义主从连接实例1536.5.1显示信息连接1536.5.2轮询连接1546.5.3位选通连接1556.5.4状态变化连接/循环连接1576.5.5多点轮询连接1596.6台达DeviceNet设备简介1616.6.1台达DNET扫描模块1616.6.2台达DeviceNet远程IO适配模块1626.6.3DeviceNet通讯转换模块1636.7台达DeviceNet系统组态1656.7.1DeviceNetBuilder软件介绍1656.7.2DeviceNet应用案例166实验4DeviceNet系统设计实验169
第7章CANopen现场总线1707.1CANopen概述1707.1.1CANopen的发展1707.1.2CANopen的特性1727.2CANopen通信模型1727.2.1CANopen的物理层1737.2.2CANopen的数据链路层1747.2.3CANopen的应用层1747.3台达CANopen设备简介1937.3.1台达CANopen扫描模块1937.3.2台达CANopen从站通信转换模块1947.4台达CANopen系统组态1957.4.1CANopen模块设置介绍1957.4.2CANopen应用案例196实验5CANopen系统设计实验200
第8章工业以太网2028.1工业以太网简介2028.1.1以太网与工业以太网2028.1.2工业以太网的环境适应问题2038.1.3以太网通信的非确定性问题2058.1.4实时以太网2068.2EPA2078.2.1EPA的主要特点2088.2.2EPA的通信协议模型2088.2.3EPA的网络结构2098.3PROFINET2108.3.1PROFINET技术的起源2108.3.2PROFINET的主要技术特点2108.3.3PROFINET通信2128.3.4PROFINET与其他现场总线系统的集成2148.4HSE2148.4.1HSE的系统结构2148.4.2HSE与现场设备间的通信2158.4.3HSE的柔性功能块2168.4.4HSE的链接设备2178.5Ethernet/IP2178.5.1Ethernet/IP概述2178.5.2Ethernet/IP的报文种类2178.5.3基于Ethernet/IP的工业以太网组网2188.6Modbus TCP2218.6.1Modbus TCP概述2218.6.2Modbus TCP应用数据单元2238.6.3Modbus-RTPS2238.7台达工业以太网设备简介2248.7.1台达工业以太网通信模块2248.7.2台达工业以太网远程I/O模块2258.7.3台达工业以太网交换机2268.8台达工业以太网系统组态2278.8.1DCISoft软件介绍2278.8.2工业以太网应用案例229实验6工业以太网系统设计实验234
附录AASCII码表235附录BCAN总线节点一对一通信参考程序236
参考文献239
㈢ 计算机网络各层分别有哪些设备
第一层:物理层,代表设备:网卡,网线,光纤,atm线缆等。第二层:数据链路层,代表设备:二层交换机,hub。第三层:网络层,代表设备:路由器,三层交换机,防火墙。第四层:传输层,代表协议:tcp,udp。之后的5-7层就是各种协议的表示了。这个主要是开发人员用的多一些,如http,smtp,ftp等等。
计算机:
计算机俗称电脑,是现代一种用于高速计算的电子计算机器,可以进行数值计算,又可以进行逻辑计算,还具有存储记忆功能。是能够按照程序运行,自动、高速处理海量数据的现代化智能电子设备。由硬件系统和软件系统所组成,没有安装任何软件的计算机称为裸机。可分为超级计算机、工业控制计算机、网络计算机、个人计算机、嵌入式计算机五类,较先进的计算机有生物计算机。
㈣ 工业网络技术是什么
工业网络技术是培养掌握计算机与工业网络技术的基础知识和技能,能在生产企业从事工业控制计算机选型、安装、应用开发以及对工业网络操作和维护的高级技术应用性专门人才。
主要内容包括计算机网络体系结构、局域网技术、工业以太网、CAN总线技术、DeviceNet现场总线、DeviceNet节点设计与组网、ControlNet现场总线、工业网络及其应用等。
(4)关于计算机网络及工业控制网络扩展阅读:
培养目标
培养掌握计算机与工业网络技术的基础知识和技能,能在生产企业从事工业控制计算机选型、安装、应用开发以及对工业网络操作和维护的高级技术应用性专门人才。
知识技能
工业网络技术的应用及工业网络的操作、维护与管理。
课程设置
专业核心课程与主要实践环节:通信原理、数字信号处理、自动控制原理、计算机控制技术、计算机安全技术、计算机网络技术、工业网络技术、工业控制机、金工实习、
电子实习、电子技术课程设计、微机原理及接口技术课程设计、计算机网络实习、工业网络系统实习、毕业实习(设计)等,以及各校的主要特色课程和实践环节。
专业领域
可设置的专业方向:工业计算机集中控制技术。
就业面向
工业企业计算机网络的运行、维护与管理,工业网络的技术开发与服务工作。
参考资料来源:网络-工业网络技术专业
㈤ 工业控制网络和计算机网络的区别
原理上一样
工业控制网络,主要应用于工业环境,环境更严格一下。采用的工业计算机和机架
工业控制网络工作时间是24小时,实时性和可靠性要求更高。
工业控制网络会有一些接口去控制工业设备。
计算机网络,在大学的计算机服务中心,环境相对好一些。一般商用电脑就可以。
㈥ 计算机网络和工业控制网络的区别
工业控制网络与个人计算机区别
1.尺寸规格:
商业主板目前主要采用ATX架构,但是工业主板为了适应多种应用环境,采用了多种尺寸规格的主板。包括ATX、Micro-ATX、LPX、POS、PICMG、ETX、CPCI等各种规格。
2.扩展槽的支持:
对于商业级主板,往往只能提供4根到最多5根的PCI插槽,其中受制于PCI 规范,同时只能使用4根,而且基本对于PCI 4的话,驱动能力有相当大的衰减,因此大多数商用主板仅提供3根PCI槽。而工业控制网络生产的工业主板,由于其设计用料的工业性,其对PCI插槽的支持可以轻而易举的实现对17根 PCI的支持,如SK-1015P12, SK-1021P17分别支持12PCI和17个PCI,同时不会造成PCI驱动能力的衰减。同时可以支持对高带宽的PCI-E设备。带有ISA插槽,可以实现对工业ISA低速采集卡,数据卡的良好支持。嵌入GPIO总线,可以实现GPI,GPO功能。
3.使用的元器件:
商业级主板由于追求的产品的时效性,以及本身产品的市场定位,对元器件选择要求上一般只需满足的系统运行要求,和2到3年的使用寿命即可。工业控制网络生产的工业主板选料会选用经过长时间,高要求验证元器件,用以保证产品在恶劣条件下高可靠性要求。比如一些如在服务器,以及高端商业主板才出现的固态电容,封闭电感等,在硕控工业主板中就有大量的使用。
4.使用环境:
工业控制网络主板常在恶劣环境下工作(工作时间长、气候恶劣、潮湿、振动、多尘、辐射、高温等等),而这些环境下商业主板无法胜任,当今商业主板大部分运行在安定的环境下(工作时间短、室内、常温)
5.生命周期:
由于商业主板市场更新换代的速度相当之快,所以一般的商业级主板只有半年到一年的生命周期。而在工业市场,以芯发威达为例,由于Intel 、VIA、SIS都和“SOKON IPC"是一个长期的战略伙伴关系,所以工业控制网络生产的工业主板可以达到一个长达5年的生命周期。
6.产品的可靠性:
由于普通商业级主板的市场定位,其产品一般只会做电子产品需要的CCC认证,长城认证,民用级的电磁兼容认证。工业控制网络主板由于其针对的是工业市场,所以出于可靠度的需求,在每一款主板在上市前都会做CE EMC,FCC,QA realbility,CCC,震动,落下等工业级要求测试认证。
7.管理性:
普通商业主板只提供最简单的远程管理(通过连接网络,使用第3方的软件,如REAL VNC,PC ANYWHARE等实现)。而工业控制网络主板除了可以提供类似的远程连接管理外,还可以实现远程无人值守的自动开关机功能。通过内嵌的IPMB,SMNP-1000模块,可以实现系统实时运行信息的管理、记录、发送功能。
8.客制化:
普通的商业主板一但生产出来就无法再针对市场需求更改,完全无用户化的设计。但在工业领域,许多工业级主板可以灵活的满足一些客户后续的特殊需求。可以实现用户的定制化。更好,更完美配合客户的使用需求环境。
9.存储界面:
普通的商业主板只提供常见的存储界面 IDE ,SATA。工业控制网络主板可以提供IDE,SATA,SCSI,CF卡、DOC等多存储界面要求。
10.保护功能:
此项功能,在普通的商业主板是没有提供的。工业级主板通过特殊设计,遇到死机等异常情况,可以实现看门狗自动重新启动功能,防浪涌冲击的功能。全力的保证系统在恶劣环境的高稳定性要求。
11.工作温度:
普通的商用主板基本只能使用在5度~38度之间的外环境之中,是相当之娇气的。工业级主板可以在0度~60度之间稳定的工作,甚至某些硕控工控主板采用宽温设计,温度范围可达-20度~70度。
12. 市场规模
工业控制网络主板以客制化产品为主、产量以及市场规模比较小、转换成其他品牌的主板成本较高;商业主板以标准产品为主、产量以及市场规模较大、可轻易转换成其他品牌的主板。
㈦ 简述计算机网络的主要功能
计算机网络的功能主要表现在硬件资源共享、软件资源共享和用户间信息交换三个方面。
1、硬件资源共享。
可以在全网范围内提供对处理资源、存储资源、输入输出资源等昂贵设备的共享,使用户节省投资,也便于集中管理和均衡分担负荷。
2、软件资源共享。
允许互联网上的用户远程访问各类大弄数据库,可以得到网络文件传送服务、远地进程管理服务和远程文件访问服务,从而避免软件研制上的重复劳动以及数据资源的重复存贮,也便于集中管理。
3、用户间信息交换。
计算机网络为分布在各地的用户提供了强有力的通信手段。用户可以通过计算机网络传送电子邮件、发布新闻消息和进行电子商务活动。
(7)关于计算机网络及工业控制网络扩展阅读
在网络发展的早期或在其它各行各业中,因其行业特点所采用的局域网也不一定都是以太网,在局域网中常见的有:以太网(Ethernet)、令牌网(Token Ring)、FDDI网、异步传输模式网(ATM)等几类:
1、以太网
以太网最早是由Xerox(施乐)公司创建的,在1980年由DEC、Intel和Xerox三家公司联合开发为一个标准。以太网是应用最为广泛的局域网,包括标准以太网(10Mbps)、快速以太网(100Mbps)、千兆以太网(1000 Mbps)和10G以太网,它们都符合IEEE802.3系列标准规范。
2、令牌环网
令牌环网是IBM公司于20世纪70年代发展的,这种网络比较少见。在老式的令牌环网中,数据传输速度为4Mbps或16Mbps,新型的快速令牌环网速度可达100Mbps。令牌环网的传输方法在物理上采用了星形拓扑结构,但逻辑上仍是环形拓扑结构。
结点间采用多站访问部件(Multistation Access Unit,MAU)连接在一起。MAU是一种专业化集线器,它是用来围绕工作站计算机的环路进行传输。由于数据包看起来像在环中传输,所以在工作站和MAU中没有终结器。
3、FDDI网
FDDI的英文全称为“Fiber Distributed Data Interface”,中文名为“光纤分布式数据接口”,它是于80年代中期发展起来一项局域网技术,它提供的高速数据通信能力要高于当时的以太网(10Mbps)和令牌网(4或16Mbps)的能力。
FDDI标准由ANSI X3T9.5标准委员会制订,为繁忙网络上的高容量输入输出提供了一种访问方法。FDDI技术同IBM的Tokenring技术相似,并具有LAN和Tokenring所缺乏的管理、控制和可靠性措施,FDDI支持长达2KM的多模光纤。
4、ATM网
ATM的英文全称为“asynchronous transfer mode”,中文名为“异步传输模式”,它的开发始于70年代后期。ATM是一种较新型的单元交换技术,同以太网、令牌环网、FDDI网络等使用可变长度包技术不同,ATM使用53字节固定长度的单元进行交换。
它是一种交换技术,它没有共享介质或包传递带来的延时,非常适合音频和视频数据的传输。
5、无线局域网(Wireless Local Area Network;WLAN)
无线局域网是目前最新,也是最为热门的一种局域网,特别是自Intel推出首款自带无线网络模块的迅驰笔记本处理器以来。无线局域网与传统的局域网主要不同之处就是传输介质不同,传统局域网都是通过有形的传输介质进行连接的,如同轴电缆、双绞线和光纤等。
而无线局域网则是采用空气作为传输介质的。正因为它摆脱了有形传输介质的束缚,所以这种局域网的最大特点就是自由,只要在网络的覆盖范围内,可以在任何一个地方与服务器及其它工作站连接,而不需要重新铺设电缆。
这一特点非常适合那些移动办公一簇,有时在机场、宾馆、酒店等(通常把这些地方称为“热点”),只要无线网络能够覆盖到,它都可以随时随地连接上无线网络,甚至Internet。
㈧ 什么是计算机网络它通常由哪些部分构成
计算机网络,是指将地理位置不同的具有独立功能的多台计算机及其外部设备,通过通信线路连接起来,在网络操作系统,网络管理软件及网络通信协议的管理和协调下,实现资源共享和信息传递的计算机系统。
经济和电信业的快速发展使得我国计算机网络设备市场极为活跃,思科、Juniper、阿尔卡特朗讯、3COM等国际知名品牌早已为国人所熟知,华为、中兴等国产品牌也进入高端市场,并在国际市场上取得重大发展。国内外厂商对中国计算机网络设备制造行业的一致看好,一方面促进了国内网络设备及电信行业的快速发展,另一方面也使得市场竞争日趋激烈,中国已经成为全球计算机网络设备制造行业竞争最为激烈的国家之一。但近年来中国电信投资持续快速增长,计算机网络设备市场规模持续扩大,计算机网络设备制造企业在激烈的竞争中获得了共同的发展。