当前位置:首页 » 网络连接 » 计算机网络防雷技术
扩展阅读
禁用抖音网络设置 2024-05-20 05:53:22
手机安装软件大全 2024-05-20 05:26:47

计算机网络防雷技术

发布时间: 2022-09-25 21:07:44

❶ 学校计算机教室用电、防雷知识请教。

我来说吧,这个是这样的
首先,电脑数量太多,需要单独拉线,考虑每台电脑功率400W(按最大估算),总功率为25.6KW,回路应能承受25600/220即116A电流,至少用10平方的铜塑线,线路应该设施齐全,有空开、刀闸开关漏电保护装置等等,且均满足额定电流;
其次,雷电入侵计算机系统,考虑两个方面:电源入侵和网络入侵。针对电源入侵,可采用前端接抗浪涌设备的简易办法,同时配电一定要接地良好,有条件的话找专业防雷公司帮忙,购买专业防雷设备;针对网络线路入侵,有一个行之有效的办法:网络前端采用光缆传输,可直接避免雷电入侵双绞电缆。

❷ 基础防雷网社防雷系统中作用

一、避雷带的作用

主要作用:把雷电流导入接地装置,保护构筑物免受雷击。

雷电最容易击于建筑物的边缘及凸出部分,在建筑物边缘及凸出部分上加装避雷带,可以有效防雷。

避雷带又叫接闪带,其作用不是避雷,而是引雷。将雷电引入大地,保护建筑物等不受到雷击。

因此,在建筑物防雷的措施上,除避雷针、避雷线外,避雷带、避雷网可以作为接闪器来使用。

1、避雷带

避雷带是指沿屋脊、山墙、通风管道以及平屋顶的边沿等最可能受雷击的地方敷设的导线。避雷带可以保护建筑的表层不被击坏。

2、避雷带的规格

避雷带宜采用镀锌圆钢或扁钢,应优先选用圆钢,其直径不应小于8mm,扁钢宽度不应小于12mm,厚度不应小于4mm。

二、避雷带的安装要求

避雷带应有良好的接地装置,且可以把它与建筑物的钢筋连接。

对重要建筑物,除采取上方法外,还应当根据建筑物防雷等级在屋面上铺设 5m ×5m 或 6m ×4m、10m ×10m 或12m ×8m、20m ×20m 或 24m ×16m 等不同规格的避雷网,以防止烧击及降低屋内过电压。

具体要求:

避雷带是接闪器的一种类型,一般是水平或倾斜敷设的(根据屋面的倾斜度而定),至少有两个地方(首尾两端)和引下线相连接,一般是明设,但也可以暗敷在屋顶的混凝土或瓦片的下面。

如果接闪带是悬空架设的,则称之为接闪线;如果接闪带以网状敷设,则称其为接闪网。

避雷带是接闪器的一种类型,其对建筑物的保护范围的计算,都要根据滚球法的原理进行。架总高为150mm,其中50mm应埋设在女儿墙或屋脊内,顶部露出高度为100mm。

❸ 网络防雷器有什么作用

防雷器的作用是用来保护电力系统中各种电器设备免受雷电过电压、操作过电压、工频暂态过电压冲击而损坏的一种电器。而网络防雷器是专门为ETHERNET网络设计的过电压保护器。它可用于服务器、工作站、HUB等RJ45接口,以防止雷电过电压对设备造成的损坏。比如EPRJ45-5/100M的输入/输出端就是采用RJ45接口,它的传输信号速率可达到100Mbps或1000Mbps。

计算机网络防雷器的原理

采用前后二级保护,第一级为粗保护,用于泄能;第二级 为细保护,用于钳位。 前后二级通过耦合,使防雷器真正起到理想的防雷效果。

❺ 电脑如何防雷

你只防宽带是不行的,同时还要防电源,因为雷电流有可能会从电源线路感应而受雷击,和宽带是一样的。电源和宽带都有防雷的东西。 电源用电源浪涌保护器(家电防雷器),宽带用信号防雷器。

❻ 计算机网络防雷器的注意事项

1、请认准接口以及连接方式;
2、认准防雷器输入/输出接口标识,输入接外线、输出接设备;
3、接地线应力求短、粗、直,以减少分布电感对雷击电磁脉冲能力泄放的影响;
4、信号防雷器接地宜通过电子开关与地网连接。

❼ 雷电对计算机网络系统的影响是怎么样的

目前,随着我国信息化建设进程的加快,计算机网络信息系统正扮演着愈来愈重要的角色,每年都有多起因雷击造成计算机及网络通讯设施损坏,从而导致信息传输中断、信息受损乃至威胁人身安全的事故发生。

雷电侵害计算机网络有2种方式:直击雷侵害和感应雷侵害。雷电直接击中设备所在建筑物或设备连接线路并经过网络设备入地的雷击过电流称为直击雷;由雷电电流产生的强大电磁场经导体感应出的过电压、过电流所形成的雷击称为感应雷。感应雷一般由电磁感应产生,通过电力线路、信号馈线感应雷电压入侵计算机网络系统,从而造成网络系统设备的大面积损坏。

(4)一般情况下,网络设备受到建筑物防雷设施防直击雷的保护,遭受直击雷的可能性相对较小,而遭受感应雷的概率则较高,因而计算机网络系统考虑更多的是感应雷及雷电波入侵的防护问题。通过对电源线路和通信线路等潜在雷电入侵隐患加装电涌保护器,来阻止或减轻雷电对网络系统的冲击。

由于雷电产生了强大的过电压、过电流,无法一次性在瞬间完成泄流和限压,所以电源系统必须采取多级的防雷保护。重要场合宜采取更多级的保护措施,通过使用多级电源防雷设施,彻底泄放雷电过电流、限制过电压,从而尽可能地防止雷电通过电力线路窜入计算机网络系统,损害系统设备。

现代建筑物内的信息网络不再是一个信息孤岛,它必须是一个互联互通的开放性网络,来满足人们信息交换的需求。在几种通信方式中,除光纤介质外,其他介质都可能因遭受直接雷或感应雷而侵害两端连接的网络系统。为了避免因通信电缆引入雷电侵害的可能性,通常采用的技术是在电缆接入网络通信设备前首先接入信号避雷器,即在链路中串入一个瞬态过电压保护器,它可以防护电子设备遭受雷电闪击及其他干扰造成的传导电涌过电压,阻断过电压及雷电波的侵入,尽可能降低雷电对系统设备的冲击。

计算机网络系统的核心设备都放置在计算机机房内,因而对机房提出了较高的环境要求,良好的接地系统是保证机房计算机及网络设备安全运行以及工作人员人身安全的重要措施。

❽ 防雷接地、工作接地、保护接地

火灾自动报警系统设计规范(GB 50116-98)
5.7 系统接地

5.7.1 火灾自动报警系统接地装置的接地电阻值应符合下列要求:

5.7.1.1 采用专用接地装置时,接地电阻值不应大于4Ω;

5.7.1.2 采用共用接地装置时,接地电阻值不应大于1Ω;

5.7.2 火灾自动报警系统应设专用接地干线,并应在消防控制室设置专用接地板。专用接地干线应从消防控制室专用接地板引至接地体。

5.7.3 专用接地干线应采用铜芯绝缘导线,其线芯截面面积不应小于25mm2。专用接地干线宜穿硬质塑料管埋设至接地体。

5.7.4 由消防控制室接地板引至各消防电子设备的专用接地线应选用铜芯绝缘导线,其线芯截面面积不应小于4mm2。

5.7.5 消防电子设备凡采用交流供电时,设备金属外壳和金属支架等应作保护接地,接地线应与电气保护接地干线(PE线)相连接。

以下是建筑物电子信息系统防雷技术规范GB 50343—2004部分内容(可以参考):

5.2 等电位连接与共用接地系统设计

5.2.1 电子信息系统的机房应设等电位连接网络。电气和电子设备的金属外壳、机柜、机架、金属管、槽、屏蔽线缆外层、信息设备防静电接地、安全保护接地、浪涌保护器(SPD)接地端等均应以最短的距离与等电位连接网络的接地端子连接。
等电位连接网络的结构形式有:S型和M型或两种结构形式的组合(见条文说明中的图1、图2)。

5.2.2 在直击雷非防护区(LPZOA)或直击雷防护区(LPZOB)与第一防护区(LPZ1)交界处应设置总等电位接地端子板,每层楼宜设置楼层等电位接地端子板,电子信息系统设备机房应设置局部等电位接地端子板。各接地端子板应设置在便于安装和检查的位置,不得设置在潮湿或有腐蚀性气体及易受机械损伤的地方。等电位接地端子板的连接点应满足机械强度和电气连续性的要求。

5.2.3 共用接地装置应与总等电位接地端子板连接,通过接地干线引至楼层等电位接地端子板,由此引至设备机房的局部等电位接地端子板。局部等电位接地端子板应与预留的楼层主钢筋接地端子连接。接地干线宜采用多股铜芯导线或铜带,其截面积不应小于16mm2。接地干线应在电气竖井内明敷,并应与楼层主钢筋作等电位连接。

5.2.4 不同楼层的综合布线系统设备间或不同雷电防护区的配线交接间应设置局部等电位接地端子板。楼层配线柜的接地线应采用绝缘铜导线,截面积不小于16mm2。

5.2.5 防雷接地与交流工作接地、直流工作接地、安全保护接地共用一组接地装置时,接地装置的接地电阻值必须按接入设备中要求的最小值确定。

5.2.6 接地装置应优先利用建筑物的自然接地体,当自然接地体的接地电阻达不到要求时应增加人工接地体。

5.2.7 当设置人工接地体时,人工接地体宜在建筑物四周散水坡外大于1m处埋设成环形接地体,并可作为总等电位连接带使用。
5.4 防雷与接地

5.4.1 电源线路防雷与接地应符合以下规定:

1 进、出电子信息系统机房的电源线路不宜采用架空线路。
2 电子信息系统设备由TN交流配电系统供电时,配电线路必须采用TN—S系统的接地方式。
3 配电线路设备的耐冲击过电压额定值应符合表5.4.1—1规定。电子信息系统设备配电线路浪涌保护器安装位置及电子信息系统电源设备分类示意如图5.4.1—1和图5.4.1—2所示。

4 在直击雷非防护区(LPZOA)或直击雷防护区(LPZOB)与第一防护区(LPZ1)交界处应安装通过Ⅰ级分类试验的浪涌保护器或限压型浪涌保护器作为第一级保护;第一防护区之后的各分区(含LPZ1区)交界处应安装限压型浪涌保护器。使用直流电源的信息设备,视其工作电压要求,宜安装适配的直流电源浪涌保护器。
5 浪涌保护器连接导线应平直,其长度不宜大于0.5m。当电压开关型浪涌保护器至限压型浪涌保护器之间的线路长度小于10m、限压型浪涌保护器之间的线路长度小于5m时,在两级浪涌保护器之间应加装退耦装置。当浪涌保护器具有能量自动配合功能时,浪涌保护器之间的线路长度不受限制。浪涌保护器应有过电流保护装置,并宜有劣化显示功能。
6 浪涌保护器安装的数量,应根据被保护设备的抗扰度和雷电防护分级确定。
7 用于电源线路的浪涌保护器标称放电电流参数值宜符合表5.4.1—2规定。

5.4.2 信号线路的防雷与接地应符合下列规定

1 进、出建筑物的信号线缆,宜选用有金属屏蔽层的电缆,并宜埋地敷设,在直击雷非防护区(LPZOA)或直击雷防护区(LPZOB)与第一防护区(LPZ1)交界处,电缆金属屏蔽层应做等电位连接并接地。电子信息系统设备机房的信号线缆内芯线相应端口,应安装适配的信号线路浪涌保护器,浪涌保护器的接地端及电缆内芯的空线对应接地。
2 电子信息系统信号线路浪涌保护器的选择,应根据线路的工作频率、传输介质、传输速率、传输带宽、工作电压、接口形式、特性阻抗等参数,选用电压驻波比和插入损耗小的适配的浪涌保护器。信号线路浪涌保护器参数应符合表5.4.2—1、5.4.2—2的规定。

5.4.3 天馈线路的防雷与接地应符合下列规定:

1 架空天线必须置于直击雷防护区(LPZOB)内。
2 天馈线路浪涌保护器的选择,应根据被保护设备的工作频率、平均输出功率、连接器形式及特性阻抗等参数,选用插入损耗及电压驻波比小适配的天馈线路浪涌保护器。
3 天馈线路浪涌保护器,宜安装在收/发通信设备的射频出、入端口处。其参数应符合表5.4.2—2规定。
4 具有多副天线的天馈传输系统,每副天线应安装适配的天馈浪涌保护器。当天馈传输系统采用波导管传输时,波导管的金属外壁应与天线架、波导管支撑架及天线反射器作电气连通。并宜在中频信号输入端口处安装适配的中频信号线路浪涌保护器,其接地端应就近接地。
5 天馈线路浪涌保护器接地端应采用截面积不小于6mm2的多股绝缘铜导线连接到直击雷非防护区(LPZOA)或直击雷防护区(LPZOB)与第一防护区(LPZ1)交界处的等电位接地端子板上。同轴电缆的上部、下部及进机房人口前应将金属屏蔽层就近接地。

5.4.4 程控数字用户交换机线路的防雷与接地应符合下列规定:

1 程控数字用户交换机及其他通信设备信号线路,应根据总配线架所连接的中继线及用户线性质,选用适配的信号线路浪涌保护器。
2 浪涌保护器对雷电流的响应时间应为纳秒(ns)级,标称放电电流应大于或等于0.5kA,并应满足线路传输速率及带宽要求。
3 浪涌保护器的接地端应与配线架接地端相连,配线架的接地线应采用截面积不小于16mm2的多股铜线,从配线架接至机房的局部等电位接地端子板上。配线架及程控用户交换机的金属支架、机柜均应做等电位连接并接地。

5.4.5 计算机网络系统的防雷与接地应符合下列规定:

1 进、出建筑物的传输线路上浪涌保护器的设置:
1)A级防护系统宜采用2级或3级信号浪涌保护器;
2)B级防护系统宜采用2级信号浪涌保护器;
3)C、D级防护系统宜采用1级或2级信号浪涌保护器。
各级浪涌保护器宜分别安装在直击雷非防护区(LPZOA)或直击雷防护区(LPZOB)与第一防护区(LPZ1)及第一防护区(LPZ1)与第二防护区(LPZ2)的交界处。
2 计算机设备的输入/输出端口处,应安装适配的计算机信号浪涌保护器。
3 系统的接地
1)机房内信号浪涌保护器的接地端,宜采用截面积不小于1.5mm2的多股绝缘铜导线,单点连接至机房局部等电位接地端子板上;计算机机房的安全保护地、信号工作地、屏蔽接地、防静电接地和浪涌保护器接地等均应连接到局部等电位接地端子板上。
2)当多个计算机系统共用一组接地装置时,宜分别采用M型或Mm组合型等电位连接网络。

5.4.6 安全防范系统的防雷与接地应符合下列规定:

1 置于户外的摄像机信号控制线输出、输入端口应设置信号线路浪涌保护器。
2 主控机、分控机的信号控制线、通信线、各监控器的报警信号线,宜在线路进出建筑物直击雷非防护区(LPZOA)或直击雷防护区(LPZOB)与第一防护区(LPZ1)交界处装设适配的线路浪涌保护器。
3 系统视频、控制信号线路及供电线路的浪涌保护器,应分别根据视频信号线路、解码控制信号线路及摄像机供电线路的性能参数来选择。
4 系统户外的交流供电线路、视频信号线路、控制信号线路应有金属屏蔽层并穿钢管埋地敷设,屏蔽层及钢管两端应接地,信号线路与供电线路应分开敷设。
5 系统的接地宜采用共用接地。主机房应设置等电位连接网络,接地线不得形成封闭回路,系统接地干线宜采用截面积不小于16mm2的多股铜芯绝缘导线。

5.4.7 火灾自动报警及消防联动控制系统的防雷与接地应符合下列规定:

1 火灾报警控制系统的报警主机、联动控制盘、火警广播、对讲通信等系统的信号传输线缆宜在进出建筑物直击雷非防护区(LPZOA)或直击雷防护区(LPZOB)与第一防护区(LPZ1)交界处装设适配的信号浪涌保护器。
2 消防控制室与本地区或城市“119”报警指挥中心之间联网的进出线路端口应装设适配的信号浪涌保护器。
3 消防控制室内,应设置等电位连接网络,室内所有的机架(壳)、配线线槽、设备保护接地、安全保护接地、浪涌保护器接地端均应就近接至等电位接地端子板。
4 区域报警控制器的金属机架(壳)、金属线槽(或钢管)、电气竖井内的接地干线、接线箱的保护接地端等,应就近接至等电位接地端子板。
5 火灾自动报警及联动控制系统的接地宜采用共用接地。接地干线应采用截面积不小于16mm2的铜芯绝缘线,并宜穿管敷设接至本层(或就近)的等电位接地端子板。

5.4.8 建筑设备监控系统的防雷与接地应符合下列规定:

1 系统的各种线路,在建筑物直击雷非防护区(LPZOA)或直击雷防护区(LPZOB)与第一防护区(LPZ1)交界处应装设线路适配的浪涌保护器。
2 系统中央控制室内,应设等电位连接网络。室内所有设备金属机架(壳)、金属线槽、保护接地和浪涌保护器的接地端等均应做等电位连接并接地。
3 系统的接地宜采用共用接地,其接地干线应采用截面不小于16mm2的铜芯绝缘导线,并应穿管敷设接至就近的等电位接地端子板。

5.4.9 有线电视系统的防雷与接地应符合下列规定:

1 进出建筑物的信号传输线,宜在入、出口处装设适配的浪涌保护器。
2 有线电视信号传输线路,宜根据其干线放大器的工作频率范围、接口形式以及是否需要供电电源等要求,选用电压驻波比和插入损耗小的适配的浪涌保护器。
3 进出前端设备机房的信号传输线,宜装设适配的浪涌保护器。机房内应设置局部等电位接地端子板,采用截面积不小于16mm2的铜芯绝缘导线并穿管敷设,就近接至机房外的等电位连接带。

5.4.10 通信基站的防雷与接地应符合下列规定:

1 通信基站的雷电防护宜先进行雷电风险评估及雷电防护分级。
2 基站的天线必须设置子直击雷防护区(LPZOB)区内。
3 基站天馈线应从铁塔中心部位引下,同轴电缆在其上部、下部和经走线桥架进入机房前,屏蔽层应就近接地。当铁塔高度大于或等于60m时,同轴电缆金属屏蔽层还应在铁塔中部增加一处接地。
4 通信基站的信号电缆应穿钢管埋地进入机房,并应在入户配线架处安装信号线路浪涌保护器,电缆内的空线对应做保护接地。站区内严禁布放架空线缆。当采用光缆传输信号时,应符合本规范5.3.2条第4款的规定。
5 基站的电源线路宜埋地引入机房,埋地长度不宜小于50m。电源进线处应安装电源线路浪涌保护器。

❾ 雷雨季企业网络设备如何防雷

谈到网络安全,更多的时候我们会注意力聚焦到网络防病毒、防黑客攻击上来,而雷击对网络设备的安全威胁,还没有引起足够的重视。2010年以后,恶劣天气越来越多,气候反常。在经历了干旱、高温,台风、强对流等恶劣天气后,暴雨气候的来临,预示着我们已经全面进入雷雨季节频繁的夏季。每到雷雨多发季节,网络设备遭受到雷击的可能性会大大增加。企业办公网络防了在保障网络安全的措施外,还需要防范来自大自然的袭击雷击,进而保障网络高效、安全的运行。 防雷的话题虽然是年年讲,但是对于业务繁忙的用户来说,还是需要不断提醒与帮助。国内新型网络设备厂商飞鱼星科技,早早就开始了对渠道及技术层的防雷工作部署。在夏季雷雨季节高发之前,我们特别总结了一线工程师的经验,再一次借助媒体朋友们的帮助,向广大企业和网吧用户呼吁,防雷很重要 一、加强防雷意识,防范于未然 1、雷击产生因素分析 由于网络设备大部分是精密的电子设备,这些电子设备抗电流、抗电压或抗电磁脉冲的能力十分有限,而且网络设备大部分都需要持续不断地工作,这样的话许多重要的网络设备都必须24小时处于开机状态。这么一来只要雷雨天气来临,网络设备就可能会遭受到雷电的袭击。倘若雷电发生在离网网络设备不远的位置时,那么由雷电产生的强电流,可能会通过各种导体,入侵到网系统中。如果网络设备没有采取完善的防雷措施,那么这些设备将无法抵挡高达几万伏的强电压或者几万安培的强电流,轻则导致网络设备发生错误操作、数据丢失或者出现死机现象,严重的话能烧毁计算机或其他网络设备,甚至还能对网管理维护工作人员的生命造成威胁。即使某些网络设备没有被强大的雷击电流或电压损坏,但只要它们遭受过雷电袭击之后,它们内部的某些电器性能将受到一定程度的影响,这样的话就容易影响到网整体性能的稳定性。 2、全面防护,加强防雷意识 雷电虽然破坏性强,但并不是不能预防。雷击主要途径有高大建筑物、电源线、天线和长距离传输信号的信号线。只要我们牢固树立防雷击意识,正确安装防雷设备,保证防雷设施的安全有效,切断雷击入侵内的途径,就能避免或最大限度地减轻雷击的破坏。 第一,做好建筑物本身的防雷击 高大的机房或办公楼,其本身的防雷性能直接影响到室内网络设备的防雷。在建筑物设计和施工时就要把建筑物本身防雷击设施安装好,并做好接地。在每年雷雨季节即将来临之际,要认真组织专业人员定期对建筑物的避雷针、接地线进行检修和维护,检验防雷设施是否老化、失效,是否受到人为破坏或损伤。一旦发现防雷设施不能正常工作的话,应该及时更换安装新的设备,以杜绝雷击隐患。 第二,规范安装网络设备 在组建网的初时时期,规范合理的综合布线是 预防雷击的基础。随着网络的逐步普及,各单位上网的计算机越来越多,网络管理人员随意布置网线的情况比较普遍。有的借助电线杆,有的缠绕在外窗防盗金属网等,不安全隐患较多。并且大部分网络连接线没有采取防雷措施,凌乱的室外网络连接线几乎变成了引雷器。雷击电流或雷击感应电流会很轻易的通过这些网线,入侵到网系统中,从而给网络设备造成致命打击。因此,我们在布线时,要充分考虑防雷击的要求,选择绝缘性能好的网线,并要尽量避免在室外分线。确需在室外走线的,网线外皮应做好接地。同时,网络设备要避免安装在紧靠墙壁、窗户等容易遭受雷击的位置。 第三,正确安装接地设施 由于雷击电流或雷击电压等都是通过地线来向地面倾泄的,接地效果的好坏直接影响着防雷效果的好坏,因此妥善做好网络设备的接地是预防雷击的关键环节。一般来说,网中的各个网络设备不宜单独接地,不然各个设备的接地系统容易产生电位差,这个差值达到一定数值后,也会对网络设备造成损伤;为了避免不同接地系统存在电位差,最好将网中的所有设备共用同一个接地系统,这样就能保证各个网络设备之间的接地电位相等。此外,网中使用的独立屏蔽双绞线线路两端屏蔽层,可以和网络设备的金属外壳相互连在一起,并进行单独的建筑接地。 第四,牢固树立防雷意识 预防雷击,除采取科学合理的技术措施外,关键在于通信设备管理维护人员要牢固树立起防雷意识,把通信系统设备防雷击作为汛期工作的重点来抓,经常性地开展防雷设施的检查和维修。每年的雷雨季节来临前,最好邀请气象部门的技术人员,对通信系统的防雷设施进行检测,发现隐患及时排除。

❿ 消除雷电反击的详细措施

雷电的反击现象通常指遭受直击雷的金属体(包括接闪器、接地引下线和接地体),在接闪瞬间与大地间存在着很高的电压,这电压对与大地连接的其他金属物品发生放电(又叫闪络)的现象叫反击。此外,当雷击到树上时,树木上的高电压与它附近的房屋、金属物品之间也会发生反击。要消除反击现象,通常采取两种措施:一是作等电位连接,用金属导体将两个金属导体连接起来,使其接闪时电位相等;二是两者之间保持一定的距离。

综合防雷电反击的措施
现代防雷保护包括外部防雷保护(建筑物或设施的直击雷防护)和内部防雷保护(雷电电磁脉冲的防护)两部份,外部防雷系统主要是为了保护建筑物免受直接雷击引起火灾事故及人身安全事故,而内部防雷系统则是防止雷电波侵入、雷击感应过电压以及系统操作过电压侵入设备造成的毁坏,这是外部防雷系统无法保证的。
防雷是一个很复杂的问题,不可能依靠一、二种先进的防雷设备和防雷措施就能完全消除雷击过电压和感应过电压的影响,必须针对雷害入侵途径,对各类可能产生雷击的因素进行排除,采用综合防治——接闪、均压、屏蔽、接地、分流(保护),才能将雷害减少到最低限度。

1、接 闪
接闪装置就是我们常说的避雷针、避雷带、避雷线或避雷网,接闪就是让在一定程度范围内出现的闪电放电不能任意地选择放电通道,而只能按照人们事先设计的防雷系统的规定通道,将雷电能量泄放到大地中去。

2、均 压
接闪装置在接闪雷电时,引下线立即产生高电位,会对防雷系统周围的尚处于地电位的导体产生旁侧闪络,并使其电位升高,进而对人员和设备构成危害。为了减少这种闪络危险,最简单的办法是采用均压环,将处于地电位的导体等电位连接起来,一直到接地装置。室内的金属设施、电气装置和电子设备,如果其与防雷系统的导体,特别是接闪装置的距离达不到规定的安全要求时,则应该用较粗的导线把它们与防雷系统进行等电位连接。这样在闪电电流通过时,室内的所有设施立即形成一个“等电位岛”,保证导电部件之间不产生有害的电位差,不发生旁侧闪络放电。完善的等电位连接还可以防止闪电电流入地造成的地电位升高所产生的反击。

为了彻底消除雷电引起的毁坏性的电位差,就特别需要实行等电位连接,电源线、信号线、金属管道等都要通过过压保护器进行等电位连接,各个内层保护区的界面处同样要依此进行局部等电位连接,并最后与等电位连接母排相连。

3、屏 蔽
屏蔽就是利用金属网、箔、壳或管子等导体把需要保护的对象包围起来,使雷电电磁脉冲波入侵的通道全部截断。所有的屏蔽套、壳等均需要接地。
屏蔽是防止雷电电磁脉冲辐射对电子设备影响的最有效方法。

4、接 地
接地就是让已经内入防雷系统的闪电电流顺利地流入大地,而不能让雷电能量集中在防雷系统的某处对被保护物体产生破坏作用,良好的接地才能有效地泄放雷电能量,降低引下线上的电压,避免发生反击。

过去有些规范要求电子设备单独接地,目的是防止电网中杂散电流或暂态电流干扰设备的正常工作。90年代以前,部队的通信导航装备以电子管器件为主,采用模拟通信方式,模拟通信对干扰特别敏感,为了抗干扰,所以都采取电源与通信接地分开的办法。现在,防雷工程领域不提倡单独接地。在IEC标准和ITU相关标准中都不提倡单独接地,美国标准IEEEStd1100-1992更尖锐地指出:不建议采用任何一种所谓分开的、独立的、计算机的、电子的或其它这类不正确的大地接地体作为设备接地导体的一个连接点。防雷接地是防雷系统中最基础的环节,也是防雷安装验收规范中最基本的安全要求。接地不好,所有防雷措施的防雷效果都不能发挥出来。

5、分流(保护)
这是现代防雷技术迅猛发展的重点,是保护各种电子设备或电气系统的关键措施。
所谓分流就是在一切从室外来的导体(包括电力电源线、数据线、电话线或天馈线等信号线)与防雷接地装置或接地线之间并联一种适当的避雷器SPD,当直击雷或雷击效应在线路上产生的过电压波沿这些导线进入室内或设备时,避雷器的电阻突然降到低值,近于短路状态,雷电电流就由此处分流入地了。雷电流在分流之后,仍会有少部份沿导线进入设备,这对于一些不耐高压的微电子设备来说是很危险的,所以对于这类设备在导线进入机壳前,应进行多级分流(即不少于三级防雷保护)。
现在避雷器的研究与发展,也超出了分流的范围。有些避雷器可直接串联在信号线或天线的馈线上,它们能让有用信号顺畅通过,而对雷电过压波进行阻隔。
采用分流这一防雷措施时,应特别注意避雷器性能参数的选择,因为附加设施的安装或多或少地会影响系统的性能。比如信号避雷器的接入应不影响系统的传输速率;天馈避雷器在通带内的损耗要尽量小;若使用在定向设备上,不能导致定位误差。

6、躲 避
在建筑物基建选址时,就应该躲开多雷区或易遭雷击的地点,以免日后增大防雷工程的开支和费用。
当雷电发生时,关闭设备,拔掉电源插头。

网络机房防雷设计方案2007-05-01 07:07 目前,随着计算机和网络通信技术的高速发展,计算机网络系统对雷击的防护要求越来越高,由于对雷击的防护措施不力或存在认识上的偏差,往往起不到应有的防护效果,机房遭受到雷击频繁发生。特别是在雷雨季节,计算机网络系统的一些电子电气设备受到雷击的干扰,有些遭雷击而烧毁,造成直接经济损失。计算机网络系统的防雷防护要引起足够重视,做到有备无患,对防雷设施进行整改,做好整体防护措施,才能更好地维护机房的安全运行。

二、解决方案

1.1 建筑物直击雷防护

按照国家标准 GB 50057-94 《建筑物防雷设计规范》的要求,重要计算机网络系统机房所在大楼为第二类或第三类防雷建筑物,一般都按要求建设有防雷设施,如大楼天面的避雷网 ( 带 ) 、避雷针或混合组成的接闪器等,这些接闪器通过大楼立柱基础的主钢筋,将强大的雷电流引入大地,形成较好的建筑物防雷设施。计算机系统设置在建筑物内,受建筑物防雷系统保护,直击雷直接击中计算机网络系统的可能性就非常小,因此通常不必再安装防护直击雷的设备。

1.2 计算机网络系统感应雷防护

感应雷由静电感应产生,也可由电磁感应产生,形成感应雷电压的机率很高,对建筑物内的低压电子设备造成较大的威胁,计算机网络系统的防雷工作重点是防止感应雷入侵。入侵计算机系统的雷电过电压过电流主要有以下三个途径:

(1) 由交流电源供电线路入侵

计算机系统的电源由室外架空电力线路输入室内,架空电力线路可能遭受直击雷和感应雷;直击雷击中高压电力线路,经过变压器耦合到 380V 低压侧,入侵计算机供电设备;另外低压线路也可能被直击雷击中或感应出雷电过电压。在 220V 电源线上出现的雷电过电压平均可达 10000V ,对计算机网络系统可造成毁灭性打击。

(2) 由计算机通信线路入侵

由计算机通信线路入侵分为三种情况。

情况一:当地面突出物遭直击雷打击时,强雷电压将邻近土壤击穿,雷电流直接入侵到电缆外皮,进而击穿外皮,使高压入侵线路。

情况二:雷云对地面放电时,在线路上感应出上千伏的过电压,击坏与线路相连的电气设备,通过设备连线侵入通信线路。这种入侵沿通信线路传播,涉及面广,危害范围大。
情况三:若通过一条多芯电缆连接不同来源的导线或者多条电缆平行铺设时,当某一导线被雷电击中时,会在相邻的导线感应出过电压,击坏低压电子设备。

(3) 地电位反击电压通过接地体入侵

雷击时强大的雷电流经过引下线和接地体泄入大地,在接地体附近放射型的电位分布,若有连接电子设备的其它接地体靠近时,即产生高压地电位反击,入侵电压可高达数万伏。建筑物防直击雷的避雷引入了强大的雷电流通过引下线入地,在附近空间产生强大的电磁场变化,会在相邻的导线(包括电源线和信号线)上感应出雷电过电压,因此建筑物避雷系统不但不能保护计算机系统,反而可能引入了雷电流。计算机网络系统等设备的集成电路芯片耐压能力很弱,通常在 100V 以下,因此必须建立多层次的计算机防雷保护系统,层层防护,确保计算机网络系统的安全。

2. 解决方案

( 1 )对于雷电磁场的影响,主要是直击雷击中机房大楼时,雷电流在建筑物的内部分布直接影响到计算机网络系统设备,特别是对电磁干扰敏感的计算机及网络通信终端设备。合理选择机房的位置及机房内设备的合理布局可有效的减少雷害。

( 2 )在供电系统及计算机网络终端设备的接口处安装电涌保护器 SPD ,并对出入机房缆线采取屏蔽、接地,实现等电位连接等措施,可有效减少雷击过电压对计算机网络系统设备的侵害。
( 3 )机房采用联合接地可有效的解决地电位升高的影响,合格的地网是有效防雷的关键。机房的联合地网通常由机房建筑物基础(含地桩)、环形接地(体)装置、工作(电力变压器)地网等组成。对于敏感的数据通讯设备的防雷,接地系统的良好与否,直接关系到防雷的效果和质量。如果地网不合要求,应改善地网条件,适当扩大地网面积和改善地网结构,使雷电流尽快地泄放,缩短雷电流引起的高过电压的保持时间,以达到防雷要求。

三、实例

1. 基本情况
某公司机房,在公司所在大楼三楼,大楼已有避雷针、避雷带等外部防雷设施;计算机网络系统的供电系统由市电三相低压电源供电,机房供电电源由配电室配电柜直供大楼配电箱,由大楼配电箱至机房配电箱供给 UPS 电源设备;机房计算机网络通信线进出采用 UTP 双绞线缆,通讯专线的线路采用语音电缆线,卫星馈线采用 BNC 接口同轴电缆;机房接地利用建筑接地网。

2. 方案设计
机房所在大楼已有避雷针、避雷带等外部防雷设施,不再作外部防雷补充设计。计算机网络系统雷击电磁脉冲防护按 A 类要求设计,供电系统采取 3~4 级电涌保护器( SPD )(以下简称避雷器)进行保护。网络通信系统采取精细保护,对于进出保护区的电缆、电线在进入保护区时适当安装信号接口电涌保护器( SPD )。机房实行联合接地,建立合格的接地系统,对进出保护区界面的管、线、槽实行等电位连接。有效地将雷电过电压降低到设备能够承受的水平。设计内容主要包括:
(1) 机房设备瞬态过电压保护的设计;
(2) 机房等电位连接的设计;
(3) 接地网制作设计。

3. 机房电源设备瞬态过电压保护
计算机网络机房作为一个欲保护的区域,从 EMC (电磁兼容)的观点来看,由外到内可分为几级保护区。建筑物大楼外部是直接雷的区域,在这个区域内的设备最容易遭受损害,危险性最高,是暴露区,为 0 区;建筑物内部到机房所处的位置为非暴露区 , 可将其分为 1 区、 2 区,越往内部,危险程度越低。电源线路是雷电过电压侵入的主要途径之一。从总配电室变压器低压输出端到机房设备端,必须实行分级保护,将雷电过电压降低到设备能够承受的水平。
3.1 电源避雷器的配置
(1) 总低压配电室的总配电柜电源输出端配置三相箱式电源避雷器 1 台,作为第一级防雷保护。标称放电电流选用 50 ~ 100kA ,预防直击雷。
(2) 网络设备所在建筑楼层总配电箱电源引入端配置箱式电源避雷器,作为第二级防雷保护。配置三相箱式避雷器,标称放电电流选用 40kA ,预防感应雷击或操作过电压。
(3) 网络设备机房配电箱电源引入端配置电源避雷器,作为第三级防雷保护。配置单相箱式避雷器,标称放电电流选用 20kA ,预防感应雷击或操作过电压。
(4) 重要网络机柜或设备端采用模块式电源避雷器,作为第四级防雷保护。标称放电电流选用 5kA ,预防感应雷击或操作过电压。
3.2 数据(信号)通信接口避雷器的配置
根据通信设备的具体情况,主要考虑由室外引入的数据(语音)或视频信号线路的防雷保护。避雷器主要串接在线路的两端设备的接口处。
(1) 服务器 100M 输入端口处安装单口 RJ45 端口信号避雷器,以保护服务器。
(2)24 口网络交换机串联 24 口的 RJ45 端口信号避雷器,避免因雷击感应或电磁场干扰沿双绞线窜入而毁坏设备。
(3) 在 DDN 专线接收设备上安装单口 RJ11 端口信号避雷器,保护 DDN 专线上的设备。
(4) 在卫星接收设备前端安装同轴端口天馈线避雷器,以保护接收设备。
4. 等电位连接设计
在机房做一个接地总汇流排,使交流工作接地、安全保护接地、直流工作接地、防雷接地等四种接地共用一组接地装置。机房接地汇流排尽量安装在防静电地板下隐蔽处。将所有进入大楼的通信电缆及线缆用金属管道进行屏蔽,并将所有的金属管道(包括水管、煤气管及各种屏蔽管道)在进入大楼之前,就近接地。采用联合接地网,目的是消除各地网之间的电位差,保证设备不因雷电的反击而损坏。
5. 接地网制作设计
接地是避雷技术非常重要的环节之一,无论是直击雷或感应雷,最终都是把雷电流引入大地。因此,对于敏感的数据(信号)通信设备而言,没有合理而良好的接地系统是不能可靠避雷的。因此,对接地电阻 >1Ω 的大楼地网,需按照规范要求整改,以提高机房接地系统的可靠性。根据具体情况,通过沿机房大楼建立不同形式的接地网(包括水平接地体、垂直接地体)来扩大接地网的有效面积和改善地网的结构。

基本要求如下:
( 1 )在大楼周围做接地网,用较少的材料和较低的安装成本,完成最有效的接地装置;
( 1 )接地电阻值要求 R < 1Ω ;
( 2 )接地体应离机房所在主建筑物 3~5m 左右设置;
( 3 )水平和垂直接地体应埋入地下 0.8m 左右,垂直接地体长 2.5m ,每隔 3~5m 设置一个垂直接地体;
( 4 )垂直接地体采用 50×50×5mm 的热镀锌角钢,水平接地体则选 50×5mm 的热镀锌扁钢;
( 5 )在地网焊接时,焊接面积应 ≥6 倍接触点,且焊点做防腐蚀防锈处理;
( 6 )各地网应在地面下 0.6~0.8m 处与多根建筑立柱钢筋焊接,并作防腐蚀、防锈处理;
( 7 )土壤导电性能差时采用敷设降阻剂法,使接地电阻 ≤1Ω ;
( 8 )回填土必须是导电状态较好的新粘土;
( 9 )与大楼基础地网多点焊接,并预留接地测试点。

以上是一种传统的廉价实用的接地方式,根据实际情况,接地网材料也可以选用新型技术接地装置,如免维护电解离子接地系统、低电阻接地模块、长效铜包钢接地棒等等。

四、结束语
计算机网络系统对雷电过压的防护要求比较高,对计算机网络系统进行防雷设计时,应根据机房所在的地理环境进行综合考虑,经过合理的雷电风险分析,针对雷害入侵机房设备的主要来源,进行整体防护,并根据现有的一些成熟的防雷技术经验,采取经济有效的防护措施,保障计算机网络系统设备的安全稳定运行。

希望对您有所帮助,呵呵