1. 简述计算机网络的分类
计算机网络可以按覆盖的地理范围,网络的拓扑结构和传输技术分类。
一、按照覆盖的地理范围分类:
可以分为局域网、城域网和广域网三类。
1、局域网(LAN)。局域网是一种在小区域内使用的,由多台计算机组成的网络,覆盖范围通常局限在10 千米范围之内,属于一个单位或部门组建的小范围网。
2、城域网(MAN)。城域网是作用范围在广域网与局域网之间的网络,其网络覆盖范围通常可以延伸到整个城市,借助通信光纤将多个局域网联通公用城市网络形成大型网络,使得不仅局域网内的资源可以共享,局域网之间的资源也可以共享。
3、广域网(WAN) 。广城网是一种远程网,涉及长距离的通信,覆盖范围可以是个国家或多个国家,甚至整个世界。由于广域网地理上的距离可以超过几千千米,所以信息衰减非常严重,这种网络一般要租用专线,通过接口信息处理协议和线路连接起来,构成网状结构,解决寻径问题。
二、按网络的拓扑结构分类:
可以分为总线型网络、星型网络、环型网络、树型网络。
1、星型网络(常用)
优点:容易维护管理,配置灵活,故障检测方便。
缺点:采用广播式传播,各节点都能收到。
2、总线型(共享带宽)
优点:安装比较方便,成本低,某一站点发生故障,不会影响整个网络。
缺点:传输介质发生故障,会使整个网络瘫痪。
3、环型(不常用)
优点:安装方便。
缺点:容量有限,网络建好后很难增加新站点。
4、树型(常用)
优点:易于扩展,故障隔离方便。
缺点:跟星型类似,根节点发生故障,容易引起全网不能工作。
三、按传输技术分类:
1、广播式连接
广播网络只有一个通信信道,网络上所有的机器都共享该信道,在机器之间传递包。任何一台机器发送的包都可以被其他的机器接收。在包中有一个地址域,指明了该包的目标接受者,一台机器收到了一个包以后,它检查地址域。如果该包正是发送给它的,那么就处理该包;如果不是就会忽略。
广播系统往往也允许将一个包发送给所有的目标主机,那么网络中每一台机器都将接收该包,并进行处理,这种操作模式成为广播。有些广播系统也支持传输给一组机器,即所有机器的子集,这种模式成为多播。
2、点到点连接
点到点网络则是由许多连接构成的,每一个连接对应一台机器。在这种网络中,为了将一个分组从源端传送到目的地,该分组可能要经过一台或者多台中间机器。
通常有可能存在多条不同长度的路径,所以找到一条好的路径对于点对点网络非常重要的。只有一个发送方和一个接收方的点到点的传输模式有时称为单播。
一般原则,越小的、地理位置局部化的网络倾向于使用广播传输模式,而大的网络通常使用点到点传输模式。
2. 计算机网络-网络层-IPv6数据报格式
IPv6:解决IP地址耗尽的根本措施就是采用具有更大地址空间的新版本的IP,即IPv6。
IPv6仍支持无连接的传送,但将协议数据单元PDU称为分组,而不是Pv4的数据报。IPv6所引进的主要变化如下:
(1)更大的地址空间,Pv6把地址从Pv4的32位增大到4倍,即增大到128位,使地址空间增大了2^96倍,这样大的地址空间在可预见的将来是不会用完的。
(2)扩展的地址层次结构。IPv6由于地址空间很大,因此可以划分为更多的层次。
(3)灵活的首部格式。IPv6数据报的首部和Pv4的并不兼容。IPv6定义了许多可选的扩展首部,不仅可提供比Pv4更多的功能,而且还可提高路由器的处理效率,这是因为路由器对扩展首部不进行处理(除逐跳扩展首部外)。
(4)改进的选顶。Pv6允许数据报包含有选项的控制信县,因而可以包含一些新的选项。但IPv6的首部长度是固定的,其选项放在有效载荷中。IPv4所规定的选项放在首部的可变部分。
(5)允许协议继续扩充。这一点很重要,因为技术总是在不断地发展(如网络硬件的更新)而新的应用也还会出现。但我们知道,IP4的功能是固定不变的。
(6)支持即插即用(即自动配置),因此IPv6不需要使用DHCP。
(7)支持资源的预分配。Pv6支持实时视像等要求保证一定的带宽和时延的应用。
(8)IPv6首部改为8字节对齐(即首部长度必须是8字节的整数倍)。原来的IPv4首部是4字节对齐。
IPv6数据报由两大部分组成,即基本首部(base header)和后而的有效载荷(payload) ,有效载荷也称为净负荷。有效我荷允许有零个或多个扩展首部(extension header),再后面是数据部分(图4-46)。
IPv6各个字段:
(1)版本(version)占4位。它指明了协议的版本,对IPv6该字段是6。
(2)通信量类(traffic class)占8位。这是为了区分不同的IPv6数据报的类别或优先级。目前正在进行不同的通信量类性能的实验。
(3)流标号(flow labe)占20位。IPv6的一个新的机制是支持资源预分配,并且允许路由器把每一个数据报与一个给定的资源分配相联系。IPv6提出流(flow)的抽象概念。所谓“流”就是互联网络上从特定源点到特定终点(单播或多播)的一系列数据报(如实时音频或视频传输),而在这个“流”所经过的路径上的路由器都保证指明的服务质量。所有属于同一个流的数据报都具有同样的流标号小因此,流标号对实时音烦/视频数据的传送特别有用。对于传统的电子郎件或非实时数据,标号则没有用处,把它置为0即可。
(4)有效载荷长度(payload length)占16位。它指明IPv6数据报除基本首部以外的字节数(所有扩展首部都算在有效载荷之内)。这个字段的最大值是64KB(65535字节).
(5)下一个首部(next header)占8位。它相当于IPv4的协议字段或可选字段。
① 当Pv6数据报没有扩展首部时,下一个首部字段的作用和Pv4的协议字段一样,它的值指出了基本首部后面的数据应交付P层上面的哪一个高层协议(例如:6或17分别表示应交付运输层TCP或UDP)。
② 当出现扩展首部时, 下一个首部字段的值就标识后面第一个扩展首部的类型 。
(6)跳数限制(hop limit)占8位。用来防止数据报在网络中无限期地存在。源点在每
个数据报发出时即设定某个跳数限制(最大为255跳)。每个路由器在转发数据报时,要先
把跳数限制字段中的值减1。当跳数限制的值为零时,就要把这个数据报丢弃。
(7)源地址占128位。是数据报的发送端的IP地址。
(8)目的地址占128位。是数据报的接收端的IP地址。
扩展首部
IP4的数据报如果在其首部中使用了选项,那么沿着数据报传送的路径上的每一个路由器都必须对这些选项一一进行检查,这就降低了路由器处理数据报的速度。然而实际上很多的选项在途中的路由器上是不需要检查的(因为不需要使用这些选项的信息)。IPv6把原来IPv4首部中选项的功能都放在扩展首部中,并把扩展首部留给路径两端的源点和终点的主机来处理,而数据报途中经过的路由器都不处理这些扩展首部(只有一个首部例外,即逐跳选项扩展首部),这样就大大提高了路由器的处理效率。
在RFC2460中定义了以下六种扩展首部:(1)逐跳选项:(2)路由选择:(3)分片:(4)鉴别:(5)封装安全有效载荷:(6)目的站选项。
每一个扩展首部都由若干个字段组成,它们的长度也各不同。但所有扩展首部的第一个字段都是8位的“下一个首部”字段,此字段的值指出了在该扩展首部后面的字段是什么。当使用多个扩展首部时,应按以上的先后顺序出现。高层首部总是放在最后面。
3. 啥是分片技术
写在文前:视频版本和文字版本略有不同,想要看我深情并茂演绎,请看视频版本 (喵懂区块链22期|分片(Sharding):以太坊太慢,“盘”他!),思维逻辑怪,请看文案加长版。
最近以太坊由于君士坦丁堡升级(Constantinople)而出现了压倒性的积极走势,而以太坊的升级之路则犹如升级打怪一般,落入了rabbithole,谁也不知道这洞有多深。既然是“路漫漫其修远兮”,则把脚下的每一步走好走准,则成了至关重要的点。攻破这一难点之后,以太坊的下一技术难点---Sharding分片,则又被摆到了台面上。本期《喵懂区块链》会带大家走进让以太坊快起来的法宝--- Sharding分片。
什么是sharding分片?
分片技术其实并不是什么新概念,起初是针对大型中心数据库提出的优化方案,具体来说就是将大型数据库中的数据划按照某种规则分成很多数据分片(shard),再将这些数据分片分别存放在不同的服务器中,以减小每个服务器的数据访问压力,从而提高整个数据库系统的性能。
我们举一个通俗的小例子:
比如我们平时经常使用的美团,滴滴打车等软件,就可以按照“城市”来进行分片,由于不同城市的数据不需要互通,就可以将不同城市的数据存放在不同数据库中,这样既可以把数据库服务器部署到离对应城市最近的节点上,还可以提高访问速度,何乐而不为呢?!
从上面的例子中,我大家应该对分片的概念有了初步了解,那么对应到区块链场景中来说,分片又是怎么样的呢?
以以太坊分片为例,在原有的单链系统中,公链整体的性能取决于单个节点的性能,进行分片之后,每个节点只需要承当全网部分工作,各个分片并行工作,按照Vitalik的话来说,each shard is like a separate galaxy每个分片都像是独立的小宇宙,这样效率自然噌噌噌提升!原本以太坊链全网TPS约为20,现在若增加到100个分片,那么全网TPS可以提升至2000,同理,全网容量也将提升至原来的100倍。
“每个节点只需要承担全网部分工作”,这就会引出几大问题,1.怎么确定这个节点是负责哪个分片的工作?2.哪些交易应该归类到哪些分片当中去?3.每个节点是否只需要储存自己所在分片的交易信息(账本)?
根据以上问题的实现与否,我们可以将分片依次分为三种类型:网络分片,交易分片,状态分片。
网络分片:如何将全网节点划分到不同分片当中去。
交易分片:如何将全网交易划分到不同分片当中去。
状态分片:如何让各个节点只维护各自分片内的账本,但又不影响整个系统的安全性。
主链和分片链的区别和联系?
分片的类型我们已经明白了,那么主链(Main chain)和分片链(shard chain)有什么不同呢?
向左转|向右转
以太坊分片的实现是一个漫长的过程,就连Vitalik自己也说将会分阶段来逐步实现,分片到底能不能从理论走向实践,我们还是小小期待一下吧。
4. 计算机网络中IP数据报的片偏移计算
答案是A,偏移量的意思就是这个数据包是从源数据包哪个地方开始的,因为IP报文有40个字节的IP报文头,所以1300个字节的数据会被分成以下三个包: A数据包:包含40个字节的IP报文头,0-460字节的数据,偏移量为0; B数据包:包含40个字节的IP报文头,460-920字节的数据,偏移量为460; C数据包:包含40个字节的IP报文头,920-1300字节的数据,偏移量为920
5. 计算机网络的分类有哪些
依据网络的规模和所跨的地域,可以将计算机网络划分为局域网、城域网和广域网。
局域网,一般是指网络的规模相对较小,通信线路不长,覆盖面的直径一般为几百米,至多几千米。整个网络通常安装在一个建筑物内,或一个单位的大院里。城域网是指一个城市范围的计算机网络,而广域网则是指更大范围的网络,可以大到一个国家,甚至整个世界。
虽然局域网、城域网和广域网这些词是着眼于所跨地域的,但是人们更多的是从网络组建技术上去区分它们。一般认为,用局域网技术组建的网络是局域网,而用广域网技术组建的网络是广域网。自然,城域网是用城域网技术组建的,但单独提出城域网技术的比较少见。这些技术的差别主要是在于所用通信线路及其通信协议上。
在局域网出现之前的计算机网络中,计算机之间的连接主要使用电信部门提供的电话线路。电话线路本来是用来传输讲话声音这种模拟信号的,为了能够传输数字,必须在线路两端各加一台专门的设备——调制解调器。由于线路和当时技术条件的限制,调制解调器的传输速率比较低,很长时间维持在每秒600比特到9600比特的速率上,电话线上近几年才达到每秒33?6K比特(1k=1000)和每秒56K比特。概括地讲,广域网的特点是传输距离长、传输速率低、技术复杂、计算机设备规模大、建网成本高等。
局域网的产生和普及,得益于个人计算机的出现和它的迅速发展。当时,PC机的能力很小,开始时尚没用硬盘,即使有硬盘,容量也很小,如几M、10M、20M个字节;一般也不配打印机;只使用简单的操作系统,如DOS。如果能有一种简单的方法将几台PC机连在一起,使大家能够共享昂贵的磁盘和打印机,那再好不过了。局域网较好地满足了这个需要。每台PC机配一块网卡,使用一根电缆和一些收发器就能把几个办公室里的PC机联成一个网络了,再装上简单的网络软件就可以使用了。由于使用专门的缆线,传输距离又短,因而能获得较高的速率,如以太网早先的速率是每秒10M比特,后来达到每秒100M比特,现在已有每秒10亿比特了。按照国际标准,局域网有以太网、令牌环网、令牌总线网等几种。由于以太网技术简单、安装方便,而且技术革新快,现在以太网已经成为主流,几乎占领了所有的市场。局域网的特点正好与广域网相反:传输距离短、传输速率高、技术简单、计算机设备规模比较小、建网成本低等。
近几年,随着计算机技术、通信技术和计算机网络技术的迅速发展,微机、局域网和广域网的性能都大大提高。特别是使用光缆后,传输速率可以达到每秒几十亿至几万亿比特了。今后的计算机网络将是局域网和广域网的互联,两者的界限将会越来越模糊。网络通讯协议TCP/IP是Transmission Control Protocol/Internet Protocol的简写,中文译名为传输控制协议/网际协议,又叫网络通讯协议,这个协议是Internet最基本的协议、Internet国际互联网络的基础。简单地说,就是由网络层的IP协议和传输层的TCP协议组成的。
IP协议的英文名直译就是网际协议。从这个名称我们就可以知道IP协议的重要性。在现实生活中,我们进行货物运输时都是把货物包装成一个个的纸箱或者是集装箱之后才进行运输,在网络世界中各种信息也是通过类似的方式进行传输的。IP协议规定了数据传输时的基本单元和格式。如果比作货物运输,IP协议规定了货物打包时的包装箱尺寸和包装的程序。除了这些以外,IP协议还定义了数据包的递交办法和路由选择。同样用货物运输作比喻,IP协议规定了货物的运输方法和运输路线。
在IP协议中,它定义的传输是单向的,也就是说发出去的货物对方有没有收到我们是不知道的。这怎么办呢?由TCP协议来解决。TCP协议提供了可靠的面向对象的数据流传输服务的规则和约定。简单地说,在TCP模式中,对方发一个数据包给你,你要发一个确认数据包给对方。通过这种确认来提供可靠性。通俗而言,TCP负责发现传输的问题,一有问题就发出信号,要求重新传输,直到所有数据安全正确地传输到目的地。而IP是给因特网的每一台电脑规定一个地址。
TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互联参考模型,是一种通信协议的七层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这七层是:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为:
应用层:应用程序间沟通的层,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。
传输层:在此层中,它提供了节点间的数据传送,应用程序之间的通信服务,主要功能是数据格式化、数据确认和丢失重传等。如传输控制协议(TCP)、用户数据包协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。
互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。
网络接口层(主机-网络层):接收IP数据报并进行传输,从网络上接收物理帧,抽取IP数据报转交给下一层,对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。
6. 什么是IP分片技术
在计算机网络中IP分片的情况发生在IP层,不仅源端主机会进行分片,中间的路由器也有可能分片,因为不同的网络的MTU是不一样的,如果传输路径上的某个网络的MTU比源端网络的MTU要小,路由器就可能对IP数据报再次进行分片。而分片数据的重组只会发生在目的端的IP层。
在网络中IP首部有4个字节是用于分片的,如下图所示。前16位是IP数据报的标识,同一个数据报的各个分片的标识是一样的,目的端会根据这个标识来判断IP分片是否属于同一个IP数据报。中间3位是标志位,其中有1位用来表示是否有更多的分片,如果是最后一个分片,该标志位为0,否则为1。后面13位表示分片在原始数据的偏移,这里的原始数据是IP层收到的传输的TCP或UDP数据,不包含IP首部。
避免IP分片在网络编程中,我们要避免出现IP分片,那么为什么要避免呢?原因是IP层是没有超时重传机制的,如果IP层对一个数据包进行了分片,只要有一个分片丢失了,只能依赖于传输层进行重传,结果是所有的分片都要重传一遍,这个代价有点大。由此可见,IP分片会大大降低传输层传送数据的成功率,所以我们要避免IP分片。对于UDP包,我们需要在应用层去限制每个包的大小,一般不要超过1472字节,即以太网MTU(1500)—UDP首部(8)—IP首部(20)。对于TCP数据,应用层就不需要考虑这个问题了,因为传输层已经帮我们做了。在建立连接的三次握手的过程中,连接双方会相互通告MSS(Maximum Segment Size,最大报文段长度),MSS一般是MTU—IP首部(20)—TCP首部(20),每次发送的TCP数据都不会超过双方MSS的最小值,所以就保证了IP数据报不会超过MTU,避免了IP分片。
7. 一个网段内的计算机是怎么划分的是分片的吗还是别的
同一网段的计算机如果想划分成多个局域网的话,可以使用子网掩码划分,同一局域网内还有两种分级----工作组 和 域
8. 为什么要采用分层网络计划的方法
计算机网络是一个极其复杂的工程,之所以使用分层,最主要的思想在于把整个复杂的问题分成若干个部分进行处理,主要优点在于:
①各层之间相互独立,只需要完成本层要求的任务:某一层通过和下层的接口实现信息交流,下层也能提供相应服务给上层,并且计算机网络的复杂程度还表现在要使得不同的网络进行连接,分层的话,其他就不要考虑另外一层是怎么进行网络连接和协商通信的(比如应用层可以搭载udp或tcp);
②使得接入网络设备容易制造,且成本大幅度降低:比如交换机(二层)就根本不需要考虑网络层和以上的数据,所以在硬件(逻辑控制电路)的设计难度就会大幅度降低;
计算机网络分层设计方法主要原则:
①层与层之间必须相对对立,不允许出现两层对同一控制(差错控制,流量控制,分片和组装,复用分用,连接释放控制)的重复;
②分层必须把握好层的数量和层与层的关系。分层时必须使每一层的功能非常明确,层数太少会使得每一层任务太过复杂,在设计协议的时候,设计工程会遇到很多困难,但层数太多会使得网络的传输效率下降。
9. 计算机网络(四)网络层
主要任务是把分组从源端传到目的端,为分组交换网上的不同主机提供通信服务。网络层传输单位是数据报。
链路层数据帧可封装数据的上限称为最大传送单元MTU
标识:同一数据报的分片使用同一标识。
中间位DF(Don’t Fragment):
最低位MF(More Fragment):
片偏移:指出较长分组分片后,某片在原分组中的相对位置。以8B为单位。除了最后一个分片,每个分片长度一定是8B的整数倍。
IP地址:全世界唯一的32位/4字节标识符,标识路由器主机的接口。IP地址::={<网络号>,<主机号>}
有一些IP地址是不能用的,有其特殊的作用,如:
网络地址转换NAT(Network Address Translation):在专用网连接到因特网的路由器上安装NAT软件,安装了NAT软件的路由器叫NAT路由器,它至少有一个有效的外部全球IP地址。
此外,为了网络安全,划分出了部分IP地址和私有IP地址,私有IP地址网段如下:
路由器对目的地址是私有IP地址的数据报一律不进行转发。
分类的IP地址的弱点:
某单位划分子网后,对外仍表现为一个网络,即本单位外的网络看不见本单位内子网的划分。
路由器转发分组的算法:
无分类域间路由选择CIDR:
CIDR记法:IP地址后加上“/”,然后写上网络前缀(可以任意长度)的位数。e.g. 128.14.32.0/20
CIDR把网络前缀都相同的连续的IP地址组成一个“CIDR地址块”。
使用CIDR时,查找路由表可能得到几个匹配结果(跟网络掩码按位相与),应选择具有最长网络前缀的路由。前缀越长,地址块越小,路由越具体。
将多个子网聚合成一个较大的子网,叫做构成超网,或路由聚合。方法:将网络前缀缩短(所有网络地址取交集)。
由于在实际网络的链路上传送数据帧时,最终必须使用MAC地址。
ARP协议:完成主机或路由器IP地址到MAC地址的映射。
ARP协议使用过程:
ARP协议4种典型情况:
动态主机配置协议DHCP是 应用层 协议,使用 客户/服务器 方式,客户端和服务端通过 广播 方式进行交互,基于 UDP 。
DHCP提供即插即用联网的机制,主机可以从服务器动态获取IP地址、子网掩码、默认网关、DNS服务器名称与IP地址,允许地址重用,支持移动用户加入网络,支持在用地址续租。
DHCP工作流程如下:
ICMP协议支持主机或路由器:包括差错(或异常)报告和网络探询,分部发送特定ICMP报文
ICMP差错报告报文(5种):
不应发送ICMP差错报文的情况:
ICMP询问报文:
ICMP的应用:
32位IPv4地址空间已分配殆尽,这时,可以采用更大地址空间的新版本的IPv6,从根本上解决地址耗尽问题
IPv6数据报格式如下图
IPv6的主要特点如下:
IPv6地址表示形式:
零压缩:一连串连续的0可以被一对冒号取代。双冒号表示法在一个地址中仅可出现一次。
IPv6基本地址类型:
IPv6向IPv4过渡的策略:
R1的路由表/转发表如下:
最佳路由:“最佳”只能是相对于某一种特定要求下得出的较为合理的选择而已。
路由算法可分为
由于因特网规模很大且许多单位不想让外界知道自己的路由选择协议,但还想连入因特网,可以采用自治系统来解决
自治系统AS:在单一的技术管理下的一组路由器,而这些路由器使用一种AS内部的路由选择协议和共同的度量以确定分组在该AS内的路由,同时还使用一种AS之间的路由协议以确定在AS之间的路由。
一个AS内的所有网络都属于一个行政单位来管辖,一个自治系统的所有路由器在本自治系统内都必须连通。
路由选择协议
RIP是一种分布式的基于距离向量的路由选择协议,是因特网的协议标准,最大优点是简单。
RIP协议要求网络中每一个路由器都维护从它自己到其他每一个目的网络的唯一最佳距离 [1] 记录(即一组距离)。 RIP协议只适用于小互联网。
RIP是应用层协议,使用 UDP 传送数据。一个RIP报文最多可包括25个路由,如超过,必须再用一个RIP报文传送。
RIP协议的交换
路由器刚开始工作时,只知道直接连接的网络的距离(距离为1),接着每一个路由器也只和数目非常有限的相邻路由器交换并更新路由信息。
经过若干次更新后,所有路由器最终都会知道到达本自治系统任何一个网络的最短距离和下一跳路由器的地址,即“收敛”。
RIP的特点:当网络出现故障时,要经过比较长的时间(例如数分钟) 才能将此信息传送到所有的路由器,“慢收敛”。
对地址为X的相邻路由器发来的RIP报文,修改此报文中的所有项目:把“下一跳”字段中的地址改为X,并把所有的“距离”字段+1。
开放最短路径优先OSPF协议:“开放”标明OSPF协议不是受某一家厂商控制,而是公开发表的;“最短路径优先”是因为使用了Dijkstra提出的最短路径算法SPF。OSPF最主要的特征就是使用分布式的链路状态协议。 OSPF直接用IP数据报传送。
OSPF的特点:
为了使OSPF 能够用于规模很大的网络,OSPF 将一个自治系统再划分为若干个更小的范围,叫做区域。每一个区域都有一个32 位的区域标识符(用点分十进制表示)。区域也不能太大,在一个区域内的路由器最好不超过200 个。
BGP 所交换的网络可达性的信息就是要到达某个网络所要经过的一系列AS。当BGP 发言人互相交换了网络可达性的信息后,各BGP 发言人就根据所采用的策略从收到的路由信息中找出到达各AS 的较好路由。
一个BGP 发言人与其他自治系统中的BGP 发言人要交换路由信息,就要先建立TCP 连接,即通过TCP传送,然后在此连接上交换BGP 报文以建立BGP 会话(session),利用BGP 会话交换路由信息。 BGP是应用层协议,借助TCP传送。
BGP协议特点:
BGP-4的四种报文
组播提高了数据传送效率。减少了主干网出现拥塞的可能性。组播组中的主机可以是在同一个物理网络,也可以来自不同的物理网络(如果有组播路由器的支持)。
IP组播地址让源设备能够将分组发送给一组设备。属于多播组的设备将被分配一个组播组IP地址(一群共同需求主机的相同标识)。
组播地址范围为224.0.0.0~239.255.255.255(D类地址),一个D类地址表示一个组播组。只能用作分组的目标地址。源地址总是为单播地址。
同单播地址一样,组播IP地址也需要相应的组播MAC地址在本地网络中实际传送帧。组播MAC地址以十六进制值01-00-5E打头,余下的6个十六进制位是根据IP组播组地址的最后23位转换得到的。
TCP/IP 协议使用的以太网多播地址的范围是:从01-00-5E-00-00-00到01-00-5E-7F-FF-FF .
收到多播数据报的主机,还要在IP 层利用软件进行过滤,把不是本主机要接收的数据报丢弃。
ICMP和IGMP都使用IP数据报传递报文。组播路由器知道的成员关系只是所连接的局域网中有无组播组的成员。
IGMP工作的两个阶段:
只要有一个主机对某个组响应,那么组播路由器就认为这个组是活跃的;如果经过几次探询后没有一个主机响应,组播路由器就认为本网络上的没有此组播组的主机,因此就不再把这组的成员关系发给其他的组播路由器。
组播路由协议目的是找出以源主机为根节点的组播转发树。构造树可以避免在路由器之间兜圈子。对不同的多播组对应于不同的多播转发树;同一个多播组,对不同的源点也会有不同的多播转发树。
组播路由选择协议常使用的三种算法:
移动IP技术是移动结点(计算机/服务器等)以 固定的网络IP地址 ,实现跨越不同网段的 漫游 功能,并保证了基于网络IP的网络权限在漫游过程中不发生任何改变。
路由器是一种具有多个输入端口和多个输出端口的专用计算机,其任务是转发分组。
若路由器处理分组的速率赶不上分组进入队列的速率,则队列的存储空间最终必定减少到零,这就使后面再进入队列的分组由于没有存储空间而只能被丢弃。 路由器中的输入或输出队列产生溢出是造成分组丢失的重要原因。
路由器(网络层)可以互联两个不同网络层协议的网段。
网桥(链路层)可以互联两个物理层和链路层不同的网段。
集线器(物理层)不能互联两个物理层不同的网段。
路由表根据路由选择算法得出的,主要用途是路由选择,总用软件来实现。
转发表由路由表得来,可以用软件实现,也可以用特殊的硬件来实现。转发表必须包含完成转发功能所必需的信息,在转发表的每一行必须包含从要到达的目的网络到输出端口和某些MAC地址信息的映射。
10. 计算机网络中分片与分组一样吗
不一样,很奇怪网络没这种问题。分片是在分组的基础上把分组分成若干片段。