当前位置:首页 » 网络连接 » 计算机网络简明教程笔记
扩展阅读
品牌服装店哪个网站最好 2025-09-22 17:24:48

计算机网络简明教程笔记

发布时间: 2022-12-07 07:46:03

㈠ 计算机知识

OSI/RM(Open System Interconnection/Reference Model)——开放系统互连参考模型,1983年ISO颁布的网络体系结构标准。从低到高分七层:物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。各层之间相对独立,第N层向N+1层提供服务。
OSI/RM的主要缺点:
OSI模型的层次数量与内容不是最佳的,会话层和表示层这两层几乎是空的,而数据链路层和网络层包含内容太多,有很多的子层插入,每个子层都有不同的功能。OSI模型以及相应的服务定义和协议极其复杂,它们很难实现,有些功能,如缟址、流控制和差错控制,都会在每一层上重复出现,降低了系统的效率。
分层原则
ISO将整个通信功能划分为7个层次,分层原则如下:
网络中各结点都有相同的层次
不同结点的同等层具有相同的功能
同一结点内相邻层之间通过接口通信
每一层使用下层提供的服务,并向其上层提供服务
不同结点的同等层按照协议实现对等层之间的通信
1.物理层: 数据单位——比特,传输方式一般为串行
功能:①提供物理链路所需的机械(设备)、电气(信号)、功能和规程(单工、半双工、全双工)
②为数据链路层提供服务,从数据链路层接收数据,并按规定形式的信号和格式将数据发送。
③向数据链路层提供数据(把比特流还原为数据链路层可以理解的格式)和电路标识、故障状态
及服务质量参数等等
2.数据链路层:为网络层提供服务,从源开放系统的网络层向目的开放系统的网络层传输数据,屏蔽了
物理层的特征。数据单位:帧
数据链路层完成从物理层到网络层的过度、准备工作
功能:①传输管理:为网络层提供低出错率、高可靠性的数据链路
▲②流量控制:协调主机和通信设备之间的数据传输率
此处流量控制相邻节点之间的数据链路层的流量控制
控制对象:数据帧
3.网络层: 处理与寻址和传输有关的管理问题(这里所说的传输有关问题是指提供传输基础、准备工作)
同一LAN内可以省略该层。 数据单位:分组
功能:①路由选择与中断
②控制分组传送系统的操作
▲③控制流量,以防网络过于拥挤
此处流量控制是源节点到目的节点之间整个通信子网的流量,对进入分组交换网的通信量进行控制。
控制对象:数据分组
④建立和撤销网络连接————点对点的连接
⑤对传输层屏蔽低层的传输细节
⑥对数据分段合段,对数据惊醒差错检测和恢复,向传输层报告未恢复的错误
⑦根据传输层的要求来选择服务,实现单链上的多网络连接复用
4.传输层:数据核对和初步整理。数据单位:报文
功能:①建立、维护和撤销传输连接————端对端的连接
▲②控制流量,差错控制(使高层受到的数据几乎完整无差错)
此处的流量控制是源主机到目的主机之间传输实体端到端的流量控制。
控制对象:传输协议数据单元(TPDU)
③选择合适的网络层服务以实现其功能
④提供数据的编号、排序、拼接以及重同步功能
5.会话层: 数据传输的“中间商”角色,负责数据传输的“售后服务”
功能:①提供两进程之间建立、维护和结束会话连接的功能
②管理会话(三种数据流的控制,即一路交互、两路交互和两路同时会话)
③同步,在数据中插入同步点
传输层和会话层一般结合使用
6.表示层:隐藏不同硬件间的差异,使不同计算机互联数据的最终处理,供用户使用
功能:①代表应用层协商数据表示
②完成对传输数据的转化,如格式化、加/解密、压缩/解压
7.应用层:提供OSI用户服务,如事务处理、文件传输、数据检索、网络管理、加密
会话层、表示层、应用层合称高层,数据单位:报文

㈡ 大学的计算机网络课程该怎么学习,记笔记 自从上了大学,我们好多课程都变成了在网上看视频学习,尤

2级c语言比较好过,把书看懂,把题目弄清楚,再做几套模拟题,就够了

㈢ 哪位大神有计算机网络的视频课程

最近在B站上发现一个很不错的视频,楼主可以看看
计算机网络简明教程及仿真实验(陆续更新中)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili https://www.bilibili.com/video/av34135819/

㈣ 想仔细详细的学习计算机网络 求教程啊

我也学习的计算机 涉及网络的课程有很多 先看计算机网络应用 了解什么是计算机网络
然后我们学的一些软件的使用和编程

㈤ 关于计算机基础知识

您好,
填空题答案如下:
ABADD

----------------全心全意为人民服务!----------------

如果我的答案对您有帮助,那么我倍感欣慰,您的支持就是我前进的动力!
如果我的答案不够清楚、详细,那么我会继续努力!

㈥ 计算机网络自学笔记:TCP

如果你在学习这门课程,仅仅为了理解网络工作原理,那么只要了解TCP是可靠传输,数据传输丢失时会重传就可以了。如果你还要参加研究生考试或者公司面试等,那么下面内容很有可能成为考查的知识点,主要的重点是序号/确认号的编码、超时定时器的设置、可靠传输和连接的管理。

1 TCP连接

TCP面向连接,在一个应用进程开始向另一个应用进程发送数据之前,这两个进程必须先相互“握手”,即它们必须相互发送某些预备报文段,以建立连接。连接的实质是双方都初始化与连接相关的发送/接收缓冲区,以及许多TCP状态变量。

这种“连接”不是一条如电话网络中端到端的电路,因为它们的状态完全保留在两个端系统中。

TCP连接提供的是全双工服务 ,应用层数据就可在从进程B流向进程A的同时,也从进程A流向进程B。

TCP连接也总是点对点的 ,即在单个发送方与单个接收方之间建立连接。

一个客户机进程向服务器进程发送数据时,客户机进程通过套接字传递数据流。

客户机操作系统中运行的 TCP软件模块首先将这些数据放到该连接的发送缓存里 ,然后会不时地从发送缓存里取出一块数据发送。

TCP可从缓存中取出并放入报文段中发送的数据量受限于最大报文段长MSS,通常由最大链路层帧长度来决定(也就是底层的通信链路决定)。 例如一个链路层帧的最大长度1500字节,除去数据报头部长度20字节,TCP报文段的头部长度20字节,MSS为1460字节。

报文段被往下传给网络层,网络层将其封装在网络层IP数据报中。然后这些数据报被发送到网络中。

当TCP在另一端接收到一个报文段后,该报文段的数据就被放人该连接的接收缓存中。应用程序从接收缓存中读取数据流(注意是应用程序来读,不是操作系统推送)。

TCP连接的每一端都有各自的发送缓存和接收缓存。

因此TCP连接的组成包括:主机上的缓存、控制变量和与一个进程连接的套接字变量名,以及另一台主机上的一套缓存、控制变量和与一个进程连接的套接字。

在这两台主机之间的路由器、交换机中,没有为该连接分配任何缓存和控制变量。

2报文段结构

TCP报文段由首部字段和一个数据字段组成。数据字段包含有应用层数据。

由于MSS限制了报文段数据字段的最大长度。当TCP发送一个大文件时,TCP通常是将文件划分成长度为MSS的若干块。

TCP报文段的结构。

首部包括源端口号和目的端口号,它用于多路复用/多路分解来自或送至上层应用的数据。另外,TCP首部也包括校验和字段。报文段首部还包含下列字段:

32比特的序号字段和32比特的确认号字段。这些字段被TCP发送方和接收方用来实现可靠数据传输服务。

16比特的接收窗口字段,该字段用于流量控制。该字段用于指示接收方能够接受的字节数量。

4比特的首部长度字段,该字段指示以32比特的字为单位的TCP首部长度。一般TCP首部的长度就是20字节。

可选与变长的选项字段,该字段用于当发送方与接收方协商最大报文段长度,或在高速网络环境下用作窗口调节因子时使用。

标志字段ACK比特用于指示确认字段中的ACK值的有效性,即该报文段包括一个对已被成功接收报文段的确认。 SYN和FIN比特用于连接建立和拆除。 PSH、URG和紧急指针字段通常没有使用。

•序号和确认号

TCP报文段首部两个最重要的字段是序号字段和确认号字段。

TCP把数据看成一个无结构的但是有序的字节流。TCP序号是建立在传送的字节流之上,而不是建立在传送的报文段的序列之上。

一个报文段的序号是该报文段首字节在字节流中的编号。

例如,假设主机A上的一个进程想通过一条TCP连接向主机B上的一个进程发送一个数据流。主机A中的TCP将对数据流中的每一个字节进行编号。假定数据流由一个包含4500字节的文件组成(可以理解为应用程序调用send函数传递过来的数据长度),MSS为1000字节(链路层一次能够传输的字节数),如果主机决定数据流的首字节编号是7。TCP模块将为该数据流构建5个报文段(也就是分5个IP数据报)。第一个报文段的序号被赋为7;第二个报文段的序号被赋为1007,第三个报文段的序号被赋为2007,以此类推。前面4个报文段的长度是1000,最后一个是500。

确认号要比序号难理解一些。前面讲过,TCP是全双工的,因此主机A在向主机B发送数据的同时,也可能接收来自主机B的数据。从主机B到达的每个报文段中的序号字段包含了从B流向A的数据的起始位置。 因此主机B填充进报文段的确认号是主机B期望从主机A收到的下一报文段首字节的序号。

假设主机B已收到了来自主机A编号为7-1006的所有字节,同时假设它要发送一个报文段给主机A。主机B等待主机A的数据流中字节1007及后续所有字节。所以,主机B会在它发往主机A的报文段的确认号字段中填上1007。

再举一个例子,假设主机B已收到一个来自主机A的包含字节7-1006的报文段,以及另一个包含字节2007-3006的报文段。由于某种原因,主机A还没有收到字节1007-2006的报文段。

在这个例子中,主机A为了重组主机B的数据流,仍在等待字节1007。因此,A在收到包含字节2007-3006的报文段时,将会又一次在确认号字段中包含1007。 因为TCP只确认数据流中至第一个丢失报文段之前的字节数据,所以TCP被称为是采用累积确认。

TCP的实现有两个基本的选择:

1接收方立即丢弃失序报文段;

2接收方保留失序的字节,并等待缺少的字节以填补该间隔。

一条TCP连接的双方均可随机地选择初始序号。 这样做可以减少将那些仍在网络中的来自两台主机之间先前连接的报文段,误认为是新建连接所产生的有效报文段的可能性。

•例子telnet

Telnet由是一个用于远程登录的应用层协议。它运行在TCP之上,被设计成可在任意一对主机之间工作。

假设主机A发起一个与主机B的Telnet会话。因为是主机A发起该会话,因此主机A被标记为客户机,主机B被标记为服务器。用户键入的每个字符(在客户机端)都会被发送至远程主机。远程主机收到后会复制一个相同的字符发回客户机,并显示在Telnet用户的屏幕上。这种“回显”用于确保由用户发送的字符已经被远程主机收到并处理。因此,在从用户击键到字符显示在用户屏幕上之间的这段时间内,每个字符在网络中传输了两次。

现在假设用户输入了一个字符“C”,假设客户机和服务器的起始序号分别是42和79。前面讲过,一个报文段的序号就是该报文段数据字段首字节的序号。因此,客户机发送的第一个报文段的序号为42,服务器发送的第一个报文段的序号为79。前面讲过,确认号就是主机期待的数据的下一个字节序号。在TCP连接建立后但没有发送任何数据之前,客户机等待字节79,而服务器等待字节42。

如图所示,共发了3个报文段。第一个报文段是由客户机发往服务器,其数据字段里包含一字节的字符“C”的ASCII码,其序号字段里是42。另外,由于客户机还没有接收到来自服务器的任何数据,因此该报文段中的确认号字段里是79。

第二个报文段是由服务器发往客户机。它有两个目的:第一个目的是为服务器所收到的数据提供确认。服务器通过在确认号字段中填入43,告诉客户机它已经成功地收到字节42及以前的所有字节,现在正等待着字节43的出现。第二个目的是回显字符“C”。因此,在第二个报文段的数据字段里填入的是字符“C”的ASCII码,第二个报文段的序号为79,它是该TCP连接上从服务器到客户机的数据流的起始序号,也是服务器要发送的第一个字节的数据。

这里客户机到服务器的数据的确认被装载在一个服务器到客户机的数据的报文段中,这种确认被称为是捎带确认.

第三个报文段是从客户机发往服务器的。它的唯一目的是确认已从服务器收到的数据。

3往返时延的估计与超时

TCP如同前面所讲的rdt协议一样,采用超时/重传机制来处理报文段的丢失问题。最重要的一个问题就是超时间隔长度的设置。显然,超时间隔必须大于TCP连接的往返时延RTT,即从一个报文段发出到收到其确认时。否则会造成不必要的重传。

•估计往返时延

TCP估计发送方与接收方之间的往返时延是通过采集报文段的样本RTT来实现的,就是从某报文段被发出到对该报文段的确认被收到之间的时间长度。

也就是说TCP为一个已发送的但目前尚未被确认的报文段估计sampleRTT,从而产生一个接近每个RTT的采样值。但是,TCP不会为重传的报文段计算RTT。

为了估计一个典型的RTT,采取了某种对RTT取平均值的办法。TCP据下列公式来更新

EstimatedRTT=(1-)*EstimatedRTT+*SampleRTT

即估计RTT的新值是由以前估计的RTT值与sampleRTT新值加权组合而成的。

参考值是a=0.125,因此是一个加权平均值。显然这个加权平均对最新样本赋予的权值

要大于对老样本赋予的权值。因为越新的样本能更好地反映出网络当前的拥塞情况。从统计学观点来讲,这种平均被称为指数加权移动平均

除了估算RTT外,还需要测量RTT的变化,RTT偏差的程度,因为直接使用平均值设置计时器会有问题(太灵敏)。

DevRTT=(1-β)*DevRTT+β*|SampleRTT-EstimatedRTT|

RTT偏差也使用了指数加权移动平均。B取值0.25.

•设置和管理重传超时间隔

假设已经得到了估计RTT值和RTT偏差值,那么TCP超时间隔应该用什么值呢?TCP将超时间隔设置成大于等于估计RTT值和4倍的RTT偏差值,否则将造成不必要的重传。但是超时间隔也不应该比估计RTT值大太多,否则当报文段丢失时,TCP不能很快地重传该报文段,从而将给上层应用带来很大的数据传输时延。因此,要求将超时间隔设为估计RTT值加上一定余量。当估计RTT值波动较大时,这个余最应该大些;当波动比较小时,这个余量应该小些。因此使用4倍的偏差值来设置重传时间。

TimeoutInterval=EstimatedRTT+4*DevRTT

4可信数据传输

因特网的网络层服务是不可靠的。IP不保证数据报的交付,不保证数据报的按序交付,也不保证数据报中数据的完整性。

TCP在IP不可靠的尽力而为服务基础上建立了一种可靠数据传输服务。

TCP提供可靠数据传输的方法涉及前面学过的许多原理。

TCP采用流水线协议、累计确认。

TCP推荐的定时器管理过程使用单一的重传定时器,即使有多个已发送但还未被确认的报文段也一样。重传由超时和多个ACK触发。

在TCP发送方有3种与发送和重传有关的主要事件:从上层应用程序接收数据,定时器超时和收到确认ACK。

从上层应用程序接收数据。一旦这个事件发生,TCP就从应用程序接收数据,将数据封装在一个报文段中,并将该报文段交给IP。注意到每一个报文段都包含一个序号,这个序号就是该报文段第一个数据字节的字节流编号。如果定时器还没有计时,则当报文段被传给IP时,TCP就启动一个该定时器。

第二个事件是超时。TCP通过重传引起超时的报文段来响应超时事件。然后TCP重启定时器。

第三个事件是一个来自接收方的确认报文段(ACK)。当该事件发生时,TCP将ACK的值y与变量SendBase(发送窗口的基地址)进行比较。TCP状态变量SendBase是最早未被确认的字节的序号。就是指接收方已正确按序接收到数据的最后一个字节的序号。TCP采用累积确认,所以y确认了字节编号在y之前的所有字节都已经收到。如果Y>SendBase,则该ACK是在确认一个或多个先前未被确认的报文段。因此发送方更新其SendBase变量,相当于发送窗口向前移动。

另外,如果当前有未被确认的报文段,TCP还要重新启动定时器。

快速重传

超时触发重传存在的另一个问题是超时周期可能相对较长。当一个报文段丢失时,这种长超时周期迫使发送方等待很长时间才重传丢失的分组,因而增加了端到端时延。所以通常发送方可在超时事件发生之前通过观察冗余ACK来检测丢包情况。

冗余ACK就是接收方再次确认某个报文段的ACK,而发送方先前已经收到对该报文段的确认。

当TCP接收方收到一个序号比所期望的序号大的报文段时,它认为检测到了数据流中的一个间隔,即有报文段丢失。这个间隔可能是由于在网络中报文段丢失或重新排序造成的。因为TCP使用累计确认,所以接收方不向发送方发回否定确认,而是对最后一个正确接收报文段进行重复确认(即产生一个冗余ACK)

如果TCP发送方接收到对相同报文段的3个冗余ACK.它就认为跟在这个已被确认过3次的报文段之后的报文段已经丢失。一旦收到3个冗余ACK,TCP就执行快速重传 ,

即在该报文段的定时器过期之前重传丢失的报文段。

5流量控制

前面讲过,一条TCP连接双方的主机都为该连接设置了接收缓存。当该TCP连接收到正确、按序的字节后,它就将数据放入接收缓存。相关联的应用进程会从该缓存中读取数据,但没必要数据刚一到达就立即读取。事实上,接收方应用也许正忙于其他任务,甚至要过很长时间后才去读取该数据。如果应用程序读取数据时相当缓慢,而发送方发送数据太多、太快,会很容易使这个连接的接收缓存溢出。

TCP为应用程序提供了流量控制服务以消除发送方导致接收方缓存溢出的可能性。因此,可以说 流量控制是一个速度匹配服务,即发送方的发送速率与接收方应用程序的读速率相匹配。

前面提到过,TCP发送方也可能因为IP网络的拥塞而被限制,这种形式的发送方的控制被称为拥塞控制(congestioncontrol)。

TCP通过让接收方维护一个称为接收窗口的变量来提供流量控制。接收窗口用于告诉发送方,该接收方还有多少可用的缓存空间。因为TCP是全双工通信,在连接两端的发送方都各自维护一个接收窗口变量。 主机把当前的空闲接收缓存大小值放入它发给对方主机的报文段接收窗口字段中,通知对方它在该连接的缓存中还有多少可用空间。

6 TCP连接管理

客户机中的TCP会用以下方式与服务器建立一条TCP连接:

第一步: 客户机端首先向服务器发送一个SNY比特被置为1报文段。该报文段中不包含应用层数据,这个特殊报文段被称为SYN报文段。另外,客户机会选择一个起始序号,并将其放置到报文段的序号字段中。为了避免某些安全性攻击,这里一般随机选择序号。

第二步: 一旦包含TCP报文段的用户数据报到达服务器主机,服务器会从该数据报中提取出TCPSYN报文段,为该TCP连接分配TCP缓存和控制变量,并向客户机TCP发送允许连接的报文段。这个允许连接的报文段还是不包含应用层数据。但是,在报文段的首部却包含3个重要的信息。

首先,SYN比特被置为1。其次,该 TCP报文段首部的确认号字段被置为客户端序号+1最后,服务器选择自己的初始序号,并将其放置到TCP报文段首部的序号字段中。 这个允许连接的报文段实际上表明了:“我收到了你要求建立连接的、带有初始序号的分组。我同意建立该连接,我自己的初始序号是XX”。这个同意连接的报文段通常被称为SYN+ACK报文段。

第三步: 在收到SYN+ACK报文段后,客户机也要给该连接分配缓存和控制变量。客户机主机还会向服务器发送另外一个报文段,这个报文段对服务器允许连接的报文段进行了确认。因为连接已经建立了,所以该ACK比特被置为1,称为ACK报文段,可以携带数据。

一旦以上3步完成,客户机和服务器就可以相互发送含有数据的报文段了。

为了建立连接,在两台主机之间发送了3个分组,这种连接建立过程通常被称为 三次握手(SNY、SYN+ACK、ACK,ACK报文段可以携带数据) 。这个过程发生在客户机connect()服务器,服务器accept()客户连接的阶段。

假设客户机应用程序决定要关闭该连接。(注意,服务器也能选择关闭该连接)客户机发送一个FIN比特被置为1的TCP报文段,并进人FINWAIT1状态。

当处在FINWAIT1状态时,客户机TCP等待一个来自服务器的带有ACK确认信息的TCP报文段。当它收到该报文段时,客户机TCP进入FINWAIT2状态。

当处在FINWAIT2状态时,客户机等待来自服务器的FIN比特被置为1的另一个报文段,

收到该报文段后,客户机TCP对服务器的报文段进行ACK确认,并进入TIME_WAIT状态。TIME_WAIT状态使得TCP客户机重传最终确认报文,以防该ACK丢失。在TIME_WAIT状态中所消耗的时间是与具体实现有关的,一般是30秒或更多时间。

经过等待后,连接正式关闭,客户机端所有与连接有关的资源将被释放。 因此TCP连接的关闭需要客户端和服务器端互相交换连接关闭的FIN、ACK置位报文段。

㈦ 计算机网络笔记——数据链路层(停等协议、GBN、SR)

流量控制:防止发送端发送和接收端接收速度不匹配造成传输错误

传输层和数据链路层均有流量控制,但是控制手法不一样

传输层:端到端,接收端向发送端发送一个窗口公告。告诉发送端目前我能接收多少
数据链路层:点到点,接收端接收不下的就不回复确认(ack),让发送端自己重传

涉及协议较多分批写

优点 :最简单的控制协议
缺点 :但是性能较弱,信道利用率低

控制方法
发送方:发送一个帧
接收方:接收到帧后返回改帧的ack
发送方:接收到ack后发送下一个帧

差错控制

注意

滑动窗口协议是基于停止等待协议的优化版本
停止等待协议性能是因为需要等待ack之后才能发送下一个帧,在传送的很长时间内信道一直在等待状态
滑动窗口则利用缓冲思想,允许连续发送(未收到ack之前)多个帧,以加强信道利用

窗口 :其实就是缓冲帧的一个容器,将处理好的帧发送到缓冲到窗口,可以发送时就可以直接发送,借此优化性能。一个帧对应一个窗口。

GBN是滑动窗口中的一种,其中 发送窗口 > 1 , 接收窗口=1 因发送错误后需要退回到最后正确连续帧位置开始重发,故而得名。

控制方法
发送端:在将发送窗口内的数据连续发送
接收端:收到一个之后向接收端发送累计确认的ack
发送端:收到ack后窗口后移发送后面的数据

累计确认 :累计确认允许接收端一段时间内发送一次ack而不是每一个帧都需要发送ack。该确认方式确认代表其前面的帧都以正确接收到
eg:发送端发送了编号 0,1,2,3,4,5 的帧,等待一段时间后(超过3的超时计时器)累计收到的ack对应 0,2 帧,则证明已经成功 0,1,2 均已经成功接收, 3 传输错误。并且哪怕 4,5 两个帧接收成功后也不会返回 4,5 的ack会一直等待从 3 开始重传

差错控制

发送帧丢失、ack丢失、ack迟到 等处理方法基本和停等协议相同,不同的是采用累计确认恢复的方式,当前面的帧出错之后后面帧无论是否发送成功都要重传

优点:信道利用率高(利用窗口有增加发送端占用,并且减少ack回复次数)
缺点:累计确认使得该方法只接收正确顺序的帧,而不接受乱序的帧,错误重传浪费严重

发送窗口大小问题
窗口理论上是越多性能越好,但是窗口不能无限大,n比特编码最大只能2^(n-1)个窗口,否则会造成帧无法区分(本质就是留了一个比特区分两组帧)

SR协议可以说是GBN的plus版本,在GBN的基础上改回每一个帧都要确认的机制,解决了累计确认只接收顺序帧的弊端只需要重发错误帧。
其中 发送窗口 > 1 , 接收窗口 > 1 , 接收窗口 > 发送窗口 (建议接 收窗口 = 发送窗口 接收窗口少了溢出多了浪费).

控制方法
发送端:将窗口内的数据连续发送
接收端:收到一个帧就将该帧缓存到窗口中并回复一个ack
接收端:接收到顺序帧后将数据提交给上层并接收窗口后移(若接收到的帧不是连续的顺序帧时接收窗口不移动)
发送端:接收到顺序帧的ack后发送窗口后移(同理发送窗口接收到的ack不连续也不移动)

差错控制

发送帧丢失、ack丢失、ack迟到 三类处理方式仍然和停等协议相同,不同的是SR向上层提交的是多个连续帧,停等只提交一个帧(不连续的帧要等接收或重传完成后才会提交)

发送窗口大小问题
同GBN一样,发送窗口和接收窗口都不能无限多,且不说缓存容量问题,当两组帧同时发送时会造成无法区分,大小上限仍然是2^(n-1)个窗口(本质就是留了一个比特写组号)

窗口大小这里留一张截图,方便理解
假设窗口大小都为3(图中编号到了3是借4窗口的图,正常应编号到2,但是不妨碍理解)
左边是错误重发,第一组的0帧ack丢失了
右边是正常收发

三种协议对比:
停等协议:单线程的傻子,简单不易出错,但是效率极其低下
GBN:假的多线程(接收端太坑啦),接收端是情种,只等待自己哪一个帧,丢弃了后来的帧
SR:多线程,接收端有收藏癖,等待集齐一套召唤神龙(提交给上层这只神龙……)

㈧ 计算机网络该怎么学

好的教学方式一定是讲的让别人能听懂,对于初学者,我认为好的方法应该是这样的:
1、从实际案例出发(比如我们在浏览器输入一个网址到展示出内容中间发生了什么事情)
2、计算机网络出现的背景是什么?遇到了什么问题?是为了解决什么问题?
不能一下子就陷入细节,一开始应该快速入门,了解其概貌。
3、入门后,然后再进阶学习,建议从自顶向下的方式来学习。
4、一定要多实战,通过抓包工具查看实际的数据包长啥样,通过动手实现一个聊天工具等。

㈨ 计算机网络基础怎么学

计算机网络基础学法:

1、看书:对于计算机比较基础的模块,我都是比较推荐找一本经典的书籍来好好学习下,不可以只看面经就去面试了。

2、做笔记:计算机网络的知识点还是比较多的,需要看书的时候做好笔记,方便复习。而且做笔记的时候可以就这个知识点去网络下,看看有没有自己遗漏的点,再给补充进来。

学习计算机网络时我们一般采用折中的办法,也就是中和 OSI 和 TCP/IP 的优点,采用一种只有五层协议的体系结构,这样既简洁又能将概念阐述清楚。

应用层(application-layer)的任务是通过应用进程间的交互来完成特定网络应用。应用层协议定义的是应用进程(进程:主机中正在运行的程序)间的通信和交互的规则。

对于不同的网络应用需要不同的应用层协议。在互联网中应用层协议很多,如域名系统 DNS,支持万维网应用的 HTTP 协议,支持电子邮件的 SMTP 协议等等。我们把应用层交互的数据单元称为报文。

运输层(transport layer)的主要任务就是负责向两台主机进程之间的通信提供通用的数据传输服务。应用进程利用该服务传送应用层报文。“通用的”是指并不针对某一个特定的网络应用,而是多种应用可以使用同一个运输层服务。

㈩ 计算机网络第四章(网络层)

4.1、网络层概述

简介

网络层的主要任务是 实现网络互连 ,进而 实现数据包在各网络之间的传输

这些异构型网络N1~N7如果只是需要各自内部通信,他们只要实现各自的物理层和数据链路层即可

但是如果要将这些异构型网络互连起来,形成一个更大的互联网,就需要实现网络层设备路由器

有时为了简单起见,可以不用画出这些网络,图中N1~N7,而将他们看做是一条链路即可

要实现网络层任务,需要解决一下主要问题:

网络层向运输层提供怎样的服务(“可靠传输”还是“不可靠传输”)

在数据链路层那课讲过的可靠传输,详情可以看那边的笔记:网络层对以下的 分组丢失 、 分组失序 、 分组重复 的传输错误采取措施,使得接收方能正确接受发送方发送的数据,就是 可靠传输 ,反之,如果什么措施也不采取,则是 不可靠传输

网络层寻址问题

路由选择问题

路由器收到数据后,是依据什么来决定将数据包从自己的哪个接口转发出去?

依据数据包的目的地址和路由器中的路由表

但在实际当中,路由器是怎样知道这些路由记录?

由用户或网络管理员进行人工配置,这种方法只适用于规模较小且网络拓扑不改变的小型互联网

另一种是实现各种路由选择协议,由路由器执行路由选择协议中所规定的路由选择算法,而自动得出路由表中的路有记录,这种方法更适合规模较大且网络拓扑经常改变的大型互联网

补充 网络层(网际层) 除了 IP协议 外,还有之前介绍过的 地址解析协议ARP ,还有 网际控制报文协议ICMP , 网际组管理协议IGMP

总结

4.2、网络层提供的两种服务

在计算机网络领域,网络层应该向运输层提供怎样的服务(“ 面向连接 ”还是“ 无连接 ”)曾引起了长期的争论。

争论焦点的实质就是: 在计算机通信中,可靠交付应当由谁来负责 ?是 网络 还是 端系统 ?

面向连接的虚电路服务

一种观点:让网络负责可靠交付

这种观点认为,应借助于电信网的成功经验,让网络负责可靠交付,计算机网络应模仿电信网络,使用 面向连接 的通信方式。

通信之前先建立 虚电路 (Virtual Circuit),以保证双方通信所需的一切网络资源。

如果再使用可靠传输的网络协议,就可使所发送的分组无差错按序到达终点,不丢失、不重复。

发送方 发送给 接收方 的所有分组都沿着同一条虚电路传送

虚电路表示这只是一条逻辑上的连接,分组都沿着这条逻辑连接按照存储转发方式传送,而并不是真正建立了一条物理连接。

请注意,电路交换的电话通信是先建立了一条真正的连接。

因此分组交换的虚连接和电路交换的连接只是类似,但并不完全一样

无连接的数据报服务

另一种观点:网络提供数据报服务

互联网的先驱者提出了一种崭新的网络设计思路。

网络层向上只提供简单灵活的、 无连接的 、 尽最大努力交付 的 数据报服务 。

网络在发送分组时不需要先建立连接。每一个分组(即 IP 数据报)独立发送,与其前后的分组无关(不进行编号)。

网络层不提供服务质量的承诺 。即所传送的分组可能出错、丢失、重复和失序(不按序到达终点),当然也不保证分组传送的时限。

发送方 发送给 接收方 的分组可能沿着不同路径传送

尽最大努力交付

如果主机(即端系统)中的进程之间的通信需要是可靠的,那么就由网络的 主机中的运输层负责可靠交付(包括差错处理、流量控制等) 。

采用这种设计思路的好处是 :网络的造价大大降低,运行方式灵活,能够适应多种应用。

互连网能够发展到今日的规模,充分证明了当初采用这种设计思路的正确性。

虚电路服务与数据报服务的对比

对比的方面 虚电路服务 数据报服务

思路 可靠通信应当由网络来保证 可靠通信应当由用户主机来保证

连接的建立 必须有 不需要

终点地址 仅在连接建立阶段使用,每个分组使用短的虚电路号 每个分组都有终点的完整地址

分组的转发 属于同一条虚电路的分组均按照同一路由进行转发 每个分组独立选择路由进行转发

当结点出故障时 所有通过出故障的结点的虚电路均不能工作 出故障的结点可能会丢失分组,一些路由可能会发生变化

分组的顺序 总是按发送顺序到达终点 到达终点时不一定按发送顺序

端到端的差错处理和流量控制 可以由网络负责,也可以由用户主机负责 由用户主机负责

4.3、IPv4

概述

分类编制的IPv4地址

简介

每一类地址都由两个固定长度的字段组成,其中一个字段是 网络号 net-id ,它标志主机(或路由器)所连接到的网络,而另一个字段则是 主机号 host-id ,它标志该主机(或路由器)。

主机号在它前面的网络号所指明的网络范围内必须是唯一的。

由此可见, 一个 IP 地址在整个互联网范围内是唯一的 。

A类地址

B类地址

C类地址

练习

总结

IP 地址的指派范围

一般不使用的特殊的 IP 地址

IP 地址的一些重要特点

(1) IP 地址是一种分等级的地址结构 。分两个等级的好处是:

第一 ,IP 地址管理机构在分配 IP 地址时只分配网络号,而剩下的主机号则由得到该网络号的单位自行分配。这样就方便了 IP 地址的管理。

第二 ,路由器仅根据目的主机所连接的网络号来转发分组(而不考虑目的主机号),这样就可以使路由表中的项目数大幅度减少,从而减小了路由表所占的存储空间。

(2) 实际上 IP 地址是标志一个主机(或路由器)和一条链路的接口 。

当一个主机同时连接到两个网络上时,该主机就必须同时具有两个相应的 IP 地址,其网络号 net-id 必须是不同的。这种主机称为 多归属主机 (multihomed host)。

由于一个路由器至少应当连接到两个网络(这样它才能将 IP 数据报从一个网络转发到另一个网络),因此 一个路由器至少应当有两个不同的 IP 地址 。

(3) 用转发器或网桥连接起来的若干个局域网仍为一个网络 ,因此这些局域网都具有同样的网络号 net-id。

(4) 所有分配到网络号 net-id 的网络,无论是范围很小的局域网,还是可能覆盖很大地理范围的广域网,都是平等的。

划分子网的IPv4地址

为什么要划分子网

在 ARPANET 的早期,IP 地址的设计确实不够合理:

IP 地址空间的利用率有时很低。

给每一个物理网络分配一个网络号会使路由表变得太大因而使网络性能变坏。

两级的 IP 地址不够灵活。

如果想要将原来的网络划分成三个独立的网路

所以是否可以从主机号部分借用一部分作为子网号

但是如果未在图中标记子网号部分,那么我们和计算机又如何知道分类地址中主机号有多少比特被用作子网号了呢?

所以就有了划分子网的工具: 子网掩码

从 1985 年起在 IP 地址中又增加了一个“ 子网号字段 ”,使两级的 IP 地址变成为 三级的 IP 地址 。

这种做法叫做 划分子网 (subnetting) 。

划分子网已成为互联网的正式标准协议。

如何划分子网

基本思路

划分子网纯属一个 单位内部的事情 。单位对外仍然表现为没有划分子网的网络。

从主机号 借用 若干个位作为 子网号 subnet-id,而主机号 host-id 也就相应减少了若干个位。

凡是从其他网络发送给本单位某个主机的 IP 数据报,仍然是根据 IP 数据报的 目的网络号 net-id,先找到连接在本单位网络上的路由器。

然后 此路由器 在收到 IP 数据报后,再按 目的网络号 net-id 和 子网号 subnet-id 找到目的子网。

最后就将 IP 数据报直接交付目的主机。

划分为三个子网后对外仍是一个网络

优点

1.  减少了 IP 地址的浪费        2.  使网络的组织更加灵活        3.  更便于维护和管理

划分子网纯属一个单位内部的事情,对外部网络透明 ,对外仍然表现为没有划分子网的一个网络。

子网掩码

(IP 地址) AND (子网掩码) = 网络地址 重要,下面很多相关知识都会用到

举例

例子1

例子2

默认子网掩码

总结

子网掩码是一个网络或一个子网的重要属性。

路由器在和相邻路由器交换路由信息时,必须把自己所在网络(或子网)的子网掩码告诉相邻路由器。

路由器的路由表中的每一个项目,除了要给出目的网络地址外,还必须同时给出该网络的子网掩码。

若一个路由器连接在两个子网上,就拥有两个网络地址和两个子网掩码。

无分类编址的IPv4地址

为什么使用无分类编址

无分类域间路由选择 CIDR (Classless Inter-Domain Routing)。

CIDR 最主要的特点

CIDR使用各种长度的“ 网络前缀 ”(network-prefix)来代替分类地址中的网络号和子网号。

IP 地址从三级编址(使用子网掩码)又回到了两级编址 。

如何使用无分类编址

举例

路由聚合(构造超网)

总结

IPv4地址的应用规划

给定一个IPv4地址快,如何将其划分成几个更小的地址块,并将这些地址块分配给互联网中不同网络,进而可以给各网络中的主机和路由器接口分配IPv4地址

定长的子网掩码FLSM(Fixed Length Subnet Mask)

划分子网的IPv4就是定长的子网掩码

举例

通过上面步骤分析,就可以从子网1 ~ 8中任选5个分配给左图中的N1 ~ N5

采用定长的子网掩码划分,只能划分出2^n个子网,其中n是从主机号部分借用的用来作为子网号的比特数量,每个子网所分配的IP地址数量相同

但是也因为每个子网所分配的IP地址数量相同,不够灵活,容易造成IP地址的浪费

变长的子网掩码VLSM(Variable Length Subnet Mask)

无分类编址的IPv4就是变长的子网掩码

举例

4.4、IP数据报的发送和转发过程

举例

源主机如何知道目的主机是否与自己在同一个网络中,是直接交付,还是间接交付?

可以通过 目的地址IP 和 源地址的子网掩码 进行 逻辑与运算 得到 目的网络地址

如果 目的网络地址 和 源网络地址 相同 ,就是 在同一个网络 中,属于 直接交付

如果 目的网络地址 和 源网络地址 不相同 ,就 不在同一个网络 中,属于 间接交付 ,传输给主机所在网络的 默认网关 (路由器——下图会讲解),由默认网关帮忙转发

主机C如何知道路由器R的存在?

用户为了让本网络中的主机能和其他网络中的主机进行通信,就必须给其指定本网络的一个路由器的接口,由该路由器帮忙进行转发,所指定的路由器,也被称为 默认网关

例如。路由器的接口0的IP地址192.168.0.128做为左边网络的默认网关

主机A会将该IP数据报传输给自己的默认网关,也就是图中所示的路由器接口0

路由器收到IP数据报后如何转发?

检查IP数据报首部是否出错:

若出错,则直接丢弃该IP数据报并通告源主机

若没有出错,则进行转发

根据IP数据报的目的地址在路由表中查找匹配的条目:

若找到匹配的条目,则转发给条目中指示的吓一跳

若找不到,则丢弃该数据报并通告源主机

假设IP数据报首部没有出错,路由器取出IP数据报首部各地址字段的值

接下来路由器对该IP数据报进行查表转发

逐条检查路由条目,将目的地址与路由条目中的地址掩码进行逻辑与运算得到目的网络地址,然后与路由条目中的目的网络进行比较,如果相同,则这条路由条目就是匹配的路由条目,按照它的下一条指示,图中所示的也就是接口1转发该IP数据报

路由器是隔离广播域的

4.5、静态路由配置及其可能产生的路由环路问题

概念

多种情况举例

静态路由配置

举例

默认路由

举例

默认路由可以被所有网络匹配,但路由匹配有优先级,默认路由是优先级最低的

特定主机路由

举例

有时候,我们可以给路由器添加针对某个主机的特定主机路由条目

一般用于网络管理人员对网络的管理和测试

多条路由可选,匹配路由最具体的

静态路由配置错误导致路由环路

举例

假设将R2的路由表中第三条目录配置错了下一跳

这导致R2和R3之间产生了路由环路

聚合了不存在的网络而导致路由环路

举例

正常情况

错误情况

解决方法

黑洞路由的下一跳为null0,这是路由器内部的虚拟接口,IP数据报进入它后就被丢弃

网络故障而导致路由环路

举例

解决方法

添加故障的网络为黑洞路由

假设。一段时间后故障网络恢复了

R1又自动地得出了其接口0的直连网络的路由条目

针对该网络的黑洞网络会自动失效

如果又故障

则生效该网络的黑洞网络

总结

4.6、路由选择协议

概述

因特网所采用的路由选择协议的主要特点

因特网采用分层次的路由选择协议

自治系统 AS :在单一的技术管理下的一组路由器,而这些路由器使用一种 AS 内部的路由选择协议和共同的度量以确定分组在该 AS 内的路由,同时还使用一种 AS 之间的路由选择协议用以确定分组在 AS之间的路由。

自治系统之间的路由选择简称为域间路由选择,自治系统内部的路由选择简称为域内路由选择

域间路由选择使用外部网关协议EGP这个类别的路由选择协议

域内路由选择使用内部网关协议IGP这个类别的路由选择协议

网关协议 的名称可称为 路由协议

常见的路由选择协议