当前位置:首页 » 网络连接 » 我们的网络是怎样连接传播数据的
扩展阅读
无线网桥没有网络能用吗 2025-09-26 08:21:02
怎么才能连接网络视频 2025-09-26 08:12:49

我们的网络是怎样连接传播数据的

发布时间: 2022-10-20 22:05:29

㈠ 网络是怎么传信息的

网络是怎样传递信息的?其实他只是数学逻辑符号一零的逻辑演化,通过零跟一不同的变化来传输特殊的类似密码的东西,到对方再通过解密来达到,那么他这个密码本就属于我们所谓的网络协议。再上升一层的话,就是所谓的数据包之间的传送。再上升就是我们所谓的文字语音视频所能可见的一种传送。仅代表个人观点。

㈡ 数据包是如何在网络中传输的

数据传输过程如下:(如qq)
在发送主机A上,发送的数据经过应用层时,应用层对数据进行了包装,它在要传输的数据上加了一个应用层首部AH后,继续向传输层传送。
传输层接收到应用层的数据后,将数据+应用层AH当做数据,给它进行包装,加上自己的首部,此时的数据变为数据+应用层AH+传输层PH,继续向会话层传送。
依此类推,数据每传递一层,便增加相应协议的首部。
直到传输至数据链路层,数据链路层将加了自己首部的数据交给物理层后,转换为高低跳跃的比特流,这时候的数据才能在线路上传输。

㈢ 网络数据靠什么传输的

网络传输介质是网络中发送方与接收方之间的物理通路,它对网络的数据通信具有一定的影响。常用的传输介质有:双绞线、同轴电缆、光纤、无线传输媒介。

㈣ 网络是如何连接的

网络是如何连接的

从浏览器输入一个网址到浏览器返回响应这中间发生了什么?即假设把整个网络当做一个黑盒,输入是url,输出的是response,那么在这个黑盒里面发生了什么?一串url是怎么请求到网络上的资源的?我们都知道tcp/ip协议,但是他们在整个网络传输过程中,具体承担什么角色?他们的原理是什么?对于tezign而言,为什么切换不同的host就能访问到不同的环境,都知道是dns,虽然访问的是相同的域名,但是在不同的host下被解析成不同的ip,进而访问到不同的机器上。但是ip是怎么找到机器的?应用程序发送的数据是怎么被传输到服务器上的等等,这中间的过程其实都是非常复杂的。

以Tezign的一个url为例( https://vms-service.tezign.com/material/dam/public/query-common-dic )

当在浏览器或者终端等地方输入这个url,整个请求流程应该如下所示

注意到最前面是https,所以是使用加密的http协议访问Web服务器 vms-service.tezign.com 则是被请求的域名 material/dam/public/query-common-dic 则是请求的资源 在这里指的是materila的有结果接口, 当点击Enter时候, 浏览器会根据当前系统版本及设置生成如下的一段Http request,

如果直接输入的ip则可以跳过这步。服务器是不知道域名的,域名说白了就是全网共同维护的DNS。

通过DNS查询ip的操作称做域名解析,流程为:

每台计算机上都自带了一个DNS客户端,由客户端生成查询信息(如果浏览器访问速度较慢的话,可以尝试加上114这个dns)

114.114.114.114 为国内通过的DNS解析服务器,访问国内网址好一点

8.8.8.8 为google提供的全球通过DNS解析,访问国外网址好一点

会首先发送到最近的一台DNS服务器,如果最近一台没有相应的域名信息,则根据域名分层进行查找,如vms-service.tezign.com ,这个域名后面其实是隐藏了/. 所以会先发到跟DNS服务器,在跟服务里面找到com的地址,然后com的服务器里面保存了tezign的信息,将请求进一步转发到tezign,tezign里面找到vms-service,然后再进行返回(这里面澄清一下所谓的全球的只有13台根服务器,🇺🇸占了9台,美国可以随时断中国的网络,纯属扯断,并且13台也只是一个泛化的概念,真实的机器可能几百几千台镜像服务器分布世界各地,中国也是负责F、I、K、L根镜像服务器的管理 )

Class: 网络类型 互联网为IN

记录类型: A表示的是IP地址

<colgroup><col width="200"><col width="100"><col width="100"><col width="149"></colgroup>
|

域名

|

Class

|

记录类型

|

响应数据

|
|

vms-service.tezign.com

|

IN

|

A

|

10.80.82.192(env4)

|

首先我们要明确 应用程序并不具备发送任何信息到网络上的能力,包括协议栈也不具备。真正能发的是网卡,但是网卡只认识 0跟1,所以应用程序想要发送的信息,需要经过协议栈进行包装。

网络中传输的最小单位是包:

对于TCP/IP 我们可以这样理解: 发快递时候 TCP是快递单 IP是快递盒。

快递单上描述了双方的各种信息,而快递盒决定了里面发送的物品不能超过快递盒的容量

套接字(Socket)是一个虚拟概念,他的实体其实是各种通信控制信息(简单的理解就是ip:port),通过两个套接字可以实现端与端的通信(一台机器上可能同时存在多个socket,但是一个端口同时只能存在一个socket,这也是为什么有时候tomcat异常退出后 再次启动报端口被占用的原因,socket未关闭 端口未被释放 无法进行下次通信)

要想实现双方通信必须通信双方交换各自的同学控制信息(典型的信息ip、port),就像发邮件或者快递一样,必填发送人地址 接收方地址,这样接收方就能根据发送人地址进行回信。

连接的实际操作如下:

根据发送数据量的长度,还有每个包能发送的最大数据量(MSS),就可以算出这次请求发送了多个包,每个包发送的位数是多少到多少。(抓包工具 wireshark )

可以看到鼠标选中这行seq为20269 len为135,所以第二行seq我20269+135=20404 ack全部为11代表全部为发送或者接收(也可以注意到前面的source与dst 分别代表着发送与接收的ip)

可以看到source与dst分别与上面相反,代表着上面的响应或者发送,可以看到ACK为20404 seq为11正好跟上面完全相反。

他们之间的规律是seq 代表着发送方发送的数据起始位数(第一次发送的起始位并不是0或者1而是一个随机数),ack代表着接收方接收到的位数+1(如ack为1000则代表接收了999的数据下一次希望接收到1000开头的数据)

在这里可能很多人想到了三次握手四次挥手,但是不必纠结为什么是三次,两次不行吗。他们的最终目的都是为了数据的安全有效传输。

三次握手:

目的: 连接到服务器的指定端口,并建立TCP连接,同步双方的序列号和确认号并交换TCP窗口信息

1、第一次握手 客户端发送一个没有数据的包(tcp头 syn = 1 seq = x)给服务端, 代表客户端进入syn-send(同步已发送)状态

2、第二次握手 服务端接收报文后,如果同意建立连接会返回一个syn = 1 seq = y = x+1 ack = x +1的数据包,代表服务端也进入syn-send(同步已收到)

3、第三次握手 客户端接收到服务端的响应后 再次给服务端发送 seq = x + 1 ack = y+1 代表客户端收到服务端的确认信息,并再次发送给服务端表示 我确认了你的确认 这时双方都进入 ESTABLISHED状态,双方可以传输数据了

为什么客户端要发送两次请求给服务端?

第二次返回给服务端的确认信息之前,其实双方已经都是处于syn-send状态 已经可以开始通信了,但是因为存在数据丢失(丢包),所以存在重试机制,如果第一次请求失败,会在一段时间后重试第二次,如果恰好第一次失败是网络问题或者其他临时阻塞问题,那么就会产生同时两个请求并且 第二次重试的正确请求可能会被遗弃,数据返回到被客户端放弃的第一次失败请求上。

删除阶段 可能客户端主动断开,也可能服务端主动断开。

四次挥手:

以客户端主动发起断开连接为例

1、第一次挥手:客户端发送FIN =1 给服务端,表示我没数据发了,你还有没有数据发?没数据就👋🏻了

2、第二次挥手:服务器发送ACK = 1 表示我收到你的消息了,但是要不要关闭 我还要看一下数据还要不要发,先给你回个信,你先等一会

3、第三次挥手:服务端发送FIN = 1 表示我没数据了,你关吧

4、第四次挥手:客户端发送 ACK = 1 表示我关好了 你也关吧。

可能有人觉得第二次挥手是不是没有必要 可以将第二次跟第三次挥手结合到一个包发送这样效率不是更高吗,其实这里面也有一个问题存在就是,服务端接收到客户端发送的关闭请求后 并不会立即关闭,但是也不能客户端傻等着,必须要立即返回一个应答ack 表示信息收到,否则的话 客户端可能会重发该信息。

整体流程如下:

上面的传输 仅仅只是指的将数据通过协议栈组装成包,通过网卡转换为光或者电信号进行发送,而从网卡到服务器这段,则是需要整个互联网的协助。比如我们在weWork发送的一条信息, 它的旅程应该是在被组装成包之后,首先会通过ip找到最近的路由器,也就是weWork的路由器,weWork的路由器再会根据包里面目标地址的ip查找到下一个路由地址 并覆盖掉包里面之前的MAC地址(也可以称为改写),就这样通过以太网依次传递直到发送到最终目的地。

操作跟客户端相反,由网卡接收到光或者电信号,并将其转换为数字信号0跟1。转换完成后会检查包的格式,有没有被分片,及是否自己为接收方等等信息。

如果都符合的话,数据会被交到tcp模块进行处理,根据ip port等信息确定该数据是传输给哪个套接字的,找到后将数据read到应用程序。

㈤ 无论使用计算机做什么,都离不开数据的传输,互联网是怎样传输数据的

无论使用计算机做什么,都离不开数据的传输。在上网的时候,浏览一个网页,网页服务器要把网页的数据发给你;发电子邮件,你的计算机要把邮件的数据发给电子邮件服务器,电子邮件服务器还要把这些数据发给接收者的计算机;看一段视频,视频的数据也要通过网络传输到用户的计算机。

在这个信息爆炸的时代,每天都有庞大的数据在网络上流通,互联网线路的繁忙程度可能并不亚于世界上最繁忙的十字路口。

总结:

为了保证全世界数十亿台计算机中的任意两台之间都可以建立联系,在互联网上传输数据绝不是一件很简单的事情,需要做很多工作才可以使这个迷宫一样复杂的交通系统每天都正常运转。

㈥ 数据是如何在网络上传输的

我们电脑上的数据,是如何“走”到远端的另一台电脑的呢?这是个最基础的问题,可能很多人回答不上来,尽管我们每天都在使用网络。这里我们以一个最简单的“ping”命令,来解释一个数据包“旅程”。

假设:我的电脑A,向远在外地的朋友电脑B传输数据,最简单的就是“ping”一下,看看这个家伙的那一端网络通不通。A与B之间只有一台路由器。(路由器可能放在学校,社区或者电信机房,无所谓,基本原理是一样的)

具体过程如下------
1.“ping”命令所产生的数据包,我们归类为ICMP协议。说白了就是向目的地发送一个数据包,然后等待回应,如果回应正常则目的地的网络就是通的。当我们输入了“ping”命令之后,我们的机器(电脑A)就生成了一个包含ICMP协议域的数据包,姑且称之为“小德”吧~~~~

2.“小德”已经将ICMP协议打包到数据段里了,可是还不能发送,因为一个数据要想向外面传送,还得经过“有关部门”的批准------IP协议。IP要将你的“写信人地址”和“收信人地址”写到数据段上面,即:将数据的源IP地址和目的IP地址分别打包在“小德”的头部和尾部,这样一来,大家才知道你的数据是要送到哪里

3.准备工作还没有完。接下来还有部门要审核------ARP。ARP属于数据链路层协议,主要负责把IP地址对应到硬件地址。直接说吧,都怪交换机太“傻”,不能根据IP地址直接找到相应的计算机,只能根据硬件地址来找。于是,交换机就经常保留一张IP地址与硬件地址的对应表以便其查找目的地。而ARP就是用来生成这张表的。比如:当“小德”被送到ARP手里之后,ARP就要在表里面查找,看看“小德”的IP地址与交换机的哪个端口对应,然后转发过去。如果没找到,则发一个广播给所有其他的交换机端口,问这是谁的IP地址,如果有人回答,就转发给它。

4.经过一番折腾,“小德”终于要走出这个倒霉的局域网了。可在此之前,它们还没忘给“小德”屁股后面盖个“戳”,说是什么CRC校验值,怕“小德”在旅行途中缺胳膊少腿,还得麻烦它们重新发送。。。。。我靠~~~~注:很多人弄不清FCS和CRC。所谓的CRC是一种校验方法,用来确保数据在传输过程中不会丢包,损坏等等,FCS是数据包(准确的说是frame)里的一个区域,用来存放CRC的计算结果的。到了目的地之后,目的计算机要检查FCS里的CRC值,如果与原来的相同,则说明数据在途中没有损坏。

5.在走出去之前,那些家伙最后折磨了一次“小德”------把小德身上众多的0和1,弄成了什么“高电压”“低电压”,在双绞线上传送了出去。晕~~出趟门就这么麻烦吗?

6.坐着双绞线旅游,爽!可当看到很多人坐着同轴电缆,还有坐光纤的时候,小德又感觉不是那么爽了。就在这时,来到了旅途的中转站------路由器。这地方可是高级场所,人家直接查看IP地址!剩下的一概不管,交给下面的人去做。够牛吧?路由器的内部也有一张表,叫做路由表,里面标识着哪一个网络的IP对应着路由器的哪一个端口。这个表也不是天生就有的,而是靠路由器之间互相“学习”之后生成的,当然也可以由管理员手工设定。这个“学习”的过程是依靠路由协议来完成的,比如RIP,EIGRP,OSPF等等。

7.当路由器查看了“小德”的IP地址以后,根据路由表知道了小德要去的网络,接着就把小德转到了相应的端口了。至此,路由器的主要工作完成,下面又是打包,封装成frame,转换成电压信号等一系列“折腾”的活,就由数据链路层和物理层的模块去干吧。

8.小德从路由器的出口出来,便来到了目的地----电脑B----所属的网络的默认网关。默认网关可以是路由器的一个端口,也可以是局域网里的各种服务器。不管怎样,下面的过程还是一样的:到交换机里的ARP表查询“小德”的IP地址,看看属于哪个局域网段或端口,然后就转发到B了。

9.进了B的网卡之后,还要层层“剥皮”,基本上和从A出来的程序是一样的------电脑B先校验一下CRC值,看看数据是否完整;然后检查一下frame的封装,看到是IP协议之后,就把“小德”交给IP“部门”了;IP协议一看目的地址,正确,再看看应用协议,是ICMP。于是知道了该怎么做了------产生一个回应数据包,(可以命名为“回应小德”),并准备以同样的顺序向远端的A发送。。至于刚刚收到的那个数据包就丢弃了。

10.“回应小德”这个数据包又开始了上述同样的循环,只不过这次发送者是B而接收者是A了。

以上是一个最简单的路由过程,任何复杂的网络都是在次基础之上实现的。

㈦ 电脑怎样通过互联网传输数据

网络中数据传输过程

我们每天都在使用互联网,我们电脑上的数据是怎么样通过互联网传输到到另外的一台电脑上的呢?

我们知道现在的互联网中使用的TCP/IP协议是基于,OSI(开放系统互联)的七层参考模型的,(虽然不是完全符合)从上到下分别为 应用层 表示层 会话层 传输层 网络层 数据链路层和物理层。其中数据链路层又可是分为两个子层分别为逻辑链路控制层(Logic Link Control,LLC )和介质访问控制层((Media Access Control,MAC )也就是平常说的MAC层。LLC对两个节点中的链路进行初始化,防止连接中断,保持可靠的通信。MAC层用来检验包含在每个桢中的地址信息。在下面会分析到。还要明白一点路由器是在网路层的,而网卡在数据链路层。

我们知道,ARP(Address Resolution Protocol,地址转换协议)被当作底层协议,用于IP地址到物理地址的转换。在以太网中,所有对IP的访问最终都转化为对网卡MAC地址的访问。如果主机A的ARP列表中,到主机B的IP地址与MAC地址对应不正确,由A发往B数据包就会发向错误的MAC地址,当然无法顺利到达B,结 果是A与B根本不能进行通信。

首先我们分析一下在同一个网段的情况。假设有两台电脑分别命名为A和B,A需要相B发送数据的话,A主机首先把目标设备B的IP地址与自己的子网掩码进行“与”操作,以判断目标设备与自己是否位于同一网段内。如果目标设备在同一网段内,并且A没有获得与目标设备B的IP地址相对应的MAC地址信息,则源设备(A)以第二层广播的形式(目标MAC地址为全1)发送ARP请求报文,在ARP请求报文中包含了源设备(A)与目标设备(B)的IP地址。同一网段中的所有其他设备都可以收到并分析这个ARP请求报文,如果某设备发现报文中的目标IP地址与自己的IP地址相同,则它向源设备发回ARP响应报文,通过该报文使源设备获得目标设备的MAC地址信息。为了减少广播量,网络设备通过ARP表在缓存中保存IP与MAC地址的映射信息。在一次 ARP的请求与响应过程中,通信双方都把对方的MAC地址与IP地址的对应关系保存在各自的ARP表中,以在后续的通信中使用。ARP表使用老化机制,删除在一段时间内没有使用过的IP与MAC地址的映射关系。一个最基本的网络拓扑结构:

PC-A并不需要获取远程主机(PC-C)的MAC地址,而是把IP分组发向缺省网关,由网关IP分组的完成转发过程。如果源主机(PC-A)没有缺省网关MAC地址的缓存记录,则它会通过ARP协议获取网关的MAC地址,因此在A的ARP表中只观察到网关的MAC地址记录,而观察不到远程主机的 MAC地址。在以太网(Ethernet)中,一个网络设备要和另一个网络设备进行直接通信,

除了知道目标设备的网络层逻辑地址(如IP地址)外,还要知道目标设备的第二层物理地址(MAC地址)。ARP协议的基本功能就是通过目标设备的IP地址,查询目标设备的MAC地址,以保证通信的顺利进行。 数据包在网络中的发送是一个及其复杂的过程,上图只是一种很简单的情况,中间没有过多的中间节点,其实现实中只会比这个更复杂,但是大致的原理是一致的。

(1)PC-A要发送数据包到PC-C的话,如果PC-A没有PC-C的IP地址,则PC-A首先要发出一个dns的请求,路由器A或者dns解析服务器会给PC-A回应PC-C的ip地址,这样PC-A关于数据包第三层的IP地址信息就全了:源IP地址:PC-A,目的ip地址:PC-C。

(2)接下来PC-A要知道如何到达PC-C,然后,PC-A会发送一个arp的地址解析请求,发送这个地址解析请求,不是为了获得目标主机PC-C的MAC地址,而是把请求发送到了路由器A中,然后路由器A中的MAC地址会发送给源主机PC-A,这样PC-A的数据包的第二层信息也全了,源MAC地址:PC-A的MAC地址,目的MAC地址:路由器A的MAC地址,

(3)然后数据会到达交换机A,交换机A看到数据包的第二层目的MAC地址,是去往路由器A的,就把数据包发送到路由器A,路由器A收到数据包,首先查看数据包的第三层ip目的地址,如果在自己的路由表中有去往PC-C的路由,说明这是一个可路由的数据包。 (4)然后路由器进行IP重组和分组的过程。首先更换此数据包的第二层包头信息,路由器PC-A到达PC—C要经过一个广域网,在这里会封装很多广域网相关的协议。其作用也是为了找下一阶段的信息。同时对第二层和第三层的数据包重校验。把数据经过Internet发送出去。最后经过很多的节点发送到目标主机PC_C中。

现在我们想一个问题,PC-A和PC-C的MAC地址如果是相同的话,会不会影响正常的通讯呢!答案是不会影响的,因为这两个主机所处的局域网被广域网分隔开了,通过对发包过程的分析可以看出来,不会有任何的问题。而如果在同一个局域网中的话,那么就会产生通讯的混乱。当数据发送到交换机是,这是的端口信息会有两个相同的MAC地址,而这时数据会发送到两个主机上,这样信息就会混乱。因此这也是保证MAC地址唯一性的一个理由。


  • 我暂且按我的理解说说吧。

先看一下计算机网络OSI模型的七个层次:

┌—————┐

│ 应用层 │←第七层

├—————┤

│ 表示层 │

├—————┤

│ 会话层 │

├—————┤

│ 传输层 │

├—————┤

│ 网络层 │

├—————┤

│数据链路层│

├—————┤

│ 物理层 │←第一层

└—————┘


而我们现在用的网络通信协议TCP/IP协议者只划分了四成:


┌—————┐

│ 应用层 │ ←包括OSI的上三层

├—————┤

│ 传输层 │

├—————┤

│ 网络层 │

├—————┤

│网络接口层 │←包括OSI模型的下两层,也就是各种不同局域网。

└—————┘


两台计算机通信所必须需要的东西:IP地址(网络层)+端口号(传送层)。


两台计算机通信(TCP/IP协议)的最精简模型大致如下:


主机A---->路由器(零个或多个)---->主机B


举个例子:主机A上的应用程序a想要和主机B上面的应用程序b通信,大致如下


程序a将要通信的数据发到传送层,在传送层上加上与该应用程序对应的通信端口号(主机A上不同的应用程序有不同的端口号),如果是用的TCP的话就加上TCP头部,UDP就加上UDP头部。

在传送成加上头部之后继续向往下传到网络层,然后加上IP头部(标识主机地址以及一些其他的数据,这里就不详细说了)。

然后传给下层到数据链路层封装成帧,最后到物理层变成二进制数据经过编码之后向外传输。


在这个过程中可能会经过许多各种各样的局域网,举个例子:


主机A--->(局域网1--->路由器--->局域网2)--->主机B


这个模型比上面一个稍微详细点,其中括号里面的可以没有也可能有一个或多个,这个取决于你和谁通信,也就是主机B的位置。


主机A的数据已经到了具体的物理介质了,然后经过局域网1到了路由器,路由器接受主机A来的数据先经过解码,还原成数据帧,然后变成网络层数据,这个过程也就是主机A的数据经过网络层、数据链路层、物理层在路由器上面的一个反过程。

然后路由器分析主机A来的数据的IP头部(也就是在主机A的网络层加上的数据),并且修改头部中的一些内容之后继续把数据传送出去。


一直到主机B收到数据为止,主机B就按照主机A处理数据的反过程处理数据,直到把数据交付给主机B的应用程序b。完成主机A到主机B的单方向通信。


这里的主机A、B只是为了书写方便而已,可能通信的双方不一定就是个人PC,服务器与主机,主机与主机,服务器与服务器之间的通信大致都是这样的。


再举个例子,我们开网页上网络:

就是我们的主机浏览器的这个应用程序和网络的服务器之间的通信。应用成所用的协议就是HTTP,而服务器的端口号就是熟知端口号80.


大致过程就是上面所说,其中的细节很复杂,任何一个细节都可以写成一本书,对于非专业人员也没有必要深究。

㈧ 互联网是如何连接在一起的

互联网是一个个小型的局域网,通过一组组通用的网络协议进行串联形成的巨大网络。互联网始于1969年美国的阿帕网,这种将计算机网络互相联接在一起的方法可称作“网络互联”,在这基础上发展出覆盖全世界的全球性互联网络称互联网,

(8)我们的网络是怎样连接传播数据的扩展阅读:

网络数据运行原理

计算机网络是由许多计算机组成的,要实现网络的计算机之间传输数据,必须做两件事,数据传输目的地址和保证数据迅速可靠传输的措施,这是因为数据在传输过程中很容易丢失或传错,Internet使用一种专门的计算机语言(协议),以保证数据安全、可靠地到达指定的目的地。

互联网基本优点

1、互联网能够不受空间限制来进行信息交换。

2、信息交换具有时域性(更新速度快)。

3、交换信息具有互动性(人与人,人与信息之间可以互动交流)。

4、信息交换的使用成本低(通过信息交换,代替实物交换)。

5、信息交换的发展趋向于个性化(容易满足每个人的个性化需求)。

6、使用者众多。

7、有价值的信息被资源整合,信息储存量大、高效、快速。

8、信息交换能以多种形式存在(视频、图片、文字等等)。

参考资料来源:网络--互联网

㈨ 网络数据是如何在TCP/IP各层之间传输的

逻辑链路控制层(Logic Link Control,LLC )

LLC对两个节点中的链路进行初始化,防止连接中断,保持可靠的通信。

介质访问控制层((Media Access Control,MAC )也就是平常说的MAC层。

MAC层用来检验包含在每个桢中的地址信息。

在下面会分析到。还要明白一点路由器是在网路层的,而网卡在数据链路层。

我们知道,ARP(Address Resolution Protocol,地址转换协议)被当作底层协议,用于IP地址到物理地址的转换。在以太网中,所有对IP的访问最终都转化为对网卡MAC地址的访问。如果主机A的ARP列表中,到主机B的IP地址与MAC地址对应不正确,由A发往B数据包就会发向错误的MAC地址,当然无法顺利到达B,结果是A与B根本不能进行通信。

首先我们分析一下在同一个网段的情况。假设有两台电脑分别命名为A和B,A需要相B发送数据的话,A主机首先把目标设备B的IP地址与自己的子网掩码进行“与”操作,以判断目标设备与自己是否位于同一网段内。如果目标设备在同一网段内,并且A没有获得与目标设备B的IP地址相对应的MAC地址信息,则源设备(A)以第二层广播的形式(目标MAC地址为全1)发送ARP请求报文,在ARP请求报文中包含了源设备(A)与目标设备(B)的IP地址。同一网段中的所有其他设备都可以收到并分析这个ARP请求报文,如果某设备发现报文中的目标IP地址与自己的IP地址相同,则它向源设备发回ARP响应报文,通过该报文使源设备获得目标设备的MAC地址信息。为了减少广播量,网络设备通过ARP表在缓存中保存IP与MAC地址的映射信息。在一次 ARP的请求与响应过程中,通信双方都把对方的MAC地址与IP地址的对应关系保存在各自的ARP表中,以在后续的通信中使用。ARP表使用老化机制,删除在一段时间内没有使用过的IP与MAC地址的映射关系。