当前位置:首页 » 网络连接 » 猎维科技官网全连接神经网络
扩展阅读
网络云盘服务器异常 2024-05-07 00:01:40
南平无线网络建设 2024-05-06 23:49:51

猎维科技官网全连接神经网络

发布时间: 2022-09-24 23:08:18

什么是全连接神经网络,怎么理解“全连接”

1、全连接神经网络解析:对n-1层和n层而言,n-1层的任意一个节点,都和第n层所有节点有连接。即第n层的每个节点在进行计算的时候,激活函数的输入是n-1层所有节点的加权。

2、全连接的神经网络示意图:


3、“全连接”是一种不错的模式,但是网络很大的时候,训练速度回很慢。部分连接就是认为的切断某两个节点直接的连接,这样训练时计算量大大减小。

❷ 卷积神经网络为什么最后接一个全连接层

在常见的卷积神经网络的最后往往会出现一两层全连接层,全连接一般会把卷积输出的二维特征图(feature map)转化成(N*1)一维的一个向量
全连接的目的是什么呢?因为传统的端到到的卷积神经网络的输出都是分类(一般都是一个概率值),也就是几个类别的概率甚至就是一个数--类别号,那么全连接层就是高度提纯的特征了,方便交给最后的分类器或者回归。

但是全连接的参数实在是太多了,你想这张图里就有20*12*12*100个参数,前面随便一层卷积,假设卷积核是7*7的,厚度是64,那也才7*7*64,所以现在的趋势是尽量避免全连接,目前主流的一个方法是全局平均值。也就是最后那一层的feature map(最后一层卷积的输出结果),直接求平均值。有多少种分类就训练多少层,这十个数字就是对应的概率或者叫置信度。

❸ 线性层和全连接层的区别

线性层和全连接层没有区别。线性层即全连接层。

全连接层,是每一个结点都与上一层的所有结点相连,用来把前边提取到的特征综合起来。由于其全相连的特性,一般全连接层的参数也是最多的。

例如在VGG16中,第一个全连接层FC1有4096个节点,上一层POOL2是7*7*512 = 25088个节点,则该传输需要4096*25088个权值,需要耗很大的内存。

卷积神经网络的全连接层

在 CNN 结构中,经多个卷积层和池化层后,连接着1个或1个以上的全连接层。与 MLP 类似,全连接层中的每个神经元与其前一层的所有神经元进行全连接。全连接层可以整合卷积层或者池化层中具有类别区分性的局部信息。为了提升 CNN 网络性能,全连接层每个神经元的激励函数一般采用 ReLU 函数。

最后一层全连接层的输出值被传递给一个输出,可以采用 softmax 逻辑回归(softmax regression)进行分类,该层也可称为 softmax 层(softmax layer)。对于一个具体的分类任务,选择一个合适的损失函数是十分重要的,CNN 有几种常用的损失函数,各自都有不同的特点。通常,CNN 的全连接层与 MLP 结构一样,CNN 的训练算法也多采用BP算法。



❹ 全连接神经网络参数个数怎么计算

对n-1层和n层而言
n-1层的任意一个节点,都和第n层所有节点有连接。即第n层的每个节点在进行计算的时候,激活函数的输入是n-1层所有节点的加权。

全连接是一种不错的模式,但是网络很大的时候,训练速度回很慢。部分连接就是认为的切断某两个节点直接的连接,这样训练时计算量大大减小

❺ 什么是全连接神经网络怎么理解“全连接”

1、全连接神经网络解析:对n-1层和n层而言,n-1层的任意一个节点,都和第n层所有节点有连接。即第n层的每个节点在进行计算的时候,激活函数的输入是n-1层所有节点的加权。

2、全连接的神经网络示意图:


3、“全连接”是一种不错的模式,但是网络很大的时候,训练速度回很慢。部分连接就是认为的切断某两个节点直接的连接,这样训练时计算量大大减小。

❻ 为什么全连接神经网络在图像识别中不如卷积神经网络

输入数据是n*n的像素矩阵,再使用全连接神经网络,那么参数的个数会是指数级的增长,需要训练的数据太多。
而CNN的话,可以通过共享同一个参数,来提取特定方向上的特征,所以训练量将比全连接神经网络小了很多。

❼ 34-卷积神经网络(Conv)

深度学习网络和普通神经网络的区别

全连接神经网络的缺点

卷积神经网络的错误率

卷积神经网络的发展历程

卷积神经网络的结构

结构特点:
神经网络(neural networks)的基本组成包括输入层、隐藏层、输出层。而卷积神经网络的特点在于隐藏层分为卷积层和池化层(pooling layer,又叫下采样层)。

卷积过程

纠正:卷积层的过滤器,就是一个矩阵,里面的元素是对应扫描时每个像素点的权重

即:每个过滤器会产生一张feature map

0填充的两种方式
卷积核在提取特征映射时的动作称之为padding(零填充),由于移动步长不一定能整出整张图的像素宽度。其中有两种方式,SAME和VALID

彩色图片的卷积过程

由于彩色图片有3个通道,即3张表,所以filter需要分3次去分别观察,每次观察的结果直接相加作为最后的结果

过滤器的个数

有几个过滤器,就会生成几张表。eg:
对于[28, 28, 1]的图片,如果有32个过滤器,就会卷积的结果就为[28, 28, 32],相当于图片被“拉长”了

观察结果大小的计算

面试可能考

注意:如果计算结果出现小数,需要结合情况具体考虑,而不是说直接四舍五入

卷积的api

在卷积神经网络中,主要使用Relu函数作为激活函数

即在这里使用relu函数去掉了像素中小于0的值

神经网络中为什么要使用激活函数

为什么使用relu而不再使用sigmoid函数?

api

卷积就是进行特征的提取,观察更加仔细,然而,观察仔细就意味着数据多,运算量增加,这就需要使用池化层以减少计算量

Pooling层主要的作用是特征提取,通过去掉Feature Map中不重要的样本,进一步减少参数数量。Pooling的方法很多,最常用的是Max Pooling。

池化层也有一个窗口大小(过滤器)

即:池化过程让图片变得更“窄”

即:卷积层使得图片变长,池化层使得图片变窄,所以经过卷积,图片越来越“细长”

api

池化中SAME的计算方式与卷积过程中SAME的计算方式一样。eg:
[None, 28, 28, 32]的数据,经过2x2,步长为2,padding为SAME的池化,变成了[None, 14, 14, 32]

分析:前面的卷积和池化相当于做特征工程,后面的全连接相当于做特征加权。最后的全连接层在整个卷积神经网络中起到“分类器”的作用。

所以神经网络也相当于是一个特征选择的方式

❽ 全连接神经网络和传统bp网的区别

?
一个是表示各层连接方式,一个表示训练方式。没有什么可比性。