Ⅰ 计算机网络题
(1) 将IP 地址空间202.118.1.0/24 划分为2 个子网,可以从主机位拿出1 位来划分子网,剩余的7 位用来表示主机号(27-2>120,满足要求),所以两个子网的子网掩码都为:1111111111111111 11111111 10000000,即255.255.255.128;所划分的两个子网的网络地址分别为:
202.118.1.00000000 和202.118.1.10000000(为了理解方便我将最后一个字节用二进制表示,这样可以看清楚子网的划分过程),即202.118.1. 0 和202.118.1.128。
综上,划分结果为:
子网1:202.118.1.0,子网掩码为:255.255.255.128;
子网2:202.118.1.128,子网掩码为:255.255.255.128。
或者写成:
子网1:202.118.1.0/25;
子网2:202.118.1.128/25。
(2) 下面分2 种情况:
(a) 假设子网1 分配给局域网1,子网2 分配给局域网2;路由器R1 到局域网1 和局域网
2 是直接交付的,所以下一跳IP 地址可以不写(打一横即可),接口分别是从E1、E2转发出去;路由器R1 到域名服务器是属于特定的路由,所以子网掩码应该为255.255.255.255(只有和全1 的子网掩码相与之后才能100%保证和目的网络地址一样,从而选择该特定路由),而路由器R1 到域名服务器应该通过接口L0 转发出去,下一跳IP 地址应该是路由器R2 的L0 接口,即IP 地址为202.118.2.2;路由器R1 到互联网属于默认路由(记住就好,课本127 页),而前面我们已经提醒过,默认路由的目的网络IP 地址和子
网掩码都是0.0.0.0,而路由器R1 到互联网应该通过接口L0 转发出去,下一跳IP 地址应该是路由器R2 的L0 接口,即IP 地址为202.118.2.2,故详细答案见下表:
目的网络地址子网掩码下一跳IP 地址接口
202.118.1.0 255.255.255.128 — E1
202.118.1.128 255.255.255.128 — E2
202.118.3.2 255.255.255.255 202.118.2.2 L0
0.0.0.0 0.0.0.0 202.118.2.2 L0
(b) 假设子网1 分配给局域网2,子网2 分配给局域网1;中间过程几乎一样,答案请看下表:
目的网络地址子网掩码下一跳IP 地址接口
202.118.1.128 255.255.255.128 — E1
202.118.1.0 255.255.255.128 — E2
202.118.3.2 255.255.255.255 202.118.2.2 L0
0.0.0.0 0.0.0.0 202.118.2.2 L0
(3) 首先将202.118.1.0/25 与202.118.1.128/25 聚合,聚合的地址为:202.118.1.0/24(只有前面24 位一样),显然子网掩码为:255.255.255.0,故路由器R2 经过接口L0,下一跳为路由器R1 的接口L0,IP 地址为:202.118.2.1,所以路由表项如下表所示:
目的网络地址子网掩码下一跳IP 地址接口
202.118.1.0 255.255.255.0 202.118.2.1 L0
Ⅱ 一道计算机网络计算题
我虽然不会,但是,我可以帮你做个分析,根据题目,同时发送数据,产生了碰撞,这是很常见的冲突解决方法很多,现在用的是截断二进制指数退避算法,好接下来,就得研究这种算法的规则:
在CSMA/CD协议中,一旦检测到冲突,为降低再冲突的概率,需要等待一个随机时间,然后再使用CSMA方法试图传输。为了保证这种退避维持稳定,采用了二进制指数退避算法的技术,其算法过程如下:
1. 将冲突发生后的时间划分为长度为2t的时隙
2. 发生第一次冲突后,各个站点等待0或1个时隙在开始重传
3. 发生第二次冲突后,各个站点随机地选择等待0,1,2或3个时隙在开始重传 4. 第i次冲突后,在0至2的i次方减一间随机地选择一个等待的时隙数,在开始重传
5. 10次冲突后,选择等待的时隙数固定在0至1023(2的10次方减一)间 6. 16次冲突后,发送失败,报告上层。
然后看题目的要求,试计算一个站成功发送数据之前的平均重传次数I。
这里有一个前提是2个 站的以太网。现在算一次的概率,有0.5,2次的概率是0.5*(1-1/2),3次是0.5*1/2*(1-1/4),4次,就是0.5*1/2*1/4*(1-1/8)一直到10次,以后全是0.5*1/2...(1-1/2(9次方))。。。直到16次完成了。失败,现在求平均值,可以得到平均次数就是,我没有去算,必须做估算,呵呵,思路就是这样
我不是计算器,现在就剩下做加法了1*0.5+2*(概率)+3*(概率)+...你连所有次数的概率都知道了,求平均次数,那还不会呀,我记得好像学高中数学的时候就有了
Ⅲ 求计算机网络中以太网协议简单碰撞的过程
信息从一个站点传到另一个站点是有延时的(电磁波在1km电缆的延时约为5us)。例如A向B发出数据,约5us后才能到达B,而这时B还未检测到A所发送的信息,就开始发送自己的帧,二者必然在某个时间发生碰撞,碰撞的结果就是两个帧都变得无用。
Ⅳ 一道计算机网络题!
网络172.168.120.1/20其实是 172.168.120.1 255.255.240.0 第三个8位组为240,所以网络的块大小为16 该地址所在的网络ID为172.168.112.0 子网掩码就是255.255.240.0了 子网个数为2^4=16个
Ⅳ 简述以太网解决碰撞问题的二进制退避算法
答:将第i次重传成功的概率记为pi。显然
第一次重传失败的概率为0.5,第二次重传失败的概率为0.25,第三次重传失败的概率
为0.125.平均重传次数I=1.637
Ⅵ 计算机网络题求解答 谢谢
2017年12月28日,星期四,
兄弟,你这照片上的第一题中多项式的指数看不清呀,
没事,我就现在的情形,给你说一下大概的思路,你参考着,再结合题目中实际的参数,再套一遍就能把题目解出来了,
CSMA/CD(Carrier Sense Multiple Access with Collision Detection)基带冲突检测的载波监听多路访问技术(载波监听多点接入/碰撞检测)。所有的节点共享传输介质。
原理,如下,
1、所有的站点共享唯一的一条数据通道,
2、在一个站点发送数据时,其他的站点都不能发送数据,如果要发送就会产生碰撞,就要重新发送,而且所有站点都要再等待一段随即的时间,
3、对于每一个站而言,一旦它检测到有冲突,它就放弃它当前的传送任务。换句话说,如果两个站都检测到信道是空闲的,并且同时开始传送数据,则它们几乎立刻就会检测到有冲突发生。
4、它们不应该再继续传送它们的帧,因为这样只会产生垃圾而已;相反一旦检测到冲突之后,它们应该立即停止传送数据。快速地终止被损坏的帧可以节省时间和带宽。
5、它的工作原理是: 发送数据前 先侦听信道是否空闲 ,若空闲,则立即发送数据。若信道忙碌,则等待一段时间至信道中的信息传输结束后再发送数据;若在上一段信息发送结束后,同时有两个或两个以上的节点都提出发送请求,则判定为冲突。若侦听到冲突,则立即停止发送数据,等待一段随机时间,再重新尝试。
6、原理简单总结为:先听后发,边发边听,冲突停发,随机延迟后重发。
7、Carrier Sense Multiple Access就是,要发送和发送中都要进行监听,
8、有人将CSMA/CD的工作过程形象的比喻成很多人在一间黑屋子中举行讨论会,参加会议的人都是只能听到其他人的声音。每个人在说话前必须先倾听,只有等会场安静下来后,他才能够发言。人们将发言前监听以确定是否已有人在发言的动作称为"载波监听";将在会场安静的情况下每人都有平等机会讲话成为“多路访问”;如果有两人或两人以上同时说话,大家就无法听清其中任何一人的发言,这种情况称为发生“冲突”。发言人在发言过程中要及时发现是否发生冲突,这个动作称为“冲突检测”。如果发言人发现冲突已经发生,这时他需要停止讲话,然后随机后退延迟,再次重复上述过程,直至讲话成功。如果失败次数太多,他也许就放弃这次发言的想法。通常尝试16次后放弃。
9、核心问题:解决在公共通道上以广播方式传送数据中可能出现的问题(主要是数据碰撞问题)
包含四个处理内容:监听、发送、检测、冲突处理
监听:
通过专门的检测机构,在站点准备发送前先侦听一下总线上是否有数据正在传送(线路是否忙)?
若“忙”则进入后述的“退避”处理程序,进而进一步反复进行侦听工作。
发送:
当确定要发送后,通过发送机构,向总线发送数据。
检测:
数据发送后,也可能发生数据碰撞。因而,要对数据边发送,边检测,以判断是否冲突了。
冲突处理:
当确认发生冲突后,进入冲突处理程序。有两种冲突情况:
① 侦听中发现线路忙
② 发送过程中发现数据碰撞
① 若在侦听中发现线路忙,则等待一个延时后再次侦听,若仍然忙,则继续延迟等待,一直到可以发送为止。每次延时的时间不一致,由退避算法确定延时值。
② 若发送过程中发现数据碰撞,先发送阻塞信息,强化冲突,再进行监听工作,以待下次重新发送
10、
先听后说,边听边说,边说边听;
一旦冲突,立即停说;
等待时机,然后再说;
注:“听”,即监听、检测之意;“说”,即发送数据之意。
11、在发送数据前,先监听总线是否空闲。若总线忙,则不发送。若总线空闲,则把准备好的数据发送到总线上。在发送数据的过程中,工作站边发送边检测总线,是否自己发送的数据有冲突。若无冲突则继续发送直到发完全部数据;若有冲突,则立即停止发送数据,但是要发送一个加强冲突的JAM信号,以便使网络上所有工作站都知道网上发生了冲突,然后,等待一个预定的随机时间,且在总线为空闲时,再重新发送未发完的数据。
12、
CSMA/CD网络上进行传输时,必须按下列五个步骤来进行
(1)传输前监听
(2)如果忙则等待
(3)如果空闲则传输并检测冲突
(4)如果冲突发生,重传前等待
(5)重传或夭折
补充一个重要的知识点:
要使CSMA/CA 正常工作,我们必须要限制帧的长度。如果某次传输发生了碰撞,那么正在发送数据的站必须在发送该帧的最后一比特之前放弃此次传输,因为一旦整个帧都被发送出去,那么该站将不会保留帧的复本,同时也不会继续监视是否发生了碰撞。所以,一旦检测出有冲突,就要立即停止发送,
举例说明,
A站点发送数据给B站点,当A站通过监听确认线路空闲后,开始发送数据给B站点,同时对线路进行监听,即边发送边监听,边监听边发送,直到数据传送完毕,那么如果想要正确发送数据,就需要确定最小帧长度和最小发送间隙(冲突时槽)。
CSMA/CD冲突避免的方法:先听后发、边听边发、随机延迟后重发。一旦发生冲突,必须让每台主机都能检测到。关于最小发送间隙和最小帧长的规定也是为了避免冲突。
考虑如下的情况,主机发送的帧很小,而两台冲突主机相距很远。在主机A发送的帧传输到B的前一刻,B开始发送帧。这样,当A的帧到达B时,B检测到冲突,于是发送冲突信号,假如在B的冲突信号传输到A之前,A的帧已经发送完毕,那么A将检测不到冲突而误认为已发送成功。由于信号传播是有时延的,因此检测冲突也需要一定的时间。这也是为什么必须有个最小帧长的限制。
按照标准,10Mbps以太网采用中继器时,连接的最大长度是2500米,最多经过4个中继器,因此规定对10Mbps以太网一帧的最小发送时间为51.2微秒。这段时间所能传输的数据为512位,因此也称该时间为512位时。这个时间定义为以太网时隙,或冲突时槽。512位=64字节,这就是以太网帧最小64字节的原因。
以上信息的简单理解是:A发送一个帧的信息(大小不限制),B收到此帧,发现有冲突,马上发送包含检测到了冲突的信息给A,这个冲突信息到达A也是需要时间的,所以,要想A成功发送一个帧(并知道这个帧发送的是否成功,冲没冲突)是需要这个帧从A到B,再从B到A,这一个来回的时间,
也就是说,当一个站点决定是否要发送信息之前,一定要先进行线路的检测,那么隔多长时间检测一次合适呢(在没有检测的期间是不进行数据的发送的,因此也就不存在冲突),这就要看, 一个电子信号在这两个站点之间跑一个来回的时间了,试想一下,如果这个信号还没有跑到地方,你就开始检测,显然是浪费检测信号的设备资源,然后,A站点发送一个电子信号给B站点,信号经过一段时间到达了B站点,然后假设B发现了冲突,马上告诉A,那么这个电子信号再跑回A也需要一段时间,如果当这个信号在路上的时候,A就开始检测是不是有冲突,显然是不合适的,因为,B发送的冲突信号还在路上,如果A在这个时间段就检测,一定不会发现有冲突,那么,A就会继续发送信号,但这是错误,因为已经有冲突被检测出来,因此,A这么做是错误的,所以,A要想正确发送一个电子信号给B,并且被B正确接收,就需要,A发送一个电子信号,并等待它跑一个来回的时间那么长,才能确认是没有冲突,然后再继续发送下一个信号,
这个电子信号跑一个来回的时间,是由站点间的距离s、帧在媒体上的传播速度为v(光速)以及网络的传输率为r(bps)共同决定的,
那么,假设电子信号跑一个来回的时间是t,则有如下式子,
t=2s/v;
又有,假设在时间t内可以传送的数据量(最小帧)为L,则有如下式子,
L=t*r;解释:这个就是说,一个电子信号从A跑到B需要t这么长时间,又因为电子信号几乎接近光速,因此,即使在t这么短的时间内,我仍然可以不停的发送很多个电子信号,这样就形成了一串二进制数列在t这个很小的时间段内被从A发送出去,那么我在t这个时间段内究竟能发送出去多少的电子信号,就要看我的传输率r是多少了,因为有这种关系,所以就形成了最小帧的概念,
将 L=t*r 变形为 t=L/r,并将 t=L/r 带入 t2s/v,得到式子:L/r=2s/v,
再将,题目中给出的数据带入上式,得到
2500字节/(1G bps)=2s/200000(Km);将单位统一后,有下式:
(2500*8)/(1024*1024*1024)=2s/200000(Km);继续计算,得:
s=1.86Km,
若1Gbps取值为1000*1000*1000,则s=2Km;
兄弟,我这个利用工作空隙给你写答案,你别着急啊,现在是12:48,第三题,我抓紧时间帮你算。
Ⅶ 求解CSMA/CD的一道题!计算机网络第五版(谢希仁) 第3章25题!!
t=0时,A,B开始传输数据; t=225比特时间,A和B同时检测到发生碰撞; t=225+48=273比特时间,完成了干扰信号的传输; 开始各自进行退避算法: A: 因为rA=0,则A在干扰信号传输完之后立即开始侦听 t=273+225(传播时延)=498比特时间,A检测到信道开始空闲 t=498+96(帧间最小间隔)=594比特时间,A开始重传数据 -----第一问A的重传时间 t=594+225 (传播时延)=819比特时间,A重传完毕 ----第二问A重传的数据帧到达B的时间 B: 因为rB=1,则B在干扰信号传输完之后1倍的争用期,即512比特时间才开始侦听 t=273+512=785比特时间,B开始侦听 若侦听空闲,则 t=785+96(帧间最小间隔)=881比特时间,B开始重传数据 若侦听费空闲,则继续退避算法 又因为t=819比特时间的时候,A才重传数据完毕,所以B在785比特时间侦听的时候,肯定会侦听信道非空闲,即B在预定的881比特时间之前侦听到信道忙, 所以,第四问的答案:B在预定的881比特时间是停止发送数据的。 即第三问A重传的数据不会和B重传的数据再次发生碰撞。
Ⅷ 计算机网络第三章(数据链路层)
3.1、数据链路层概述
概述
链路 是从一个结点到相邻结点的一段物理线路, 数据链路 则是在链路的基础上增加了一些必要的硬件(如网络适配器)和软件(如协议的实现)
网络中的主机、路由器等都必须实现数据链路层
局域网中的主机、交换机等都必须实现数据链路层
从层次上来看数据的流动
仅从数据链路层观察帧的流动
主机H1 到主机H2 所经过的网络可以是多种不同类型的
注意:不同的链路层可能采用不同的数据链路层协议
数据链路层使用的信道
数据链路层属于计算机网路的低层。 数据链路层使用的信道主要有以下两种类型:
点对点信道
广播信道
局域网属于数据链路层
局域网虽然是个网络。但我们并不把局域网放在网络层中讨论。这是因为在网络层要讨论的是多个网络互连的问题,是讨论分组怎么从一个网络,通过路由器,转发到另一个网络。
而在同一个局域网中,分组怎么从一台主机传送到另一台主机,但并不经过路由器转发。从整个互联网来看, 局域网仍属于数据链路层 的范围
三个重要问题
数据链路层传送的协议数据单元是 帧
封装成帧
封装成帧 (framing) 就是在一段数据的前后分别添加首部和尾部,然后就构成了一个帧。
首部和尾部的一个重要作用就是进行 帧定界 。
差错控制
在传输过程中可能会产生 比特差错 :1 可能会变成 0, 而 0 也可能变成 1。
可靠传输
接收方主机收到有误码的帧后,是不会接受该帧的,会将它丢弃
如果数据链路层向其上层提供的是不可靠服务,那么丢弃就丢弃了,不会再有更多措施
如果数据链路层向其上层提供的是可靠服务,那就还需要其他措施,来确保接收方主机还可以重新收到被丢弃的这个帧的正确副本
以上三个问题都是使用 点对点信道的数据链路层 来举例的
如果使用广播信道的数据链路层除了包含上面三个问题外,还有一些问题要解决
如图所示,主机A,B,C,D,E通过一根总线进行互连,主机A要给主机C发送数据,代表帧的信号会通过总线传输到总线上的其他各主机,那么主机B,D,E如何知道所收到的帧不是发送给她们的,主机C如何知道发送的帧是发送给自己的
可以用编址(地址)的来解决
将帧的目的地址添加在帧中一起传输
还有数据碰撞问题
随着技术的发展,交换技术的成熟,
在 有线(局域网)领域 使用 点对点链路 和 链路层交换机 的 交换式局域网 取代了 共享式局域网
在无线局域网中仍然使用的是共享信道技术
3.2、封装成帧
介绍
封装成帧是指数据链路层给上层交付的协议数据单元添加帧头和帧尾使之成为帧
帧头和帧尾中包含有重要的控制信息
发送方的数据链路层将上层交付下来的协议数据单元封装成帧后,还要通过物理层,将构成帧的各比特,转换成电信号交给传输媒体,那么接收方的数据链路层如何从物理层交付的比特流中提取出一个个的帧?
答:需要帧头和帧尾来做 帧定界
但比不是每一种数据链路层协议的帧都包含有帧定界标志,例如下面例子
前导码
前同步码:作用是使接收方的时钟同步
帧开始定界符:表明其后面紧跟着的就是MAC帧
另外以太网还规定了帧间间隔为96比特时间,因此,MAC帧不需要帧结束定界符
透明传输
透明
指某一个实际存在的事物看起来却好像不存在一样。
透明传输是指 数据链路层对上层交付的传输数据没有任何限制 ,好像数据链路层不存在一样
帧界定标志也就是个特定数据值,如果在上层交付的协议数据单元中, 恰好也包含这个特定数值,接收方就不能正确接收
所以数据链路层应该对上层交付的数据有限制,其内容不能包含帧定界符的值
解决透明传输问题
解决方法 :面向字节的物理链路使用 字节填充 (byte stuffing) 或 字符填充 (character stuffing),面向比特的物理链路使用比特填充的方法实现透明传输
发送端的数据链路层在数据中出现控制字符“SOH”或“EOT”的前面 插入一个转义字符“ESC” (其十六进制编码是1B)。
接收端的数据链路层在将数据送往网络层之前删除插入的转义字符。
如果转义字符也出现在数据当中,那么应在转义字符前面插入一个转义字符 ESC。当接收端收到连续的两个转义字符时,就删除其中前面的一个。
帧的数据部分长度
总结
3.3、差错检测
介绍
奇偶校验
循环冗余校验CRC(Cyclic Rendancy Check)
例题
总结
循环冗余校验 CRC 是一种检错方法,而帧校验序列 FCS 是添加在数据后面的冗余码
3.4、可靠传输
基本概念
下面是比特差错
其他传输差错
分组丢失
路由器输入队列快满了,主动丢弃收到的分组
分组失序
数据并未按照发送顺序依次到达接收端
分组重复
由于某些原因,有些分组在网络中滞留了,没有及时到达接收端,这可能会造成发送端对该分组的重发,重发的分组到达接收端,但一段时间后,滞留在网络的分组也到达了接收端,这就造成 分组重复 的传输差错
三种可靠协议
停止-等待协议SW
回退N帧协议GBN
选择重传协议SR
这三种可靠传输实现机制的基本原理并不仅限于数据链路层,可以应用到计算机网络体系结构的各层协议中
停止-等待协议
停止-等待协议可能遇到的四个问题
确认与否认
超时重传
确认丢失
既然数据分组需要编号,确认分组是否需要编号?
要。如下图所示
确认迟到
注意,图中最下面那个数据分组与之前序号为0的那个数据分组不是同一个数据分组
注意事项
停止-等待协议的信道利用率
假设收发双方之间是一条直通的信道
TD :是发送方发送数据分组所耗费的发送时延
RTT :是收发双方之间的往返时间
TA :是接收方发送确认分组所耗费的发送时延
TA一般都远小于TD,可以忽略,当RTT远大于TD时,信道利用率会非常低
像停止-等待协议这样通过确认和重传机制实现的可靠传输协议,常称为自动请求重传协议ARQ( A utomatic R epeat re Q uest),意思是重传的请求是自动进行,因为不需要接收方显式地请求,发送方重传某个发送的分组
回退N帧协议GBN
为什么用回退N帧协议
在相同的时间内,使用停止-等待协议的发送方只能发送一个数据分组,而采用流水线传输的发送方,可以发送多个数据分组
回退N帧协议在流水线传输的基础上,利用发送窗口来限制发送方可连续发送数据分组的个数
无差错情况流程
发送方将序号落在发送窗口内的0~4号数据分组,依次连续发送出去
他们经过互联网传输正确到达接收方,就是没有乱序和误码,接收方按序接收它们,每接收一个,接收窗口就向前滑动一个位置,并给发送方发送针对所接收分组的确认分组,在通过互联网的传输正确到达了发送方
发送方每接收一个、发送窗口就向前滑动一个位置,这样就有新的序号落入发送窗口,发送方可以将收到确认的数据分组从缓存中删除了,而接收方可以择机将已接收的数据分组交付上层处理
累计确认
累计确认
优点:
即使确认分组丢失,发送方也可能不必重传
减小接收方的开销
减小对网络资源的占用
缺点:
不能向发送方及时反映出接收方已经正确接收的数据分组信息
有差错情况
例如
在传输数据分组时,5号数据分组出现误码,接收方通过数据分组中的检错码发现了错误
于是丢弃该分组,而后续到达的这剩下四个分组与接收窗口的序号不匹配
接收同样也不能接收它们,讲它们丢弃,并对之前按序接收的最后一个数据分组进行确认,发送ACK4, 每丢弃一个数据分组,就发送一个ACK4
当收到重复的ACK4时,就知道之前所发送的数据分组出现了差错,于是可以不等超时计时器超时就立刻开始重传,具体收到几个重复确认就立刻重传,根据具体实现决定
如果收到这4个重复的确认并不会触发发送立刻重传,一段时间后。超时计时器超时,也会将发送窗口内以发送过的这些数据分组全部重传
若WT超过取值范围,例如WT=8,会出现什么情况?
习题
总结
回退N帧协议在流水线传输的基础上利用发送窗口来限制发送方连续发送数据分组的数量,是一种连续ARQ协议
在协议的工作过程中发送窗口和接收窗口不断向前滑动,因此这类协议又称为滑动窗口协议
由于回退N帧协议的特性,当通信线路质量不好时,其信道利用率并不比停止-等待协议高
选择重传协议SR
具体流程请看视频
习题
总结
3.5、点对点协议PPP
点对点协议PPP(Point-to-Point Protocol)是目前使用最广泛的点对点数据链路层协议
PPP协议是因特网工程任务组IEIF在1992年制定的。经过1993年和1994年的修订,现在的PPP协议已成为因特网的正式标准[RFC1661,RFC1662]
数据链路层使用的一种协议,它的特点是:简单;只检测差错,而不是纠正差错;不使用序号,也不进行流量控制;可同时支持多种网络层协议
PPPoE 是为宽带上网的主机使用的链路层协议
帧格式
必须规定特殊的字符作为帧定界符
透明传输
必须保证数据传输的透明性
实现透明传输的方法
面向字节的异步链路:字节填充法(插入“转义字符”)
面向比特的同步链路:比特填充法(插入“比特0”)
差错检测
能够对接收端收到的帧进行检测,并立即丢弃有差错的帧。
工作状态
当用户拨号接入 ISP 时,路由器的调制解调器对拨号做出确认,并建立一条物理连接。
PC 机向路由器发送一系列的 LCP 分组(封装成多个 PPP 帧)。
这些分组及其响应选择一些 PPP 参数,并进行网络层配置,NCP 给新接入的 PC 机
分配一个临时的 IP 地址,使 PC 机成为因特网上的一个主机。
通信完毕时,NCP 释放网络层连接,收回原来分配出去的 IP 地址。接着,LCP 释放数据链路层连接。最后释放的是物理层的连接。
可见,PPP 协议已不是纯粹的数据链路层的协议,它还包含了物理层和网络层的内容。
3.6、媒体接入控制(介质访问控制)——广播信道
媒体接入控制(介质访问控制)使用一对多的广播通信方式
Medium Access Control 翻译成媒体接入控制,有些翻译成介质访问控制
局域网的数据链路层
局域网最主要的 特点 是:
网络为一个单位所拥有;
地理范围和站点数目均有限。
局域网具有如下 主要优点 :
具有广播功能,从一个站点可很方便地访问全网。局域网上的主机可共享连接在局域网上的各种硬件和软件资源。
便于系统的扩展和逐渐地演变,各设备的位置可灵活调整和改变。
提高了系统的可靠性、可用性和残存性。
数据链路层的两个子层
为了使数据链路层能更好地适应多种局域网标准,IEEE 802 委员会就将局域网的数据链路层拆成 两个子层 :
逻辑链路控制 LLC (Logical Link Control)子层;
媒体接入控制 MAC (Medium Access Control)子层。
与接入到传输媒体有关的内容都放在 MAC子层,而 LLC 子层则与传输媒体无关。 不管采用何种协议的局域网,对 LLC 子层来说都是透明的。
基本概念
为什么要媒体接入控制(介质访问控制)?
共享信道带来的问题
若多个设备在共享信道上同时发送数据,则会造成彼此干扰,导致发送失败。
随着技术的发展,交换技术的成熟和成本的降低,具有更高性能的使用点对点链路和链路层交换机的交换式局域网在有线领域已完全取代了共享式局域网,但由于无线信道的广播天性,无线局域网仍然使用的是共享媒体技术
静态划分信道
信道复用
频分复用FDM (Frequency Division Multiplexing)
将整个带宽分为多份,用户在分配到一定的频带后,在通信过程中自始至终都占用这个频带。
频分复用 的所有用户在同样的时间 占用不同的带宽资源 (请注意,这里的“带宽”是频率带宽而不是数据的发送速率)。
Ⅸ 求解CSMA/CD的一道题!计算机网络第五版(谢希仁) 第3章25题!!高手救我啊!!!
在书的第83页有图3-18。在此题中总线被占用时间为Tau+Tj(48)+Tau