当前位置:首页 » 网络连接 » 计算机网络安全笔记
扩展阅读
连接网络主页 2024-05-05 08:43:26

计算机网络安全笔记

发布时间: 2023-02-03 22:33:33

计算机网络笔记——数据链路层(停等协议、GBN、SR)

流量控制:防止发送端发送和接收端接收速度不匹配造成传输错误

传输层和数据链路层均有流量控制,但是控制手法不一样

传输层:端到端,接收端向发送端发送一个窗口公告。告诉发送端目前我能接收多少
数据链路层:点到点,接收端接收不下的就不回复确认(ack),让发送端自己重传

涉及协议较多分批写

优点 :最简单的控制协议
缺点 :但是性能较弱,信道利用率低

控制方法
发送方:发送一个帧
接收方:接收到帧后返回改帧的ack
发送方:接收到ack后发送下一个帧

差错控制

注意

滑动窗口协议是基于停止等待协议的优化版本
停止等待协议性能是因为需要等待ack之后才能发送下一个帧,在传送的很长时间内信道一直在等待状态
滑动窗口则利用缓冲思想,允许连续发送(未收到ack之前)多个帧,以加强信道利用

窗口 :其实就是缓冲帧的一个容器,将处理好的帧发送到缓冲到窗口,可以发送时就可以直接发送,借此优化性能。一个帧对应一个窗口。

GBN是滑动窗口中的一种,其中 发送窗口 > 1 , 接收窗口=1 因发送错误后需要退回到最后正确连续帧位置开始重发,故而得名。

控制方法
发送端:在将发送窗口内的数据连续发送
接收端:收到一个之后向接收端发送累计确认的ack
发送端:收到ack后窗口后移发送后面的数据

累计确认 :累计确认允许接收端一段时间内发送一次ack而不是每一个帧都需要发送ack。该确认方式确认代表其前面的帧都以正确接收到
eg:发送端发送了编号 0,1,2,3,4,5 的帧,等待一段时间后(超过3的超时计时器)累计收到的ack对应 0,2 帧,则证明已经成功 0,1,2 均已经成功接收, 3 传输错误。并且哪怕 4,5 两个帧接收成功后也不会返回 4,5 的ack会一直等待从 3 开始重传

差错控制

发送帧丢失、ack丢失、ack迟到 等处理方法基本和停等协议相同,不同的是采用累计确认恢复的方式,当前面的帧出错之后后面帧无论是否发送成功都要重传

优点:信道利用率高(利用窗口有增加发送端占用,并且减少ack回复次数)
缺点:累计确认使得该方法只接收正确顺序的帧,而不接受乱序的帧,错误重传浪费严重

发送窗口大小问题
窗口理论上是越多性能越好,但是窗口不能无限大,n比特编码最大只能2^(n-1)个窗口,否则会造成帧无法区分(本质就是留了一个比特区分两组帧)

SR协议可以说是GBN的plus版本,在GBN的基础上改回每一个帧都要确认的机制,解决了累计确认只接收顺序帧的弊端只需要重发错误帧。
其中 发送窗口 > 1 , 接收窗口 > 1 , 接收窗口 > 发送窗口 (建议接 收窗口 = 发送窗口 接收窗口少了溢出多了浪费).

控制方法
发送端:将窗口内的数据连续发送
接收端:收到一个帧就将该帧缓存到窗口中并回复一个ack
接收端:接收到顺序帧后将数据提交给上层并接收窗口后移(若接收到的帧不是连续的顺序帧时接收窗口不移动)
发送端:接收到顺序帧的ack后发送窗口后移(同理发送窗口接收到的ack不连续也不移动)

差错控制

发送帧丢失、ack丢失、ack迟到 三类处理方式仍然和停等协议相同,不同的是SR向上层提交的是多个连续帧,停等只提交一个帧(不连续的帧要等接收或重传完成后才会提交)

发送窗口大小问题
同GBN一样,发送窗口和接收窗口都不能无限多,且不说缓存容量问题,当两组帧同时发送时会造成无法区分,大小上限仍然是2^(n-1)个窗口(本质就是留了一个比特写组号)

窗口大小这里留一张截图,方便理解
假设窗口大小都为3(图中编号到了3是借4窗口的图,正常应编号到2,但是不妨碍理解)
左边是错误重发,第一组的0帧ack丢失了
右边是正常收发

三种协议对比:
停等协议:单线程的傻子,简单不易出错,但是效率极其低下
GBN:假的多线程(接收端太坑啦),接收端是情种,只等待自己哪一个帧,丢弃了后来的帧
SR:多线程,接收端有收藏癖,等待集齐一套召唤神龙(提交给上层这只神龙……)

❷ ★★急求自考计算机网络管理资料(☆高分悬赏☆)

这里有你想要的一切...
【一:串讲系列】

①自考“计算机网络管理”知识重点
http://wenku..com/view/2733272b3169a4517723a369.html

②自考计算机网络管理串讲笔记(珍藏版)(完整版)
http://wenku..com/view/acad7737ee06eff9aef8076e.html

③★计算机网络管理笔记
http://wenku..com/view/3fe447d7c1c708a1284a4487.html

④【计算机网络管理】北邮串讲纲要
http://wenku..com/view/62afedbd960590c69ec37687.html
【其他推荐系列】:
自考计算机网络管理历年真题及答案
自考计算机网络管理课后答案
自考计算机网络管理同步训练·同步过关高清扫描版
自考计算机网络管理教材辅导书
..........
-------请到自考乐园俱乐部下载

如果你还想找更多关于自考计算机网络管理的资料(比如笔记,课后答案...等等)...也欢迎你自己去这个俱乐部找找...一

定会得到意想不到的收获...
--------------------------------------------------------
这里也许更适合你....
网络贴吧:自考乐园俱乐部
自我感觉自考乐园俱乐部最适合你...
本人也是自考计算机网络(独立本科),和你也有类似想法...
偶然间发现原来竟然有这样一个圈子:自考乐园俱乐部
这里几乎聚集了最多的自考计算机网络独立本科的朋友,和几乎全部自考本专业的资料(更可贵的是还能免费下载...)
也欢迎你和我们一起加入这个圈子...
------------------------------------------
以下是这个俱乐部的简介:
☆自考乐园---心境随缘,诚与天下自考人共勉!!!
☆自考乐园---分享快乐,你的快乐老家!!!
☆自考乐园---引领成功,你的精神乐园!!!
--------------------------------------

☆★☆与千万自考生同行,你准备好了吗?

你希望在自考的征途中,有一群和你志同道合的人同行?

你愿意在漫长的自考岁月中,有一群人和你分享快乐,分担忧愁吗?

你渴望在一个人奋斗时,有一群人在背后默默支持你吗?

你是否也一直在苦苦寻找这样一个平台,一群志同道合的人,一片积极向上的心,一个共同的追求,一个诚挚的鼓励,一个

坚实的支持......对!!!就是这里!!!这里有你想要的一切......

与志者同行,你也将成为志者!!!

与成功者同行,你也将获得成功!!!

与千万自考生同行,你准备好了吗???

与千万自考生同行,你做好了准备吗???

今天我们诚挚的发出邀请,真诚的欢迎广大报考和我相同专业的考生加入本俱乐部,一起交流,进步,提高.......我们

正寻找特别的你亲情加入.........

---------------------------------
我也认为网络贴吧:自考乐园俱乐部最好.......
尤其是他们所共享的自考资料...几乎可以说是网上最全面,最系统的...
加入自考乐园俱乐部...绝对会让你受益多多...
以下仅例举几科资料:
●★自考乐园发帖须知★● ●自考乐园优秀主题简介● [置顶]
【资料整理】自考中国近现代史纲一贴通(资料大全) [精品]
【资料整理】自考马克思主义基本原理概论一贴通(资料大全) [精品]
【资料整理】自考计算机网络原理一贴通(资料大全) [精品]
【资料整理】自考Java语言程序设计(一)一贴通(资料大全) [精品]
【资料整理】自考高等数学(工本)一贴通(资料大全) [精品]
【资料整理】自考自考网络操作系统一贴通(资料大全) [精品]
【资料整理】自考数据结构一贴通(资料大全) [精品]
【资料整理】自考数据库系统原理一贴通(资料大全) [精品]
【资料整理】自考英语二一贴通(资料大全) [精品]
【资料整理】自考互联网及其应用一贴通(资料大全) [精品]
【资料整理】自考计算机网络管理一贴通(资料大全) [精品]
【资料整理】自考计算机网络安全一贴通(资料大全) [精品]
--------------------------------------------------

最后预祝所有的朋友:

自考快乐

天天有份好心情!!!-------------------自考乐园俱乐部
===========================================================
关于自考,你还有什么疑惑,欢迎在网络上给我留言,我会尽力帮助你的...
如果你要加入自考乐园俱乐部,也欢迎给我留言,我会给你发邀请链接...
=======================================================

网络贴吧:自考乐园俱乐部

参考资料:网络贴吧:自考乐园俱乐部

参考资料:http://..com/question/161520675.html

❸ 网络攻防基础知识

1、谨慎存放有关攻击资料的笔记,最好用自己的方式来记录——让人不知所云;
2、在虚拟世界的任何地方都要用虚拟的ID行事,不要留下真实姓名或其它资料;
3、不要向身边的朋友炫耀你的技术——除非你认为就算因他的原因导致你*&^%$,你也不会怪他……
4、网友聊天不要轻易说出自己的学习与攻击计划——拍搭当然不一样啦。
也许你会觉得我太过多事,但现在国内突然涌起的这阵“黑客热”的确象一个难以把握的漂漂MM,往好里想,情势大好,技术水平迅速提高,但……国家的安全部门允许这群拥有较高技术水平的人在不受其控制的情况下呢,自由地在可能有机密情报的电脑世界里转悠吗?几则最新的消息或许应该看一看(都是99-11月的):

❹ 网络工程师笔记-网络安全技术

1.HTTPS是安全的超文本协议,可以保障通信安全,银行可以通过HTTPS来提供网上服务,用户通过浏览器就可以管理自己的账户信息,是HTTP的安全版,即HTTP下加入SSL层,HTTPS的安全基础是SSL,因此加密的详细内容就需要SSL,SSL默认端口为443

2.POP邮局协议:用户接收邮件

3.SNMP简单网络管理协议,用于网络管理

4.HTTP超文本传输协议,众多web服务器都使用HTTP,但它是不安全的协议

电子邮件协议有SMTP、POP3、IMAP4,它们都隶属于TCP/IP协议簇,默认状态下,分别通过TCP端口25、110和143建立连接。

1.SMTP协议

SMTP的全称是“Simple Mail Transfer Protocol”,即简单邮件传输协议。它是一组用于从源地址到目的地址传输邮件的规范,通过它来控制邮件的中转方式。SMTP 协议属于TCP/IP协议簇,它帮助每台计算机在发送或中转信件时找到下一个目的地。SMTP 服务器就是遵循SMTP协议的发送邮件服务器。SMTP认证,简单地说就是要求必须在提供了账户名和密码之后才可以登录 SMTP 服务器,这就使得那些垃圾邮件的散播者无可乘之机。增加 SMTP 认证的目的是为了使用户避免受到垃圾邮件的侵扰。SMTP已是事实上的E-Mail传输的标准。

2.POP协议

POP邮局协议负责从邮件服务器中检索电子邮件。它要求邮件服务器完成下面几种任务之一:从邮件服务器中检索邮件并从服务器中删除这个邮件;从邮件服务器中检索邮件但不删除它;不检索邮件,只是询问是否有新邮件到达。POP协议支持多用户互联网邮件扩展,后者允许用户在电子邮件上附带二进制文件,如文字处理文件和电子表格文件等,实际上这样就可以传输任何格式的文件了,包括图片和声音文件等。在用户阅读邮件时,POP命令所有的邮件信息立即下载到用户的计算机上,不在服务器上保留。

3.POP3(Post Office Protocol 3)即邮局协议的第3个版本,是因特网电子邮件的第一个离线协议标准。

4.IMAP协议

互联网信息访问协议(IMAP)是一种优于POP的新协议。和POP一样,IMAP也能下载邮件、从服务器中删除邮件或询问是否有新邮件,但IMAP克服了POP的一些缺点。例如,它可以决定客户机请求邮件服务器提交所收到邮件的方式,请求邮件服务器只下载所选中的邮件而不是全部邮件。客户机可先阅读邮件信息的标题和发送者的名字再决定是否下载这个邮件。通过用户的客户机电子邮件程序,IMAP可让用户在服务器上创建并管理邮件文件夹或邮箱、删除邮件、查询某封信的一部分或全部内容,完成所有这些工作时都不需要把邮件从服务器下载到用户的个人计算机上。

支持种IMAP的常用邮件客户端有:ThunderMail,Foxmail,Microsoft Outlook等。

5.PGP安全电子邮件协议:

(1)通过散列算法对邮件内容进行签名,保证信件内容无法修改

(2)使用公钥和私钥技术保证邮件内容保密且不可否认,能确认发送者身份,防止非授权者阅读电子邮件

(3)发信人与收信人的公钥都保存在公开的地方,公钥的权威性则可以由第三方进行签名认证,在PGP系统中,信任是双方的直接关系

1.Needham-Schroeder协议是基于共享秘钥的认证协议

1.VPN:虚拟专用网络,是通过隧道技术利用公共网络建立专用网络的技术。

2.VPN技术主要有:

(1)隧道技术

(2)加解密技术

(3)秘钥管理技术

(4)身份认证技术

3.链路层的VPN协议:

(1)L2TP协议

(2)PPTP协议

4.传输层VPN协议:TLS协议

5.网络层VPN协议是:IPSec协议

1.数字证书能够验证一个实体身份,而这是在保证数字证书本身有消息这一前提下才能够实现的

2.验证数字证书的有效性是通过验证颁发证书的CA的签名实现的,比如:某网站向CA申请了数字证书,用户登录该网站时,通过验证CA的签名,可以确认该数字证书的有效性

3.例子:甲和乙进行通信,甲对发送的消息附加了数字签名,乙收到消息后利用甲的公钥验证该消息的真实性

4.数字签名技术(Digital Signature)是不对称加密算法的典型应用,原理是:数据源发送方使用自己的私钥对数据进行加密处理,完成对数据的合法签名,数据接收方利用发送方的公钥来解读收到的数字签名,并将解读结果用于对数据完整性的检验,以确认签名的合法性

5.证书链服务(交叉认证)是一个CA扩展其信任范围或被认可范围的一种实现机制,不同认证中心发放的证书之间通过证书链可以方便的实现相互信任从而实现互访

1.DES是一种共享秘钥的算法,是一种对称秘钥系统,加解密使用相同的秘钥

2.DES通常选取一个64位(bit)的数据库,使用56位的秘钥,在内部实现多次替换和变位操作来达到加密的目的

3.MD5和SHA属于摘要算法:美国对称密码数据加密标准,是指单向哈希函数将任意长度的输入报文经计算得到固定位输出称为报文摘要,该算法是不可逆的,找出具有同一报文摘要的两个不同报文是很困难的

4.Diffie-Hellman为秘钥交换算法

5.AES高级加密标准:是美国采用的一种区块加密标准,用来替代原先的DES加密算法

6.公钥体系中,甲发给乙的数据要用乙的公钥进行加密,在公钥密码体系中,加密秘钥是公开的,而解密秘钥是需要保密的,公钥密码体系中,密码对产生器产生出接收者乙的一对秘钥:加密秘钥和解密秘钥,发送者甲所用的加密秘钥就是接收者乙的公钥,公钥向公众公开,而乙所用的解密秘钥就是接收者的私钥,对其他人保密

网络攻击是以网络为手段窃取网络上其他计算机的资源或特权,对其安全性或可用性进行破坏的行为,网络攻击分为主动攻击和被动攻击:

1.被动攻击:网络窃听,截取数据包并进行分析,从中窃取重要信息,被动攻击很难被发现,主要是预防为主,目前手段是数据加密传输,在密码学和安全协议加持下目前有5类安全服务:

(1)身份认证

(2)访问控制

(3)数据保密

(4)数据完整性

(5)数据不可否认性

2.主动攻击:窃取、篡改、假冒和破坏,字典式口令猜测,IP地址欺骗和服务拒绝攻击等都属于主动攻击,一个好的身份认证系统(数据加密、数据完整性校验、数字签名和访问控制等安全机制)可以预防主动攻击,但是杜绝很难,目前对付主动攻击方法是及时发现并及时恢复所造成的破坏,目前有很多实用的工具,常见的有下面几种攻击方法:

(1)获取口令

(2)放置特洛伊木马程序

(3)www的欺骗技术

(4)电子邮件攻击

(5)通过一个节点来攻击其他节点

(6)网络监听

(7)寻找系统漏洞

(8)利用账号进行攻击

(9)偷取特权

3.例子:公司面临网络攻击来自多个方面,安装用户认证系统来防范公司内部攻击

1.Kerberos进行认证是一种使用对称秘钥加密算法来实现通过可信第三方秘钥分发中心的身份认证系统

2.Kerberos认证,客户方需要向服务器方递交自己的凭据来证明自己的身份,该凭据是由KDC专门为客户和服务器方在某一阶段内通信而生成的

3.Kerberos认证,凭据中包括客户和服务器方的身份信息和在下一阶段双方使用的临时加密秘钥,还有证明客户方拥有会话秘钥的身份认证者信息

4.身份认证信息的作用是防止攻击者在将来将同样的凭据再次使用,可以在报文中加入时间戳来防止重放攻击

1.计算机病毒是一种程序,它会将自身附着在主机上,目的是进一步繁殖和传播。从个人到大型组织,任何拥有适当技能的人都可以创建计算机病毒,并且可以感染计算机、智能手机、平板电脑,甚至智能 汽车 。“计算机病毒”一词经常被错误的被用成一个总称,泛指所有感染软件、计算机和文件的可疑程序、插件或代码。这一短语的误用可能是因为计算机病毒较常出现在电视节目和电影中。这类程序实际上正确的总称应该是恶意软件,计算机病毒只是其中的一种类型,其他类型的恶意软件还包括间谍软件、蠕虫和特洛伊木马等。

2.计算机病毒是一种安装在设备上并繁殖的恶意软件。有些病毒旨在窃取或破坏数据,而另一些病毒则旨在破坏程序或系统的稳定性,甚至使其无法使用。还有一些可能只是程序员为了好玩而制作的,例如在打开计算机或打开应用程序后显示图像或文本消息。

3.严格意义上来说,如果感染主机的恶意软件不是为了繁殖和传播而设计的,那么从技术上讲,无论它有多危险,它都不会被归类为计算机病毒。

4.通常是根据计算机病毒的目标和功能进行分类,而不是根据创建过程和编码风格,且同一计算机病毒也有可能被归入多个类别。以下是一些常见的计算机病毒示例:

(1)浏览器劫持病毒:这类计算机病毒会感染受害者的Web浏览器,并且通常用于篡改受害者的主页、窃取数据和展示广告。

(2)引导扇区病毒:除了硬盘驱动器的引导扇区之外,这类病毒还会影响用于帮助系统启动的磁盘。

(3)电子邮件病毒:这类病毒旨在通过将自身附加到电子邮件、使用受害者的地址簿生成电子邮件或以窃取数据的意图感染电子邮件应用程序来成倍增加。

(4)宏病毒:宏计算机病毒以宏语言编码,以便它们可以附加到文档中,并在打开它们所附加的文件后立即激活。

(5)多态病毒:一种可以改变自身以逃避安全系统和防病毒程序检测的计算机病毒。

(6)常驻病毒:常驻病毒会在感染操作系统后继续在后台运行,从而对系统和应用程序性能产生负面影响。

(7)非驻留病毒:这类病毒会在执行任务后自行关闭。

5.虽然许多计算机病毒可以很好地隐藏在你的设备上,但有几个明显的行为可以表明你可能已经感染了病毒,例如系统速度明显下降、系统和应用程序设置被神秘地更改、收到不拥有的服务和应用程序的通知,未经你的许可安装浏览器扩展或插件,以及无法上网或打开某些程序等。

6.重要的是要采取多种策略,以确保您的计算机和其他智能设备免受病毒和其他形式的恶意软件的侵害,以下是保护计算机免受病毒侵害的一些方法:

(1)保持操作系统和应用程序处于最新状态:这将使病毒更难感染你的计算机设备。

(2)仅连接到受信任的互联网连接:这也可以保护你免受其他类型的攻击,例如ARP欺骗。

(3)避免可疑附件:切勿打开来自未知发件人的电子邮件附件,因为这些附件可能包含恶意软件和其他病毒。

(4)仅从官方网站和可信来源下载文件:从不熟悉的网站下载文件始终存在风险。无论下载看起来多么合法,如果它不是来自可信来源,请避免下载。

(5)安装防病毒软件:高质量的防病毒软件可以帮助用户清除计算机上的病毒,并可以预防病毒感染。

6.目前网络上流行的“熊猫烧香”病毒属于蠕虫类型的病毒,感染exe、com、pif、htm和sap等文件,还能删除gho备份文件,被感染的电脑所有exe可执行文件都变成熊猫举着三根香的模样

7.病毒前缀是指一个病毒的种类,用来区分病毒的种族分类的

(1)木马病毒:前缀为Trojan,木马病毒可以通过网络实现对远程计算机的远程攻击,能远程控制计算机

(2)蠕虫病毒:前缀为Worm

(3)宏病毒:前缀为Macro

8.病毒名是指一个病毒的家族特征,是用来区别和标识病毒家族的,如以前着名的CIH病毒的家族名都是统一的CIH,震荡波蠕虫病毒的家族名是Sasser等

9.病毒后缀是指一个病毒的变种特征,是用来区别具体某个家族病毒的某个变种的,一般采用英文字母表示,如Worm.Sasser.b就是震荡波蠕虫病毒的变种B,称为“震荡波B变种”

1.钓鱼网站是一种网络欺诈行为,指不法分子利用各种手段,仿冒真实网站的URL地址以及页面内容,或者利用真实网站服务器程序上的漏洞在站点的某些网页中插入危险的HTML代码,依次来骗取用户的账号密码等资料

2.钓鱼网站可以通过Email传播网址

1.网络管理中要防止各种安全威胁,安全威胁分为主要和次要安全威胁,主要安全威胁有:

(1)篡改管理信息:通过改变传输中的SNMP报文实施未经授权的管理操作

(2)假冒合法用户:未经授权的用户冒充授权用户

2.次要安全威胁有:

(1)消息泄露:SNMP引擎之间交换的信息被第三者偷听

(2)修改报文流:由于SNMP协议通常是基于无连接的传输服务,重新排序报文流、延迟或重放报文的威胁都可能出现,这种威胁危害在于通过报文的修改可能实施非法的管理操作

3.无法预防的威胁有:

(1)拒绝服务:因为很多情况下拒绝服务和网络失效是无法区别的,所以可以由网络管理协议来处理,安全系统不必采取措施

(2)通信分析:第三者分析管理实体之间的通信规律,从而获取管理信息

1.路由表:用来指定路由规则,指定数据转发路径

2.ARP表:用来实现iP地址和网络设备物理地址MAC的转换

3.NAT:将一个地址映射到另一个地址域的技术,而NAT表记录这些映射记录

4.过滤规则用以制定内外网访问和数据发送的一系列安全策略

1.IPSec VPN包含了认证头AH和封装安全载荷ESP

(1)AH主要用以提供身份认证、数据完整性保护、防重放攻击多项功能

(2)ESP则可以提供数据加密、数据源身份认证、数据完整性保护、防重放攻击多项功能

(3)IPSec VPN可提供传输模式和隧道模式,但没有入侵检测功能

(4)IPSec加密和认证过程中所使用的秘钥有IKE(因特网秘钥交换协议)机制来生成和分发,IKE解决了在不安全的网络环境中安全地建立或更新共享秘钥的问题

❺ 计算机网络自学笔记:TCP

如果你在学习这门课程,仅仅为了理解网络工作原理,那么只要了解TCP是可靠传输,数据传输丢失时会重传就可以了。如果你还要参加研究生考试或者公司面试等,那么下面内容很有可能成为考查的知识点,主要的重点是序号/确认号的编码、超时定时器的设置、可靠传输和连接的管理。

1 TCP连接

TCP面向连接,在一个应用进程开始向另一个应用进程发送数据之前,这两个进程必须先相互“握手”,即它们必须相互发送某些预备报文段,以建立连接。连接的实质是双方都初始化与连接相关的发送/接收缓冲区,以及许多TCP状态变量。

这种“连接”不是一条如电话网络中端到端的电路,因为它们的状态完全保留在两个端系统中。

TCP连接提供的是全双工服务 ,应用层数据就可在从进程B流向进程A的同时,也从进程A流向进程B。

TCP连接也总是点对点的 ,即在单个发送方与单个接收方之间建立连接。

一个客户机进程向服务器进程发送数据时,客户机进程通过套接字传递数据流。

客户机操作系统中运行的 TCP软件模块首先将这些数据放到该连接的发送缓存里 ,然后会不时地从发送缓存里取出一块数据发送。

TCP可从缓存中取出并放入报文段中发送的数据量受限于最大报文段长MSS,通常由最大链路层帧长度来决定(也就是底层的通信链路决定)。 例如一个链路层帧的最大长度1500字节,除去数据报头部长度20字节,TCP报文段的头部长度20字节,MSS为1460字节。

报文段被往下传给网络层,网络层将其封装在网络层IP数据报中。然后这些数据报被发送到网络中。

当TCP在另一端接收到一个报文段后,该报文段的数据就被放人该连接的接收缓存中。应用程序从接收缓存中读取数据流(注意是应用程序来读,不是操作系统推送)。

TCP连接的每一端都有各自的发送缓存和接收缓存。

因此TCP连接的组成包括:主机上的缓存、控制变量和与一个进程连接的套接字变量名,以及另一台主机上的一套缓存、控制变量和与一个进程连接的套接字。

在这两台主机之间的路由器、交换机中,没有为该连接分配任何缓存和控制变量。

2报文段结构

TCP报文段由首部字段和一个数据字段组成。数据字段包含有应用层数据。

由于MSS限制了报文段数据字段的最大长度。当TCP发送一个大文件时,TCP通常是将文件划分成长度为MSS的若干块。

TCP报文段的结构。

首部包括源端口号和目的端口号,它用于多路复用/多路分解来自或送至上层应用的数据。另外,TCP首部也包括校验和字段。报文段首部还包含下列字段:

32比特的序号字段和32比特的确认号字段。这些字段被TCP发送方和接收方用来实现可靠数据传输服务。

16比特的接收窗口字段,该字段用于流量控制。该字段用于指示接收方能够接受的字节数量。

4比特的首部长度字段,该字段指示以32比特的字为单位的TCP首部长度。一般TCP首部的长度就是20字节。

可选与变长的选项字段,该字段用于当发送方与接收方协商最大报文段长度,或在高速网络环境下用作窗口调节因子时使用。

标志字段ACK比特用于指示确认字段中的ACK值的有效性,即该报文段包括一个对已被成功接收报文段的确认。 SYN和FIN比特用于连接建立和拆除。 PSH、URG和紧急指针字段通常没有使用。

•序号和确认号

TCP报文段首部两个最重要的字段是序号字段和确认号字段。

TCP把数据看成一个无结构的但是有序的字节流。TCP序号是建立在传送的字节流之上,而不是建立在传送的报文段的序列之上。

一个报文段的序号是该报文段首字节在字节流中的编号。

例如,假设主机A上的一个进程想通过一条TCP连接向主机B上的一个进程发送一个数据流。主机A中的TCP将对数据流中的每一个字节进行编号。假定数据流由一个包含4500字节的文件组成(可以理解为应用程序调用send函数传递过来的数据长度),MSS为1000字节(链路层一次能够传输的字节数),如果主机决定数据流的首字节编号是7。TCP模块将为该数据流构建5个报文段(也就是分5个IP数据报)。第一个报文段的序号被赋为7;第二个报文段的序号被赋为1007,第三个报文段的序号被赋为2007,以此类推。前面4个报文段的长度是1000,最后一个是500。

确认号要比序号难理解一些。前面讲过,TCP是全双工的,因此主机A在向主机B发送数据的同时,也可能接收来自主机B的数据。从主机B到达的每个报文段中的序号字段包含了从B流向A的数据的起始位置。 因此主机B填充进报文段的确认号是主机B期望从主机A收到的下一报文段首字节的序号。

假设主机B已收到了来自主机A编号为7-1006的所有字节,同时假设它要发送一个报文段给主机A。主机B等待主机A的数据流中字节1007及后续所有字节。所以,主机B会在它发往主机A的报文段的确认号字段中填上1007。

再举一个例子,假设主机B已收到一个来自主机A的包含字节7-1006的报文段,以及另一个包含字节2007-3006的报文段。由于某种原因,主机A还没有收到字节1007-2006的报文段。

在这个例子中,主机A为了重组主机B的数据流,仍在等待字节1007。因此,A在收到包含字节2007-3006的报文段时,将会又一次在确认号字段中包含1007。 因为TCP只确认数据流中至第一个丢失报文段之前的字节数据,所以TCP被称为是采用累积确认。

TCP的实现有两个基本的选择:

1接收方立即丢弃失序报文段;

2接收方保留失序的字节,并等待缺少的字节以填补该间隔。

一条TCP连接的双方均可随机地选择初始序号。 这样做可以减少将那些仍在网络中的来自两台主机之间先前连接的报文段,误认为是新建连接所产生的有效报文段的可能性。

•例子telnet

Telnet由是一个用于远程登录的应用层协议。它运行在TCP之上,被设计成可在任意一对主机之间工作。

假设主机A发起一个与主机B的Telnet会话。因为是主机A发起该会话,因此主机A被标记为客户机,主机B被标记为服务器。用户键入的每个字符(在客户机端)都会被发送至远程主机。远程主机收到后会复制一个相同的字符发回客户机,并显示在Telnet用户的屏幕上。这种“回显”用于确保由用户发送的字符已经被远程主机收到并处理。因此,在从用户击键到字符显示在用户屏幕上之间的这段时间内,每个字符在网络中传输了两次。

现在假设用户输入了一个字符“C”,假设客户机和服务器的起始序号分别是42和79。前面讲过,一个报文段的序号就是该报文段数据字段首字节的序号。因此,客户机发送的第一个报文段的序号为42,服务器发送的第一个报文段的序号为79。前面讲过,确认号就是主机期待的数据的下一个字节序号。在TCP连接建立后但没有发送任何数据之前,客户机等待字节79,而服务器等待字节42。

如图所示,共发了3个报文段。第一个报文段是由客户机发往服务器,其数据字段里包含一字节的字符“C”的ASCII码,其序号字段里是42。另外,由于客户机还没有接收到来自服务器的任何数据,因此该报文段中的确认号字段里是79。

第二个报文段是由服务器发往客户机。它有两个目的:第一个目的是为服务器所收到的数据提供确认。服务器通过在确认号字段中填入43,告诉客户机它已经成功地收到字节42及以前的所有字节,现在正等待着字节43的出现。第二个目的是回显字符“C”。因此,在第二个报文段的数据字段里填入的是字符“C”的ASCII码,第二个报文段的序号为79,它是该TCP连接上从服务器到客户机的数据流的起始序号,也是服务器要发送的第一个字节的数据。

这里客户机到服务器的数据的确认被装载在一个服务器到客户机的数据的报文段中,这种确认被称为是捎带确认.

第三个报文段是从客户机发往服务器的。它的唯一目的是确认已从服务器收到的数据。

3往返时延的估计与超时

TCP如同前面所讲的rdt协议一样,采用超时/重传机制来处理报文段的丢失问题。最重要的一个问题就是超时间隔长度的设置。显然,超时间隔必须大于TCP连接的往返时延RTT,即从一个报文段发出到收到其确认时。否则会造成不必要的重传。

•估计往返时延

TCP估计发送方与接收方之间的往返时延是通过采集报文段的样本RTT来实现的,就是从某报文段被发出到对该报文段的确认被收到之间的时间长度。

也就是说TCP为一个已发送的但目前尚未被确认的报文段估计sampleRTT,从而产生一个接近每个RTT的采样值。但是,TCP不会为重传的报文段计算RTT。

为了估计一个典型的RTT,采取了某种对RTT取平均值的办法。TCP据下列公式来更新

EstimatedRTT=(1-)*EstimatedRTT+*SampleRTT

即估计RTT的新值是由以前估计的RTT值与sampleRTT新值加权组合而成的。

参考值是a=0.125,因此是一个加权平均值。显然这个加权平均对最新样本赋予的权值

要大于对老样本赋予的权值。因为越新的样本能更好地反映出网络当前的拥塞情况。从统计学观点来讲,这种平均被称为指数加权移动平均

除了估算RTT外,还需要测量RTT的变化,RTT偏差的程度,因为直接使用平均值设置计时器会有问题(太灵敏)。

DevRTT=(1-β)*DevRTT+β*|SampleRTT-EstimatedRTT|

RTT偏差也使用了指数加权移动平均。B取值0.25.

•设置和管理重传超时间隔

假设已经得到了估计RTT值和RTT偏差值,那么TCP超时间隔应该用什么值呢?TCP将超时间隔设置成大于等于估计RTT值和4倍的RTT偏差值,否则将造成不必要的重传。但是超时间隔也不应该比估计RTT值大太多,否则当报文段丢失时,TCP不能很快地重传该报文段,从而将给上层应用带来很大的数据传输时延。因此,要求将超时间隔设为估计RTT值加上一定余量。当估计RTT值波动较大时,这个余最应该大些;当波动比较小时,这个余量应该小些。因此使用4倍的偏差值来设置重传时间。

TimeoutInterval=EstimatedRTT+4*DevRTT

4可信数据传输

因特网的网络层服务是不可靠的。IP不保证数据报的交付,不保证数据报的按序交付,也不保证数据报中数据的完整性。

TCP在IP不可靠的尽力而为服务基础上建立了一种可靠数据传输服务。

TCP提供可靠数据传输的方法涉及前面学过的许多原理。

TCP采用流水线协议、累计确认。

TCP推荐的定时器管理过程使用单一的重传定时器,即使有多个已发送但还未被确认的报文段也一样。重传由超时和多个ACK触发。

在TCP发送方有3种与发送和重传有关的主要事件:从上层应用程序接收数据,定时器超时和收到确认ACK。

从上层应用程序接收数据。一旦这个事件发生,TCP就从应用程序接收数据,将数据封装在一个报文段中,并将该报文段交给IP。注意到每一个报文段都包含一个序号,这个序号就是该报文段第一个数据字节的字节流编号。如果定时器还没有计时,则当报文段被传给IP时,TCP就启动一个该定时器。

第二个事件是超时。TCP通过重传引起超时的报文段来响应超时事件。然后TCP重启定时器。

第三个事件是一个来自接收方的确认报文段(ACK)。当该事件发生时,TCP将ACK的值y与变量SendBase(发送窗口的基地址)进行比较。TCP状态变量SendBase是最早未被确认的字节的序号。就是指接收方已正确按序接收到数据的最后一个字节的序号。TCP采用累积确认,所以y确认了字节编号在y之前的所有字节都已经收到。如果Y>SendBase,则该ACK是在确认一个或多个先前未被确认的报文段。因此发送方更新其SendBase变量,相当于发送窗口向前移动。

另外,如果当前有未被确认的报文段,TCP还要重新启动定时器。

快速重传

超时触发重传存在的另一个问题是超时周期可能相对较长。当一个报文段丢失时,这种长超时周期迫使发送方等待很长时间才重传丢失的分组,因而增加了端到端时延。所以通常发送方可在超时事件发生之前通过观察冗余ACK来检测丢包情况。

冗余ACK就是接收方再次确认某个报文段的ACK,而发送方先前已经收到对该报文段的确认。

当TCP接收方收到一个序号比所期望的序号大的报文段时,它认为检测到了数据流中的一个间隔,即有报文段丢失。这个间隔可能是由于在网络中报文段丢失或重新排序造成的。因为TCP使用累计确认,所以接收方不向发送方发回否定确认,而是对最后一个正确接收报文段进行重复确认(即产生一个冗余ACK)

如果TCP发送方接收到对相同报文段的3个冗余ACK.它就认为跟在这个已被确认过3次的报文段之后的报文段已经丢失。一旦收到3个冗余ACK,TCP就执行快速重传 ,

即在该报文段的定时器过期之前重传丢失的报文段。

5流量控制

前面讲过,一条TCP连接双方的主机都为该连接设置了接收缓存。当该TCP连接收到正确、按序的字节后,它就将数据放入接收缓存。相关联的应用进程会从该缓存中读取数据,但没必要数据刚一到达就立即读取。事实上,接收方应用也许正忙于其他任务,甚至要过很长时间后才去读取该数据。如果应用程序读取数据时相当缓慢,而发送方发送数据太多、太快,会很容易使这个连接的接收缓存溢出。

TCP为应用程序提供了流量控制服务以消除发送方导致接收方缓存溢出的可能性。因此,可以说 流量控制是一个速度匹配服务,即发送方的发送速率与接收方应用程序的读速率相匹配。

前面提到过,TCP发送方也可能因为IP网络的拥塞而被限制,这种形式的发送方的控制被称为拥塞控制(congestioncontrol)。

TCP通过让接收方维护一个称为接收窗口的变量来提供流量控制。接收窗口用于告诉发送方,该接收方还有多少可用的缓存空间。因为TCP是全双工通信,在连接两端的发送方都各自维护一个接收窗口变量。 主机把当前的空闲接收缓存大小值放入它发给对方主机的报文段接收窗口字段中,通知对方它在该连接的缓存中还有多少可用空间。

6 TCP连接管理

客户机中的TCP会用以下方式与服务器建立一条TCP连接:

第一步: 客户机端首先向服务器发送一个SNY比特被置为1报文段。该报文段中不包含应用层数据,这个特殊报文段被称为SYN报文段。另外,客户机会选择一个起始序号,并将其放置到报文段的序号字段中。为了避免某些安全性攻击,这里一般随机选择序号。

第二步: 一旦包含TCP报文段的用户数据报到达服务器主机,服务器会从该数据报中提取出TCPSYN报文段,为该TCP连接分配TCP缓存和控制变量,并向客户机TCP发送允许连接的报文段。这个允许连接的报文段还是不包含应用层数据。但是,在报文段的首部却包含3个重要的信息。

首先,SYN比特被置为1。其次,该 TCP报文段首部的确认号字段被置为客户端序号+1最后,服务器选择自己的初始序号,并将其放置到TCP报文段首部的序号字段中。 这个允许连接的报文段实际上表明了:“我收到了你要求建立连接的、带有初始序号的分组。我同意建立该连接,我自己的初始序号是XX”。这个同意连接的报文段通常被称为SYN+ACK报文段。

第三步: 在收到SYN+ACK报文段后,客户机也要给该连接分配缓存和控制变量。客户机主机还会向服务器发送另外一个报文段,这个报文段对服务器允许连接的报文段进行了确认。因为连接已经建立了,所以该ACK比特被置为1,称为ACK报文段,可以携带数据。

一旦以上3步完成,客户机和服务器就可以相互发送含有数据的报文段了。

为了建立连接,在两台主机之间发送了3个分组,这种连接建立过程通常被称为 三次握手(SNY、SYN+ACK、ACK,ACK报文段可以携带数据) 。这个过程发生在客户机connect()服务器,服务器accept()客户连接的阶段。

假设客户机应用程序决定要关闭该连接。(注意,服务器也能选择关闭该连接)客户机发送一个FIN比特被置为1的TCP报文段,并进人FINWAIT1状态。

当处在FINWAIT1状态时,客户机TCP等待一个来自服务器的带有ACK确认信息的TCP报文段。当它收到该报文段时,客户机TCP进入FINWAIT2状态。

当处在FINWAIT2状态时,客户机等待来自服务器的FIN比特被置为1的另一个报文段,

收到该报文段后,客户机TCP对服务器的报文段进行ACK确认,并进入TIME_WAIT状态。TIME_WAIT状态使得TCP客户机重传最终确认报文,以防该ACK丢失。在TIME_WAIT状态中所消耗的时间是与具体实现有关的,一般是30秒或更多时间。

经过等待后,连接正式关闭,客户机端所有与连接有关的资源将被释放。 因此TCP连接的关闭需要客户端和服务器端互相交换连接关闭的FIN、ACK置位报文段。

❻ 计算机网络自学笔记:选路算法

网络层必须确定从发送方到接收方分组所经过的路径。选路就是在网络中的路由器里的给某个数据报确定好路径(即路由)。

一 台主机通常直接与一台路由器相连接,该路由器即为该主机的默认路由器,又称为该主机的默认网关。 每当某主机向外部网络发送一个分组时,该分组都被传送给它的默认网关。

如果将源主机的默认网关称为源路由器,把目的主机的默认网关称为目的路由器。为一个分组从源主机到目的主机选路的问题于 是可归结为从源路由器到目的路由器的选路问题。

选路算法的目标很简单:给定一组路由器以及连接路由器的链路,选路算法要找到一条从源路由器到目的路由器的最好路径,通常一条好路径是指具有最低费用的路径。

图 G=(N,E)是一个 N 个节点和 E 条边的集合,其中每条边是来自 N 的一对节点。在网 络选路的环境中,节点表示路由器,这是做出分组转发决定的节点,连接节点的边表示路由 器之间的物理链路。

一条边有一个值表示它的费用。通常一条边的费用可反映出对应链路的物理长度、链路速度或与该链路相关的费用。

对于 E 中的任一条边(xy)可以用 c(xy )表示节点 x 和 y 间边的费用。一般考虑的都是无向 图,因此边(xy)与边(y x)是相同的并且开销相等。节点 y 也被称为节点 x 的邻居。

在图中为各条边指派了费用后,选路算法的目标自然是找出从源到目的间的最低费用路径。图 G=(N,E)中的一条路径(Path)是一个节点的序列,使得每一对以(x1,x2), (x2,x3),…,是 E 中的边。路径的费用是沿着路径所有边费用的总和。

从广义上来说,我们对 选路算法分类的一种方法就是根据该算法是全局性还是分布式来区分的。

.全局选路算法: 用完整的、全局性的网络信息来计算从源到目的之间的最低费用路径。

实际上, 具有全局状态信息的算法常被称作链路状态 LS 算法, 因为该算法必须知道网络中每条链路的费用。

.分布式选路算法: 以迭代的、分布式的方式计算出最低费用路径。通过迭代计算并与相邻节点交换信息,逐渐计算出到达某目的节点或一组目的节点的最低费用路径。

DV 算法是分布式选路算法, 因为每个节点维护到网络中的所有其他节点的费用(距离)估计的矢量。

选路算法的第二种广义分类方法是根据算法是静态的还是动态的来分类。

一: 链路状态选路算法 LS

在链路状态算法中,通过让每个节点向所有其他路由器广播链路状态分组, 每个链路状态分组包含它所连接的链路的特征和费用, 从而网络中每个节点都建立了关于整个网络的拓扑。

Dijkstra 算法计算从源节点到网络中所有其他节点的最低费用路径.

Dijkstra 算法是迭代算法,经算法的第 k 次迭代后,可知道到 k 个目的节点的最低费用路径。

定义下列记号:

D(V)随着算法进行本次迭代,从源节点到目的节点的最低费用路径的费用。

P(v)从源节点到目的节点 v 沿着当前最低费用路径的前一节点(,的邻居)。

N`节点子集;如果从源节点到目的节点 v 的最低费用路径已找到,那么 v 在 N`中。

Dijkstra 全局选路算法由一个初始化步骤和循环组成。循环执行的次数与网络中的节点个数相同。在结束时,算法会计算出从源节点 u 到网络中每个其他节点的最短路径。

考虑图中的网络,计算从 u 到所有可能目的地的最低费用路径。

.在初始化阶段 ,从 u 到与其直接相连的邻居 v、x、w 的当前已知最低费用路径分别初始化为 2,1 和 5。到 y 与 z 的费用被设为无穷大,因为它们不直接与 u 连接。

.在第一次迭代时, 需要检查那些还未加到集合 N`中的节点,找出在前一次迭代结束时具有最低费用的节点。那个节点是 x 其费用是 1,因此 x 被加到集合 N`中。然后更新所有节点的 D(v),产生下表中第 2 行(步骤)所示的结果。到 v 的路径费用未变。经过节点 x 到 w 的 路径的费用被确定为 4。因此沿从 u 开始的最短路径到 w 的前一个节点被设为 x。类似地, 到 y 经过 x 的费用被计算为 2,且该表项也被更新。

.在第二次迭代时 ,节点 v 与 y 被发现具有最低费用路径 2。任意选择将 y 加到集合 N` 中,使得 N’中含有 u、x 和 y。通过更新,产生如表中第 3 行所示的结果。

.以此类推…

当 LS 算法结束时,对于每个节点都得到从源节点沿着它的最低费用路径的前继节点, 对于每个前继节点,又有它的前继节点,按照此方式可以构建从源节点到所有目的节点的完 整路径。

根据从 u 出发的最短路径,可以构建一个节点(如节点 u)的转发表。

二 距离矢量选路算法 DV

LS 算法是一种使用全局信息的算法,而距离矢量算法是一种迭代的、异步的和分布式的算法。

Bellman-Ford 方程:

设 dx(y)是从节点 x 到节点 y 的最低费用路径的费用,则有  dx(y) = min {c(x,v) + dv(y) }

PS: 方程中的 min,是指取遍 x 的所有邻居。

Bellman-Ford 方程含义相当直观,意思是从 x 节点出发到 y 的最低费用路径肯定经过 x 的某个邻居,而且 x 到这个邻居的费用加上这个邻居到达目的节点 y 费用之和在所有路径 中其总费用是最小的。 实际上,从 x 到 v 遍历之后,如果取从 v 到 y 的最低费用路径,该路 径费用将是 c(x,v)+ dv(y)。因此必须从遍历某些邻居 v 开始,从 x 到 y 的最低费用是对所有邻 居的 c(x,v)+dv(y)的最小值。

在该 DV 算法中,当节点 x 看到它的直接相连的链路费用变化,或从某个邻居接收到一 个距离矢量的更新时,就根据 Bellman-Ford 方程更新其距离矢量表。

三 LS 与 DV 选路算法的比较

DV 和 LS 算法采用不同的方法来解决计算选路问题。

在 DV 算法中,每个节点仅与它的直接相连邻居交换信息,但它为它的邻居提供了从其 自己到网络中(它所知道的)所有其他节点的最低费用估计。

在 LS 算法中,每个节点(经广播)与所有其他节点交换信息,但它仅告诉它们与它直接 相连链路的费用。

·报文复杂性:

LS 算法要求每个节点都知道网络中每条链路的费用,需要发送 O(nE)个消息。

DV 算法要求在每次迭代时,在两个直接相连邻居之间交换报文,算法收敛所需的时间 依赖于许多因素。当链路费用改变时,DV 算法仅当在会导致该节点的最低费用路径发生改 变时,才传播已改变的链路费用。

·收效速度:

DV算法收敛较慢,且在收敛时会遇到选路环路。DV算法还会遭受到计数到无穷的问题。

•健壮性:  在 LS 算法中,如果一台路由器发生故障、或受到破坏,路由器会向其连接的链路广播 不正确费用,导致整个网络的错误。

在 Dv 算法下, 每次迭代时,其中一个节点的计算结果会传递给它的邻居,然后在下次迭代时再间接地传递给邻居的邻居。在这种情况下,DV 算法中一个不正确的计算结果也会扩散到整个网络。

四.层次选路

两个原因导致层次的选路策略:

•规模: 随着路由器数目增长,选路信息的计算、存储及通信的开销逐渐增高。

•管理自治: 一般来说,一个单位都会要求按自己的意愿运行路由器(如运行其选择的某 种选路算法),或对外部隐藏其内部网络的细节。

层次的选路策略是通过将路由器划分成自治系统 AS 来实施的。

每个 AS 由一组通常在相同管理控制下的路由器组成(例如由相同的 ISP 运营或属于相同 的公司网络)。在相同的 AS 内的路由器都全部运行同样的选路算法。

在一个自治系统内运行的选路算法叫做自治系统内部选路协议。 在一个 AS 边缘的一台 或多台路由器,来负责向本 AS 之外的目的地转发分组,这些路由器被称为网关路由器

在各 AS 之间,AS 运行相同的自治系统间选路协议。

❼ ★★急求自考计算机网络安全真题及答案(☆高分悬赏☆)

这里有你想要的一切...
全国2010年4月自学考试计算机网络安全试题及答案
http://wenku..com/view/801756db6f1aff00bed51e00.html
全国2009年7月自考计算机网络安全试卷及答案
http://wenku..com/view/1c57d5630b1c59eef8c7b47f.html
全国2010年4月自学考试计算机网络安全试题及答案
http://wenku..com/view/bb2b4f232f60ddccda38a07f.html

备注:以上两套真题答案由杨尚杰为你亲情制作.
自考乐园俱乐部全网首发..★★★欢迎下载...欢迎交流...
其他:
2010自考计算机网络安全串讲习题(燕园试题)
自考计算机网络安全教材(高清扫描版)
计算机网络安全超强笔记
-------请到自考乐园俱乐部下载

如果你还想找更多关于自考计算机网络安全的资料(比如笔记,课后答案...等等)...也欢迎你自己去这个俱乐部找找...一定会得到意想不到的收获...
--------------------------------------------------------
这里也许更适合你....
网络贴吧:自考乐园俱乐部
自我感觉自考乐园俱乐部最适合你...
本人也是自考计算机网络(独立本科),和你也有类似想法...
偶然间发现原来竟然有这样一个圈子:自考乐园俱乐部
这里几乎聚集了最多的自考计算机网络独立本科的朋友,和几乎全部自考本专业的资料(更可贵的是还能免费下载...)
也欢迎你和我们一起加入这个圈子...
------------------------------------------
以下是这个俱乐部的简介:
☆自考乐园---心境随缘,诚与天下自考人共勉!!!
☆自考乐园---分享快乐,你的快乐老家!!!
☆自考乐园---引领成功,你的精神乐园!!!
--------------------------------------

☆★☆与千万自考生同行,你准备好了吗?

你希望在自考的征途中,有一群和你志同道合的人同行?

你愿意在漫长的自考岁月中,有一群人和你分享快乐,分担忧愁吗?

你渴望在一个人奋斗时,有一群人在背后默默支持你吗?

你是否也一直在苦苦寻找这样一个平台,一群志同道合的人,一片积极向上的心,一个共同的追求,一个诚挚的鼓励,一个坚实的支持......对!!!就是这里!!!这里有你想要的一切......

与志者同行,你也将成为志者!!!

与成功者同行,你也将获得成功!!!

与千万自考生同行,你准备好了吗???

与千万自考生同行,你做好了准备吗???

今天我们诚挚的发出邀请,真诚的欢迎广大报考和我相同专业的考生加入本俱乐部,一起交流,进步,提高.......我们正寻找特别的你亲情加入.........

---------------------------------
我也认为网络贴吧:自考乐园俱乐部最好.......
尤其是他们所共享的自考资料...几乎可以说是网上最全面,最系统的...
加入自考乐园俱乐部...绝对会让你受益多多...
以下仅例举几科资料:
●★自考乐园发帖须知★● ●自考乐园优秀主题简介● [置顶]
【资料整理】自考中国近现代史纲一贴通(资料大全) [精品]
【资料整理】自考马克思主义基本原理概论一贴通(资料大全) [精品]
【资料整理】自考计算机网络原理一贴通(资料大全) [精品]
【资料整理】自考Java语言程序设计(一)一贴通(资料大全) [精品]
【资料整理】自考高等数学(工本)一贴通(资料大全) [精品]
【资料整理】自考自考网络操作系统一贴通(资料大全) [精品]
【资料整理】自考数据结构一贴通(资料大全) [精品]
【资料整理】自考数据库系统原理一贴通(资料大全) [精品]
【资料整理】自考英语二一贴通(资料大全) [精品]
【资料整理】自考互联网及其应用一贴通(资料大全) [精品]
【资料整理】自考计算机网络管理一贴通(资料大全) [精品]
【资料整理】自考计算机网络安全一贴通(资料大全) [精品]
--------------------------------------------------

最后预祝所有的朋友:

自考快乐

天天有份好心情!!!-------------------自考乐园俱乐部
===========================================================
关于自考,你还有什么疑惑,欢迎在网络上给我留言,我会尽力帮助你的...
如果你要加入自考乐园俱乐部,也欢迎给我留言,我会给你发邀请链接...
==============================================================

网络贴吧:自考乐园俱乐部

参考资料:网络贴吧:自考乐园俱乐部

❽ 计算机网络笔记——数据链路层

封装成帧 :在一段数据的前后部分添加 首部 和 尾部 ,这样就构成了一个帧。
接收端在收到物理层上交的比特流后,就能根据首部和尾部的标记,从收到的比特流中识别帧的开始和结束.

首部和尾部包含许多的控制信息,他们的一个重要作用: 帧定界 (确定帧的界限)。

帧同步 :接收方应当能从接收到的二进制比特流中区分出帧的起始和终止。

1. 字符计数法

2. 字符(节)填充法

3. 零比特填充法

4. 违规编码法。

字节计数法 : Count字段的脆弱性(其值若有差错将导致灾难性后果)
字符填充法 : 实现上的复杂性和不兼容性
目前较普遍使用的帧同步法是 比特填充 和 违规编码法 。

差错源于噪声:

冗余编码: 在数据前面添加校验数据,和最终收到的数据比对是否有误,有误证明传输出错

板栗🌰

一段晦涩的话

“可靠传输”:数据链路层发送端发送什么,接收端就收到什么。
链路层使用CRC检验,能够实现无比特差错的传输,但这还不是可靠传输。

原理: 多个校验位同时检验一个数据

构成: 检验位和数据位
检验位个数:海明不等式 2^r >= k + r + 1 计算得出(r为检验位个数,k为数据位位数)
检验位位置:2的(1-r次方)

编码: (以数据D = 101101为例)

最终传输数据(海明码): 00 1 0 011 1 01

校验:

🌰🌰板栗+1

❾ 大学的计算机网络课程该怎么学习,记笔记 自从上了大学,我们好多课程都变成了在网上看视频学习,尤

2级c语言比较好过,把书看懂,把题目弄清楚,再做几套模拟题,就够了