当前位置:首页 » 网络连接 » 计算机网络最佳路由
扩展阅读
怎么自建网络信号 2025-09-21 18:39:52
中国当前网络安全现状 2025-09-21 18:34:40

计算机网络最佳路由

发布时间: 2022-12-14 23:24:05

计算机网络路由器

路由器(Router),是连接因特网中各局域网、广域网的设备,它会根据信道的情况自动选择和设定路由,以最佳路径,按前后顺序发送信号。 路由器是互联网络的枢纽,"交通警察"。目前路由器已经广泛应用于各行各业,各种不同档次的产品已成为实现各种骨干网内部连接、骨干网间互联和骨干网与互联网互联互通业务的主力军。路由和交换机之间的主要区别就是交换机发生在OSI参考模型第二层(数据链路层),而路由发生在第三层,即网络层。这一区别决定了路由和交换机在移动信息的过程中需使用不同的控制信息,所以说两者实现各自功能的方式是不同的。
路由器(Router)又称网关设备(Gateway)是用于连接多个逻辑上分开的网络,所谓逻辑网络是代表一个单独的网络或者一个子网。当数据从一个子网传输到另一个子网时,可通过路由器的路由功能来完成。因此,路由器具有判断网络地址和选择IP路径的功能,它能在多网络互联环境中,建立灵活的连接,可用完全不同的数据分组和介质访问方法连接各种子网,路由器只接受源站或其他路由器的信息,属网络层的一种互联设备。
路由器分本地路由器和远程路由器,本地路由器是用来连接网络传输介质的,如光纤、同轴电缆、双绞线;远程路由器是用来连接远程传输介质,并要求相应的设
模拟器中的路由器
备,如电话线要配调制解调器,无线要通过无线接收机、发射机。
路由器是互联网的主要结点设备。路由器通过路由决定数据的转发。转发策略称为路由选择(routing),这也是路由器名称的由来(router,转发者)。作为不同网络之间互相连接的枢纽,路由器系统构成了基于TCP/IP 的国际互联网络Internet 的主体脉络,也可以说,路由器构成了Internet的骨架。它的处理速度是网络通信的主要瓶颈之一,它的可靠性则直接影响着网络互连的质量。因此,在园区网、地区网、乃至整个Internet研究领域中,路由器技术始终处于核心地位,其发展历程和方向,成为整个Internet研究的一个缩影。在当前我国网络基础建设和信息建设方兴未艾之际,探讨路由器在互连网络中的作用、地位及其发展方向,对于国内的网络技术研究、网络建设,以及明确网络市场上对于路由器和网络互连的各种似是而非的概念,都有重要的意义。
出现了交换路由器产品,从本质上来说它不是什么新技术,而是为了提高通信能力,把交换机的原理组合到路由器中,使数据传输能力更快、更好。
电源接口(POWER):接口连接电源。
路由器接口(3张)
usb

复位键(RESET):此按键可以还原路由器的出厂设置。
猫(MODEM)或者是交换机与路由器连接口(WAN):此接口用一条网线与家用宽带调制解调器(或者与交换机)进行连接。
电脑与路由器连接口(LAN1~4):此接口用一条网线把电脑与路由器进行连接。
需注意的是:WAN口与LAN口一定不能接反。
家用无线路由器和有线路由器的IP地址根据品牌不同,主要有192.168.1.1和192.168.0.1两种。
IP地址与登录名称与密码一般标注在路由器的底部。
登录 无线路由器网 有的出厂默认登录账户:admin登录密码:admin
有的无线路由器的出厂默认登录账户是:admin 登录密码是空的。
(1)工作站A将工作站B的地址12.0.0.5连同数据信息以数据包的形式发送给路由器1。
(2)路由器1收到工作站A的数据包后,先从包头中取出地址12.0.0.5,并根据路径表计算出发往工作站B的最佳路径:R1->R2->R5->B;并将数据包发往路由器2。
(3)路由器2重复路由器1的工作,并将数据包转发给路由器5。
(4)路由器5同样取出目的地址,发现12.0.0.5就在该路由器所连接的网段上,于是将该数据包直接交给工作站B。
(5)工作站B收到工作站A的数据包,一次通信过程宣告结束。
希望我能帮助你解疑释惑。

Ⅱ 家用路由器哪个

推荐您选择tplink系列的路由器使用 tplink品牌的路由器性价比还是比较高的

无线路由器选购:

1.带宽多大。理论是越大越好了,比如150M或是450M之类的说法,所以一般来说还是会选择带宽更大的,而实际使用中也确实是有差别的。

2无线开关。有的无线路由器的带无线开关,直接一按这开关即可开启或关闭无线无线。这里提醒一下,现在很多软件可以在几秒钟内破解你的无线网络,我自己用这类软件了随处蹭网的,所以这个无线开关也可以算是防蹭网的实用功能吧,你不需要无线功能时最好关闭无线功能。

3.无线信号强度。这个一般不太好确定,如果你的距离较远、或障碍物较多,一般选择那种天线较多的比较好些。

4.WDS功能。现在仍然还有些无线路由器不支持无线桥接功能,若你有此需要,则要注意是否支持你需要的无线桥接也即WDS功能了。同样需要提醒的是,WDS技术本身有漏洞,知道的人可以利用PIN码直接破解你开启了WDS功能的网络的。所以最好还是用有线即网线来连接而不要用WDS无线桥接。

5.流量控制。稍好一点点的都支持根据IP来限制流量的,有的甚至支持根据协议等方法来限制流量的,按需要选择合适的即可,建议选购的时候多看看宣传图和说明书。

6.信号增强。某些路由器有无线信号增强功能,如TP-LINK的某些型号就有“Turbo”按键这个特殊的功能,确实十分的强悍的功能,可以考虑有这种调协的无线路由器。

7.家长控制。有的还带有家长控制功能,作为家长的你这个功能可十分的实用。

Ⅲ 计算机网络(四)网络层

主要任务是把分组从源端传到目的端,为分组交换网上的不同主机提供通信服务。网络层传输单位是数据报。

链路层数据帧可封装数据的上限称为最大传送单元MTU

标识:同一数据报的分片使用同一标识。

中间位DF(Don’t Fragment):

最低位MF(More Fragment):

片偏移:指出较长分组分片后,某片在原分组中的相对位置。以8B为单位。除了最后一个分片,每个分片长度一定是8B的整数倍。

IP地址:全世界唯一的32位/4字节标识符,标识路由器主机的接口。IP地址::={<网络号>,<主机号>}

有一些IP地址是不能用的,有其特殊的作用,如:

网络地址转换NAT(Network Address Translation):在专用网连接到因特网的路由器上安装NAT软件,安装了NAT软件的路由器叫NAT路由器,它至少有一个有效的外部全球IP地址。

此外,为了网络安全,划分出了部分IP地址和私有IP地址,私有IP地址网段如下:

路由器对目的地址是私有IP地址的数据报一律不进行转发。

分类的IP地址的弱点:

某单位划分子网后,对外仍表现为一个网络,即本单位外的网络看不见本单位内子网的划分。

路由器转发分组的算法:

无分类域间路由选择CIDR:

CIDR记法:IP地址后加上“/”,然后写上网络前缀(可以任意长度)的位数。e.g. 128.14.32.0/20

CIDR把网络前缀都相同的连续的IP地址组成一个“CIDR地址块”。

使用CIDR时,查找路由表可能得到几个匹配结果(跟网络掩码按位相与),应选择具有最长网络前缀的路由。前缀越长,地址块越小,路由越具体。

将多个子网聚合成一个较大的子网,叫做构成超网,或路由聚合。方法:将网络前缀缩短(所有网络地址取交集)。

由于在实际网络的链路上传送数据帧时,最终必须使用MAC地址。

ARP协议:完成主机或路由器IP地址到MAC地址的映射。

ARP协议使用过程:

ARP协议4种典型情况:

动态主机配置协议DHCP是 应用层 协议,使用 客户/服务器 方式,客户端和服务端通过 广播 方式进行交互,基于 UDP

DHCP提供即插即用联网的机制,主机可以从服务器动态获取IP地址、子网掩码、默认网关、DNS服务器名称与IP地址,允许地址重用,支持移动用户加入网络,支持在用地址续租。

DHCP工作流程如下:

ICMP协议支持主机或路由器:包括差错(或异常)报告和网络探询,分部发送特定ICMP报文

ICMP差错报告报文(5种):

不应发送ICMP差错报文的情况:

ICMP询问报文:

ICMP的应用:

32位IPv4地址空间已分配殆尽,这时,可以采用更大地址空间的新版本的IPv6,从根本上解决地址耗尽问题

IPv6数据报格式如下图

IPv6的主要特点如下:

IPv6地址表示形式:

零压缩:一连串连续的0可以被一对冒号取代。双冒号表示法在一个地址中仅可出现一次。

IPv6基本地址类型:

IPv6向IPv4过渡的策略:

R1的路由表/转发表如下:

最佳路由:“最佳”只能是相对于某一种特定要求下得出的较为合理的选择而已。

路由算法可分为

由于因特网规模很大且许多单位不想让外界知道自己的路由选择协议,但还想连入因特网,可以采用自治系统来解决

自治系统AS:在单一的技术管理下的一组路由器,而这些路由器使用一种AS内部的路由选择协议和共同的度量以确定分组在该AS内的路由,同时还使用一种AS之间的路由协议以确定在AS之间的路由。

一个AS内的所有网络都属于一个行政单位来管辖,一个自治系统的所有路由器在本自治系统内都必须连通。

路由选择协议

RIP是一种分布式的基于距离向量的路由选择协议,是因特网的协议标准,最大优点是简单。

RIP协议要求网络中每一个路由器都维护从它自己到其他每一个目的网络的唯一最佳距离 [1] 记录(即一组距离)。 RIP协议只适用于小互联网。

RIP是应用层协议,使用 UDP 传送数据。一个RIP报文最多可包括25个路由,如超过,必须再用一个RIP报文传送。

RIP协议的交换

路由器刚开始工作时,只知道直接连接的网络的距离(距离为1),接着每一个路由器也只和数目非常有限的相邻路由器交换并更新路由信息。

经过若干次更新后,所有路由器最终都会知道到达本自治系统任何一个网络的最短距离和下一跳路由器的地址,即“收敛”。

RIP的特点:当网络出现故障时,要经过比较长的时间(例如数分钟) 才能将此信息传送到所有的路由器,“慢收敛”。

对地址为X的相邻路由器发来的RIP报文,修改此报文中的所有项目:把“下一跳”字段中的地址改为X,并把所有的“距离”字段+1。

开放最短路径优先OSPF协议:“开放”标明OSPF协议不是受某一家厂商控制,而是公开发表的;“最短路径优先”是因为使用了Dijkstra提出的最短路径算法SPF。OSPF最主要的特征就是使用分布式的链路状态协议。 OSPF直接用IP数据报传送。

OSPF的特点:

为了使OSPF 能够用于规模很大的网络,OSPF 将一个自治系统再划分为若干个更小的范围,叫做区域。每一个区域都有一个32 位的区域标识符(用点分十进制表示)。区域也不能太大,在一个区域内的路由器最好不超过200 个。

BGP 所交换的网络可达性的信息就是要到达某个网络所要经过的一系列AS。当BGP 发言人互相交换了网络可达性的信息后,各BGP 发言人就根据所采用的策略从收到的路由信息中找出到达各AS 的较好路由。

一个BGP 发言人与其他自治系统中的BGP 发言人要交换路由信息,就要先建立TCP 连接,即通过TCP传送,然后在此连接上交换BGP 报文以建立BGP 会话(session),利用BGP 会话交换路由信息。 BGP是应用层协议,借助TCP传送。

BGP协议特点:

BGP-4的四种报文

组播提高了数据传送效率。减少了主干网出现拥塞的可能性。组播组中的主机可以是在同一个物理网络,也可以来自不同的物理网络(如果有组播路由器的支持)。

IP组播地址让源设备能够将分组发送给一组设备。属于多播组的设备将被分配一个组播组IP地址(一群共同需求主机的相同标识)。

组播地址范围为224.0.0.0~239.255.255.255(D类地址),一个D类地址表示一个组播组。只能用作分组的目标地址。源地址总是为单播地址。

同单播地址一样,组播IP地址也需要相应的组播MAC地址在本地网络中实际传送帧。组播MAC地址以十六进制值01-00-5E打头,余下的6个十六进制位是根据IP组播组地址的最后23位转换得到的。

TCP/IP 协议使用的以太网多播地址的范围是:从01-00-5E-00-00-00到01-00-5E-7F-FF-FF .

收到多播数据报的主机,还要在IP 层利用软件进行过滤,把不是本主机要接收的数据报丢弃。

ICMP和IGMP都使用IP数据报传递报文。组播路由器知道的成员关系只是所连接的局域网中有无组播组的成员。

IGMP工作的两个阶段:

只要有一个主机对某个组响应,那么组播路由器就认为这个组是活跃的;如果经过几次探询后没有一个主机响应,组播路由器就认为本网络上的没有此组播组的主机,因此就不再把这组的成员关系发给其他的组播路由器。

组播路由协议目的是找出以源主机为根节点的组播转发树。构造树可以避免在路由器之间兜圈子。对不同的多播组对应于不同的多播转发树;同一个多播组,对不同的源点也会有不同的多播转发树。

组播路由选择协议常使用的三种算法:

移动IP技术是移动结点(计算机/服务器等)以 固定的网络IP地址 ,实现跨越不同网段的 漫游 功能,并保证了基于网络IP的网络权限在漫游过程中不发生任何改变。

路由器是一种具有多个输入端口和多个输出端口的专用计算机,其任务是转发分组。

若路由器处理分组的速率赶不上分组进入队列的速率,则队列的存储空间最终必定减少到零,这就使后面再进入队列的分组由于没有存储空间而只能被丢弃。 路由器中的输入或输出队列产生溢出是造成分组丢失的重要原因。

路由器(网络层)可以互联两个不同网络层协议的网段。
网桥(链路层)可以互联两个物理层和链路层不同的网段。
集线器(物理层)不能互联两个物理层不同的网段。

路由表根据路由选择算法得出的,主要用途是路由选择,总用软件来实现。

转发表由路由表得来,可以用软件实现,也可以用特殊的硬件来实现。转发表必须包含完成转发功能所必需的信息,在转发表的每一行必须包含从要到达的目的网络到输出端口和某些MAC地址信息的映射。

Ⅳ 计算机网络中选择最佳路由的网络连接设备是什么

网络连接设备是:路由器

Ⅳ 计算机网络-4-6-互联网的路由选择协议

路由选择协议的核心是 路由算法 。即 需要一种算法来获取路表中的各项 ,一个比较好的路由选择算法应该有以下特点[BELL86]:

一个实际的路由选择算法,应该尽可能的接近于理想的算法,在不同的应用条件下,可以对上面提出的六个方面有不同的侧重。

倘若从路由算法能否随网络的通信量或拓扑自适应的进行调整变化来划分,则只有两大类: 静态路由选择策略 动态路由选择策略 。静态路由选择策略也叫做 非自适应路由选择 ,其特点是简单和开销较小,但不能即使适应网络状态的变化。对于很简单的小网络,完全可以采用静态路由选择,用人工配置每一条路由。动态路由选择也叫做 自适应路由选择 ,其特点是能够较好的适应网络状态的变化,但实现起来较为复杂,开销也比较大,因此动态路由选择适用于较复杂的大网络。

互联网采用的路由选择协议主要是自适应的(动态的),分布式路由选择协议。由于以下两种原因,互联网采用分层次的路由选择协议:

为此,可以把整个互联网划分为许多较小的 自治系统AS(autonomous system) ,自治系统AS是在单一技术管理下的一组路由器,而这些路由器使用一种自治系统内部的路由选择协议和共同的度量,一个AS对其他AS表现的出是 一个单一的和一致的路由选择策略

在目前的互联网中,一个大的ISP就是一个自治系统。这样,互联网就把路由选择协议划分为两大类:

自治系统之间的路由选择协议也叫做 域间路由选择(interdomain routing) ,而在自治系统内部的路由选择叫做 域内路由选择(intradomain routing) 。如图4-31

RIP(routing information protocol)是内部网关协议IGP中最先得到广泛使用的协议[RFC1058],也叫 路由信息协议 ,RIP是一种分布式的 基于距离向量的路由选择协议 。最大的优点就是简单。

RIP协议要求网络中的每一个路由器都要维护从它自己到其他每一个目的网络的距离记录(因此这是一组距离,叫做距离向量),RIP将距离定义如下:

从一路由器到直接连接的网络的距离为1,从路由器到非之间的网络的距离定义为所经过的路由器数+1。

RIP协议的距离也称之为 跳数 ,但是一条跳数最多只能包含15个路由器,因此,当距离=16时,就相当于不可达。因此RIP只能适用于小型互联网。

注意的是,到直接连接的网络也定义为0(采用这种定义的理由是:路由器在和直接连接在该网络上的主机进行通信并不需要经过另外的路由器,既然经过每一个路由器都要将距离增加1,那么不经过路由器就不需要+1,就是0)。

RIP不能在两个网络之间同时使用多条路由。RIP选择一条具有最少路由器的路由(最短路由),哪怕还存在另一条高速低延时的但是路由器较多的路由。

路由器在刚开始工作的时候,其内部路由表是空的。然后路由器就可以和直接相连的几个网络的距离(这些距离为1),接着,每个路由器和与自己相连的路由器不断交换路由表信息,经过若干次更新后,所有的路由器最终就可以知道本自治系统中任何一个网络地址和最短下一跳路由器的地址。

路由器最主要的信息是:到某个网路的距离(最短距离),以及下一跳的地址,路由表更新的原则是找出到每个网络的 最短距离 ,这种算法又称之为 距离向量算法

每一个相邻的路由器 发送过来的RIP报文,进行以下步骤:

算法描述:其实就是求一个路由器到另一个路由器的最短距离。

例题:
已知路由器R6有表4-9(a)所表示的路由表,现在收到相邻路由器路由表R4发过来的路由更新信息,如图4-9(b)所示。试更新路由器R6的路由表。

解:首先把R4发过来的路由表中的距离都+1:

把这个表和R6的路由表进行比较:

RIP协议让每一个自治系统中的所有路由都和自己的相邻路由器定期交换路由表信息,并不断更新路由表,使得每从 每一个路由器到每一个目的网络的路由都是最短距离(也就是跳数最小)。

现在比较新的RIP协议报文格式是1998年提出的RIP2。

RIP协议使用运输层的用户数据报(UDP端口为520)进行传输。

RIP报文由首部和路由部分组成。
RIP首部占4个字节,其中的命令字段指出报文的意义。

RIP2报文中的路由部分有若干路由信息组成,每个路由信息需要用20字节。 地址标识符(又称地址列别) 字段用来标识所用的地址协议。如果采用IP地址就为2。 路由标记填入自治系统号ASN(Autonomous System Number) ,这是考虑使用RIP有可能收到本自治系统以外的路由选择信息,再后面指出某个 网络地址 下一跳路由器地址 以及 到此网络的距离 ,一个RIP报文最多可以包含25个路由,因而RIP报文的最大长度是4+20x25=504字节。如果超过,则必然再使用以恶搞RIP报文来传送。

RIP还具有简单的鉴别功能,若使用鉴别功能,则将原来写入第一个路由信息(20字节)的位置用作鉴别,这时应该将地址标识符置为全1(0xFFFF),而路由标记写入鉴别类别,剩下的16字节作为鉴别数据,在鉴别数据之后才能写入路由信息,但这时只能写入24个路由信息。

RIP存在的一个问题是 当网络出现故障的时候,要经过比较长的时间才能将信息传送到所有的路由器 ,RIP协议的这一特点是: 好消息传播的很快,而坏消息传播的很慢 ,网络出现故障的传播时间往往需要经过较长时间,这是RIP协议的一个主要缺点。

为了使坏消息传播的更快些,可以采用多种措施,例如,让路由器记录收到某特定路由信息的接口,而不是让同一个路由信息再通过此接口反方向传送。

总之,RIP协议最大的优点是 实现简单,开销较小 ,但RIP协议缺点也很明显,首先 限制了网络规模,因为路由器最大的跳数是15跳,一般中大型网络规模RIP协议就不适用了 。其次就是 路由器之间交换的路由信息是路由器中完整的路由表,因而随着网络规模变大,开销也就增加 。最后就是 好消息传播的很快,坏消息传播的很慢

Ⅵ 计算机网络路由算法

关于路由器如何收集网络的结构信息以及对之进行分析来确定最佳路由,有两种主要的路由算法:
总体式路由算法和分散式路由算法。采用分散式路由算法时,每个路由器只有与它直接相连的路由器的信息——而没有网络中的每个路由器的信息。这些算法也被称为DV(距离向量)算法。采用总体式路由算法时,每个路由器都拥有网络中所有其他路由器的全部信息以及网络的流量状态。这些算法也被称为LS(链路状态)算法。