当前位置:首页 » 网络连接 » 计算机网络PPT陈铭版
扩展阅读
手机文字编写软件 2024-05-19 05:35:24

计算机网络PPT陈铭版

发布时间: 2023-02-25 01:35:26

A. 计算机网络(三)——网络层

网络层的 目的 是实现在任意结点间进行数据报传输,它的目的与链路层、物理层不是一样的吗?但是通过它数据可以在更大的网络中传输。

为了能使数据更好地在更大的网络中传输,网络层主要实现三个功能: 异构网络互联 路由与转发 拥塞控制

我们知道,在物理层、链路层,可以使用不同的传输介质和拓扑结构将几台、十几台主机连接在一起形成一个小型的局域网,把这些组成结构不完全相同的局域网称为异构网,因此将它们连接扩大成更大的网络,需要一个类似转接头的设备——路由器,路由器不仅仅可以连接异构网,还能隔离冲突域和广播域,依照IP地址转发。

下图对集线器、网桥、交换机和路由器能否隔离冲突域和广播域进行比较:

路由器作为连接多个网络的结点,不仅需要完成对数据的分组转发,还要选择传输路径,因此路由器主要由 路由选择 分组转发 组成。

网络层最重要的功能是 路由与转发 功能。路由也就是选择一条合适的路,转发则是在这条路上遵守协议。这有点像从某个多个国家的交界城市自驾,选其中一条路,那么就遵守这个国家的交通协议。

数据通过一个又一个路由器到达目的地址,路由器怎么知道数据应该从哪个端口出发才能到达目的地呢?这就需要构造路由表。
路由表有两种构造方式: 静态 动态

一个个小网络可以构成一个区域,足够多的区域互连成一个网络,多个网络又形成巨大的互联网。要想让数据高效在网络中传输,采用“分而治之”的理念。
将互联网分为许多较小的自治系统,系统有权决定自己内部采用什么路由协议,这便是层次路由。通过层次路由便可以采用灵活的协议传输数据。数据在自治系统内传输采用 内部网关协议 而自治系统之间则采用 外部网关协议

内部网关协议有两种协议: 路由信息协议(RIP) 开放最短路径优先协议(OSPF)

外部网关协议则是边界网关协议(BGP)。内部网关协议服务某个自治系统,范围较小,所以尽可能有效地从源站送到目的站,也就是找到一条最佳路径。而外部网关协议需要面对更大的网络范围和网络环境,因此更关注的找到比较好的路径,也就是不能兜圈子。

BGP工作原理:

将三种路由协议进行比较:

构建大规模、异构网络的互联网除了硬件的支持外,还需要建立协议以实现数据报传输服务——IP协议。
目前IP协议有两个版本:IPv4和IPv6。

现在主流的IP协议版本还是IPv4。

IP数据报主要由首部和数据部分组成,由TCP报文段封装到数据部分,再在前端加上一些描述信息的首部,其格式如下图:

IP协议使用分组转发,当报文过大时需要分片。分片的思路如下:

如果把IP数据报看作是信,那么首部中的源地址与目的地址则分别是发信地址和邮件地址。为了方便路由计算这些地址,并且使IP地址足够使用,因此将IP地址进行分类。

IP地址的格式 : {<网络号>,<主机号>},网络号标志主机所连接的网络,主机号标志该主机,每个IP地址都是唯一的。

IP地址分类 如下:

通过分类,可以计算每个网络中最大的主机数:

网络地址转换(NAT)是一种转换机制,将专用网络地址转换为公用地址,目的是为了对外隐藏内部管理的IP地址,这样不仅可以保证网络安全,还可以解决IP地址不足问题。
当路由器接收到的目的地址是私有地址则一律不进行转发,而如果是公用地址,则是用NAT转换表将源IP及端口号映射成全球IP号,然后从WAN端口发送到因特网上。

IP地址有A、B、C类网络号,如果把A类网络号分给一个广播域,那么这个广播域可以接入16,777,212台主机,然而一个广播域不可能融入这么多台主机,因为这样会导致广播域过饱和而瘫痪,而只给其分配一定数量的网络号,则会浪费大量的IP地址。因此在IP地址中增加一个“子网号字段”,将IP地址划分为三级,即IP地址={<网络号>,<子网号>,<主机号>},也就是从主机号中借用几个比特号作为子网号,这个子网号是对内划分的,对外仍旧表现为二级IP地址。

主机或路由器如何判断一个网络是否进行子网划分了呢?——利用子网掩码。

CIDR是 无分类 域间路由器选择,目的是消除A、B、C类网络划分,这样可以大幅度提高IP地址空间利用率。相比较子网掩码划分,它更加灵活。

上图中,如果R1收到前缀为206.1的IP地址,它只需要转发给R2,具体发往网络1还是网络2,则由R2计算得出。

通过IP地址,可以将数据从某个网络传输到目的网络,但是把信息发送给哪台主机呢?由于路由器的隔离,IP网路没办法使用广播方式查找MAC地址,只有通过链路层的MAC地址以广播方式寻址。
因此,IP协议还包括三个协议—— ARP、DHCP和ICMP ,共同配合完成数据转发。

IPv6是解决IP地址耗尽的根本手段。它与IPv4的报文形式差别如下图:

IPv6与IPv4地址通信示意图:

在通信过程中,如果分组过量而导致网路性能下降,会产生拥塞。

拥塞的控制方式:

B. 《计算机网络自顶向下方法第八版》pdf下载在线阅读全文,求百度网盘云资源

《计算机网络自顶向下方法第八版》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1XSe60mMhX2A17a5dUE0XPA

?pwd=orc4 提取码:orc4
简介:此书2021年新出的版本,适合作为计算机、电气工程等专业本科生的“计算机网络”课程教科书,同时也适合网络技术人员、专业研究人员阅读。

C. 《计算机网络(第7版)》pdf下载在线阅读,求百度网盘云资源

《计算机网络(第7版)》(谢希仁)电子书网盘下载免费在线阅读

资源链接:

链接:

提取码:yn4v

书名:计算机网络(第7版)

作者:谢希仁

豆瓣评分:8.8

出版社:电子工业出版社

出版年份:2017-1

页数:464

内容简介:

本书自1989年首次出版以来,曾于1994年、1999年、2003年、2008年和2013年分别出了修订版。在2006年本书通过了教育部的评审,被纳入普通高等教育“十一五”国家级规划教材;2008年出版的第5版获得了教育部2009年精品教材称号。2013年出版的第6版是“十二五”普通高等教育本科国家级规划教材。

目前2017年发行的第7版又在第6版的基础上进行了一些修订。 全书分为9章,比较全面系统地介绍了计算机网络的发展和原理体系结构、物理层、数据链路层(包括局域网)、网络层、运输层、应用层、网络安全、互联网上的音频/视频服务,以及无线网络移动网络等内容。各章均附有习题(附录A给出了部分习题的答案和提示)。

本书的特点是概念准确、论述严谨、内容新颖、图文并茂,突出基本原理和基本概念的阐述,同时力图反映计算机网络的一些最新发展。本书可供电气信息类和计算机类专业的大学本科生和研究生使用,对从事计算机网络工作的工程技术人员也有参考价值。

作者简介:

谢希仁,解放军理工大学指挥自动化学院,教授,博士生导师。主要学术成果有:1986年完成总参通信部局域网办公系统项目;1987年在《电子学报》发表“分组话音通信新进展”;为国内首次介绍分组数据通信;1991年完成国家自然科学基金项目“分组交换的话音数据通信系统”项目。1999年完成第一个军用卫星通信系统网管中心的研制任务及“金桥网网管技术”项目等。上述科研项目分别获得国家、军队和部级奖项。着有:《计算机网络》第1至第7版(“十一五国家级规划教材”),曾两次获得国家级优秀教材奖,成为高校最受读者欢迎的本国计算机网络教材。

D. 谁有计算机网络:自顶向下方法(第四版)的PPT

改进计算机网络的教材和教学法. 20年多来,我一直在《计算机网络:系统方法 第三版》中文版,影印版皆作者采用自顶向下的方法解释了当今通信服务的底层

E. 计算机网络:网络层(2)

如图,一个IP数据报由首部和数据两部分组成。首部的前一部分是固定长度,共20字节,是所有IP数据报必须具有的。在首部的固定部分的后面是一些可选字段,其长度是可变的。

(1)版本
占4位,指IP协议的版本。通信双方使用的IP协议的版本必须一致。目前广泛使用的IP协议版本号为4(即IPv4)。也有使用IPv6的(即版本6的IP协议)。
(2)首部长度
占4位,可表示的最大十进制数值是15。 这个字段所表示数的单位是32位字(1个32位字长是4字节),因此,当I的首部长度为1111时(即十进制的15),首部长度就达到最大值60字节。当分组的首部长度不是4字节的整数倍时,必须利用最后的填充字段加以填充。 因此数据部分永远在4字节的整数倍时开始,这样在实现IP协议时较为方便。首部长度限制为60字节的缺点是有时可能不够用。但这样做是希望用户尽量减少开销。最常用的首部长度就是20字节(即首部长度为0101),这时不使用任何选项。
(3)区分服务
占8位,用来获得更好的服务。这个字段在旧标准中叫做服务类型,但实际上一直没有被使用过。1998年ITF把这个字段改名为区分服务DS( Differentiated Services。只有在使用区分服务时,这个字段才起作用。在一般的情况下都不使用这个字段。
(4)总长度
总长度指首部和数据之和的长度,单位为字节。总长度字段为16位,因此数据报的最大长度为216-1=65535字节。
在IP层下面的每一种数据链路层都有其自己的帧格式,其中包括帧格式中的数据字段的最大长度,这称为最大传送单元MTU( Maximum Transfer Unit)。当一个IP数据报封装成链路层的帧时,此数据报的总长度(即首部加上数据部分)一定不能超过下面的数据链路层的MTU值。虽然使用尽可能长的数据报会使传输效率提高,但由于以太网的普遍应用,所以实际上使用的数据报长度 很少有超过1500字节 的。为了不使IP数据报的传输效率降低,有关IP的标准文档规定,所有的主机和路由器必须能够处理的IP数据报长度不得小于576字节。这个数值也就是最小的IP数据报的总长度。当数据报长度超过网络所容许的最大传送单元MTU时,就必须把过长的数据报进行分片后才能在网络上传送。这时,数据报首部中的“总长度”字段不是指未分片前的数据报长度,而是指分片后的每一个分片的首部长度与数据长度的总和。
(5)标识 (identification)
占16位。软件在存储器中维持一个计数器,每产生一个数据报,计数器就加1,并将此值赋给标识字段。但这个“标识”并不是序号,因为IP是无连接服务,数据报不存在按序接收的问题。当数据报由于长度超过网络的MTU而必须分片时,这个标识字段的值就被复制到所有的数据报片的标识字段中。相同的标识字段的值使分片后的各数据报片最后能正确地重装成为原来的数据报。
(6)标志(flag)
占3位,但目前只有两位有意义。
标志字段中的最低位记为 MF ( More Fragment)。MF=1即表示后面“还有分片”的数据报。MF=0表示这已是若千数据报片中的最后一个。
标志字段中间的一位记为 DF (Dont Fragment),意思是“不能分片”。只有当DF=0时才允许分片。
(7)片偏移
占13位。片偏移指出:较长的分组在分片后,某片在原分组中的相对位置。也就是说,相对于用户数据字段的起点,该片从何处开始。片偏移以8个字节为偏移单位。这就是说,每个分片的长度一定是8字节(64位)的整数倍。
(8)生存时间
占8位,生存时间字段常用的英文缩写是TTL( Time To live),表明是数据报在网络中的寿命。由发出数据报的源点设置这个字段。其目的是防止无法交付的数据报无限制地在因特网中兜圈子(例如从路由器R1转发到R2,再转发到R3,然后又转发到R1),因而白白消耗网络资源。最初的设计是以秒作为TTL值的单位。每经过一个路由器时,就把TTL减去数据报在路由器所消耗掉的一段时间。若数据报在路由器消耗的时间小于1秒,就把TTL值减1。当TTL值减为零时,就丢弃这个数据报然而随着技术的进步,路由器处理数据报所需的时间不断在缩短,一般都远远小于1秒钟,后来就把TTL字段的功能改为“跳数限制”(但名称不变)。路由器在转发数据报之前就把TTL值减1。若TTL值减小到零,就丢弃这个数据报,不再转发。因此,现在TTL的单位不再是秒,而是跳数。 TTL的意义是指明数据报在因特网中至多可经过多少个路由器 。显然,数据报能在因特网中经过的路由器的最大数值是255。若把TTL的初始值设置为1,就表示这个数据报只能在本局域网中传送。因为这个数据报一传送到局域网上的某个路由器,在被转发之前TTL值就减小到零,因而就会被这个路由器丢弃。
(9)协议
占8位,协议字段指出此数据报携带的数据是使用何种协议,以便使目的主机的IP层知道应将数据部分上交给哪个处理过程。

过程大致如下:
(1)从数据报的首部提取目的主机的IP地址D,得出目的网络地址为N。
(2)若N就是与此路由器直接相连的某个网络地址,则进行直接交付,不需要再经过其他的路由器,直接把数据报交付给目的主机(这里包括把目的主机地址D转换为具体的硬件地址,把数据报封装为MAC帧,再发送此帧);否则就是间接交付,执行(3)。
(3)若路由表中有目的地址为D的特定主机路由,则把数据报传送给路由表中所指明的下一跳路由器;否则,执行(4)。
(4)若路由表中有到达网络N的路由,则把数据报传送给路由表中所指明的下一跳路由器;否则,执行(5)
(5)若路由表中有一个默认路由,则把数据报传送给路由表中所指明的默认路由器;否则,执行(6)。
(6)报告转发分组出错。

在进行更详细的转发解释之前,先要了解一下子网掩码:

上一篇说到了二级IP地址,也就是IP地址由网络号和主机号组成。

二级IP地址有以下缺点:
第一,IP地址空间的利用率有时很低每一个A类地址网络可连接的主机数超过1000万,而每一个B类地址网络可连接的主机数也超过6万。然而有些网络对连接在网络上的计算机数目有限制,根本达不到这样大的数值。例如10 BASE-T以太网规定其最大结点数只有1024个。这样的以太网若使用一个B类地址就浪费6万多个IP地址,地址空间的利用率还不到2%,而其他单位的主机无法使用这些被浪费的地址。有的单位申请到了一个B类地址网络,但所连接的主机数并不多,可是又不愿意申请一个足够使用的C类地址,理由是考虑到今后可能的发展。IP地址的浪费,还会使IP地址空间的资源过早地被用完。
第二,给每一个物理网络分配一个网络号会使路由表变得太大因而使网络性能变坏。
每一个路由器都应当能够从路由表査出应怎样到达其他网络的下一跳路由器。因此,互联网中的网络数越多,路由器的路由表的项目数也就越多。这样,即使我们拥有足够多的IP地址资源可以给每一个物理网络分配一个网络号,也会导致路由器中的路由表中的项目数过多。这不仅增加了路由器的成本(需要更多的存储空间),而且使查找路由时耗费更多的时间,同时也使路由器之间定期交换的路由信息急剧增加,因而使路由器和整个因特网的性能都下降了。
第三,两级IP地址不够灵活。
有时情况紧急,一个单位需要在新的地点马上开通一个新的网络。但是在申请到一个新的IP地址之前,新增加的网络是不可能连接到因特网上工作的。我们希望有一种方法,使一个单位能随时灵活地增加本单位的网络,而不必事先到因特网管理机构去申请新的网络号。原来的两级IP地址无法做到这一点。

于是为解决上述问题,从1985年起在IP地址中又增加了一个“子网号字段”,使两级IP地址变成为三级IP地址,它能够较好地解决上述问题,并且使用起来也很灵活。这种做法叫作划分子网 (subnetting),或子网寻址或子网路由选择。划分子网已成为因特网的正式标准协议。

划分子网的基本思路如下:
(1)一个拥有许多物理网络的单位,可将所属的物理网络划分为若干个子网 subnet)。划分子网纯属一个单位内部的事情。本单位以外的网络看不见这个网络是由多少个子网组成,因为这个单位对外仍然表现为一个网络。
(2)划分子网的方法是从网络的主机号借用若干位作为子网号 subnet-id,当然主机号也就相应减少了同样的位数。于是两级IP地址在本单位内部就变为三级IP地址:网络号、子网号和主机号。也可以用以下记法来表示:
IP地址:=(<网络号>,<子网号>,<主机号>}

(3)凡是从其他网络发送给本单位某个主机的IP数据报,仍然是根据IP数据报的目的网络号找到连接在本单位网络上的路由器。但此路由器在收到IP数据报后,再按目的网络号和子网号找到目的子网,把IP数据报交付给目的主机。

简单来说就是原来的IP地址总长度不变,把原来由“网络号+主机号”组成的IP地址,变为了“网络号+子网号+主机号”,因为其他网络找当前网络的主机时,使用的还是网络号,所以外面的网看不见当前网络的子网。当本网的路由器在收到IP数据报后,按目的网络号和子网号找到目的子网,把IP数据报交付给目的主机。

现在剩下的问题就是:假定有一个数据报(其目的地址是145.133.10)已经到达了路由器R1。那么这个路由器如何把它转发到子网145.3.3.0呢?
我们知道,从IP数据报的首部并不知道源主机或目的主机所连接的网络是否进行了子网的划分。这是因为32位的IP地址本身以及数据报的首部都没有包含任何有关子网划分的信息。因此必须另外想办法,这就是使用子网掩码( (subnet mask)。

子网掩码,简单来说就是把除了主机号设置为0,其他位置的数字都设置为1。
以B类地址为例:

把三级IP地址的网络号与子网号连起来,与子网掩码做“与”运算,就得到了子网的网络地址。

在因特网的标准规定:所有的网络都必须使用子网掩码,同时在路由器的路由表中也必须有子网掩码这一栏。如果一个网络不划分子网,那么该网络的子网掩码就使用默认子网掩码。
那么既然没有子网,为什么还要使用子网掩码?
这就是为了更便于査找路由表。
默认子网掩码中1的位置和IP地址中的网络号字段 net-id正好相对应。因此,若用默认子网掩码和某个不划分子网的IP地址逐位相“与”(AND),就应当能够得出该IP地址的网络地址来。这样做可以不用查找该地址的类别位就能知道这是哪一类的IP地址。显然,

子网掩码是一个网络或一个子网的重要属性。在RFC950成为因特网的正式标准后,路由器在和相邻路由器交换路由信息时,必须把自己所在网络(或子网)的子网掩码告诉相邻路由器。在路由器的路由表中的每一个项目,除了要给出目的网络地址外,还必须同时给出该网络的子网掩码。若一个路由器连接在两个子网上就拥有两个网络地址和两个子网掩码。
以一个B类地址为例,说明可以有多少种子网划分的方法。在采用固定长度子网时,所划分的所有子网的子网掩码都是相同的。

表中的“子网号的位数”中没有0,1,15和16这四种情况,因为这没有意义。虽然根据已成为因特网标准协议的RFC950文档,子网号不能为全1或全0,但随着无分类域间路由选择CIDR的广泛使用,现在全1和全0的子网号也可以使用了,但一定要谨慎使用,要弄清你的路由器所用的路由选择软件是否支持全0或全1的子网号。这种较新的用法我们可以看出,若使用较少位数的子网号,则每一个子网上可连接的主机数就较多。
反之,若使用较多位数的子网号,则子网的数目较多但每个子网上可连接的主机数就较少因此我们可根据网络的具体情况(一共需要划分多少个子网,每个子网中最多有多少个主机)来选择合适的子网掩码。

所以,划分子网增加了灵活性,但却减少了能够连接在网络上的主机总数。

在划分子网的情况下,分组转发的算法必须做相应的改动。
使用子网划分后,路由表必须包含以下三项内容:目的网络地址、子网掩码和下一跳地址。
所以之前的流程变成了下面这样:
(1)从收到的数据报的首部提取目的IP地址D。
(2)先判断是否为直接交付。对路由器直接相连的网络逐个进行检查:用各网络的子网掩码和D逐位相“与”(AND操作),看结果是否和相应的网络地址匹配。若匹配,则把分组进行直接交付(当然还需要把D转换成物理地址,把数据报封装成帧发送出去),转发任务结束。否则就是间接交付,执行(3)。
(3)若路由表中有目的地址为D的特定主机路由,则把数据报传送给路由表中所指明的下一跳路由器;否则,执行(4)。
(4)对路由表中的每一行(目的网络地址,子网掩码,下一跳地址),用其中的子网掩码和D逐位相“与”(AND操作),其结果为N。若N与该行的目的网络地址匹配,则把数据报传送给该行指明的下一跳路由器;否则,执行(5)。
5)若路由表中有一个默认路由,则把数据报传送给路由表中所指明的默认路由器;否则,执行(6)
(6)报告转发分组出错。

F. 【山外笔记-计算机网络·第7版】第02章:物理层

[学习笔记]第02章_物理层-打印版.pdf

本章最重要的内容是:

(1)物理层的任务。

(2)几种常用的信道复用技术。

(3)几种常用的宽带接入技术,主要是ADSL和FTTx。

1、物理层简介

(1)物理层在连接各种计算机的传输媒体上传输数据比特流,而不是指具体的传输媒体。

(2)物理层的作用是尽可能地屏蔽掉传输媒体和通信手段的差异。

(3)用于物理层的协议常称为物理层规程(procere),其实物理层规程就是物理层协议。

2、物理层的主要任务 :确定与传输媒体的接口有关的一些特性。

(1)机械特性:指明接口所用接线器的形状和尺寸、引脚数目和排列、固定和锁定装置等。

(2)电气特性:指明在接口电缆的各条线上出现的电压的范围。

(3)功能特性:指明某条线上出现的某一电平的电压的意义。

(4)过程特性:指明对于不同功能的各种可能事件的出现顺序。

3、物理层要完成传输方式的转换。

(1)数据在计算机内部多采用并行传输方式。

(2)数据在通信线路(传输媒体)上的传输方式一般都是串行传输,即逐个比特按照时间顺序传输。

(3)物理连接的方式:点对点、多点连接或广播连接。

(4)传输媒体的种类:架空明线、双绞线、对称电缆、同轴电缆、光缆,以及各种波段的无线信道等。

1、数据通信系统的组成

一个数据通信系统可划分为源系统(或发送端、发送方)、传输系统(或传输网络)和目的系统(或接收端、接收方)三大部分。

(1)源系统:一般包括以下两个部分:

(2)目的系统:一般也包括以下两个部分:

(3)传输系统:可以是简单的传输线,也可以是连接在源系统和目的系统之间的复杂网络系统。

2、通信常用术语

(1)通信的目的是传送消息(message),数据(data)是运送消息的实体。

(2)数据是使用特定方式表示的信息,通常是有意义的符号序列。

(3)信息的表示可用计算机或其他机器(或人)处理或产生。

(4)信号(signal)则是数据的电气或电磁的表现。

3、信号的分类 :根据信号中代表消息的参数的取值方式不同

(1)模拟信号/连续信号:代表消息的参数的取值是连续的。

(2)数字信号/离散信号:代表消息的参数的取值是离散的。

1、信道

(1)信道一般都是用来表示向某一个方向传送信息的媒体。

(2)一条通信电路往往包含一条发送信道和一条接收信道。

(3)单向通信只需要一条信道,而双向交替通信或双向同时通信则都需要两条信道(每个方向各一条)。

2、通信的基本方式

(1)单向通信又称为单工通信,只能有一个方向的通信而没有反方向的交互。如无线电广播、有线电广播、电视广播。

(2)双向交替通信又称为半双工通信,即通信的双方都可以发送信息,但不能双方同时发送/接收。

(3)双向同时通信又称为全双工通信,即通信的双方可以同时发送和接收信息。

3、调制 (molation)

(1)基带信号:来自信源的信号,即基本频带信号。许多信道不能传输基带信号,必须对其进行调制。

(2)调制的分类

4、基带调制常用的编码方式 (如图2-2)

(1)不归零制:正电平代表1,负电平代表0。

(2)归零制:正脉冲代表1,负脉冲代表0。

(3)曼彻斯特:编码位周期中心的向上跳变代表0,位周期中心的向下跳变代表1。也可反过来定义。

(4)差分曼彻斯特:编码在每一位的中心处始终都有跳变。位开始边界有跳变代表0,而位开始边界没有跳变代表1。

5、带通调制的基本方法

(1)调幅(AM)即载波的振幅随基带数字信号而变化。例如,0或1分别对应于无载波或有载波输出。

(2)调频(FM)即载波的频率随基带数字信号而变化。例如,0或1分别对应于频率f1或f2。

(3)调相(PM)即载波的初始相位随基带数字信号而变化。例如,0或1分别对应于相位0度或180度。

(4)多元制的振幅相位混合调制方法:正交振幅调制QAM(Quadrature Amplitude Molation)。

1、信号失真

(1)信号在信道上传输时会不可避免地产生失真,但在接收端只要从失真的波形中能够识别并恢复出原来的码元信号,那么这种失真对通信质量就没有影响。

(2)码元传输的速率越高,或信号传输的距离越远,或噪声干扰越大,或传输媒体质量越差,在接收端的波形的失真就越严重。

2、限制码元在信道上的传输速率的因素

(1)信道能够通过的频率范围

(2)信噪比

3、香农公式 (Shannon)

(1)香农公式(Shannon):C = W*log2(1+S/N) (bit/s)

(2)香农公式表明:信道的带宽或信道中的信噪比越大,信息的极限传输速率就越高。

(3)香农公式指出了信息传输速率的上限。

(4)香农公式的意义:只要信息传输速率低于信道的极限信息传输速率,就一定存在某种办法来实现无差错的传输。

(5)在实际信道上能够达到的信息传输速率要比香农的极限传输速率低不少,是因为香农公式的推导过程中并未考虑如各种脉冲干扰和在传输中产生的失真等信号损伤。

1、传输媒体

传输媒体也称为传输介质或传输媒介,是数据传输系统中在发送器和接收器之间的物理通路。

2、传输媒体的分类

(1)导引型传输媒体:电磁波被导引沿着固体媒体(双绞线、同轴电缆或光纤)传播。

(2)非导引型传输媒体:是指自由空间,电磁波的传输常称为无线传输。

1、双绞线

(1)双绞线也称为双扭线, 即把两根互相绝缘的铜导线并排放在一起,然后用规则的方法绞合(twist)起来。绞合可减少对相邻导线的电磁干扰。

(2)电缆:通常由一定数量的双绞线捆成,在其外面包上护套。

(3)屏蔽双绞线STP(Shielded Twisted Pair):在双绞线的外面再加上一层用金属丝编织成的屏蔽层,提高了双绞线抗电磁干扰的能力。价格比无屏蔽双绞线UTP(Unshielded Twisted Pair)要贵一些。

(4)模拟传输和数字传输都可以使用双绞线,其通信距离一般为几到十几公里。

(5)双绞线布线标准

(6)双绞线的使用

2、同轴电缆

(1)同轴电缆由内导体铜质芯线(单股实心线或多股绞合线)、绝缘层、网状编织的外导体屏蔽层(也可以是单股的)以及保护塑料外层所组成。

(2)由于外导体屏蔽层的作用,同轴电缆具有很好的抗干扰特性,被广泛用于传输较高速率的数据。

(3)同轴电缆主要用在有线电视网的居民小区中。

(4)同轴电缆的带宽取决于电缆的质量。目前高质量的同轴电缆的带宽已接近1GHz。

3、光缆

(1)光纤通信就是利用光导纤维(简称光纤)传递光脉冲来进行通信。有光脉冲为1,没有光脉冲为0。

(2)光纤是光纤通信的传输媒体。

(3)多模光纤:可以存在多条不同角度入射的光线在一条光纤中传输。光脉冲在多模光纤中传输时会逐渐展宽,造成失真,多模光纤只适合于近距离传输。

(4)单模光纤:若光纤的直径减小到只有一个光的波长,则光纤就像一根波导那样,可使光线一直向前传播,而不会产生多次反射。单模光纤的纤芯很细,其直径只有几个微米,制造起来成本较高。

(5)光纤通信中常用的三个波段中心:850nm,1300nm和1550nm。

(6)光缆:一根光缆少则只有一根光纤,多则可包括数十至数百根光纤,再加上加强芯和填充物,必要时还可放入远供电源线,最后加上包带层和外护套。

(7)光纤的优点

1、无线传输

(1)无线传输是利用无线信道进行信息的传输,可使用的频段很广。

(2)LF,MF和HF分别是低频(30kHz-300kHz)、中频(300kHz-3MH z)和高频(3MHz-30MHz)。

(3)V,U,S和E分别是甚高频(30MHz-300MHz)、特高频(300MHz-3GHz)、超高频(3GHz-30GHz)和极高频(30GHz-300GHz),最高的一个频段中的T是Tremendously。

2、短波通信: 即高频通信,主要是靠电离层的反射传播到地面上很远的地方,通信质量较差。

3、无线电微波通信

(1)微波的频率范围为300M Hz-300GHz(波长1m-1mm),但主要使用2~40GHz的频率范围。

(2)微波在空间中直线传播,会穿透电离层而进入宇宙空间,传播距离受到限制,一般只有50km左右。

(3)传统的微波通信主要有两种方式,即地面微波接力通信和卫星通信。

(4)微波接力通信:在一条微波通信信道的两个终端之间建立若干个中继站,中继站把前一站送来的信号经过放大后再发送到下一站,故称为“接力”,可传输电话、电报、图像、数据等信息。

(5)卫星通信:利用高空的人造同步地球卫星作为中继器的一种微波接力通信。

(6)无线局域网使用ISM无线电频段中的2.4GHz和5.8GHz频段。

(7)红外通信、激光通信也使用非导引型媒体,可用于近距离的笔记本电脑相互传送数据。

1、复用(multiplexing)技术原理

(1)在发送端使用一个复用器,就可以使用一个共享信道进行通信。

(2)在接收端再使用分用器,把合起来传输的信息分别送到相应的终点。

(3)复用器和分用器总是成对使用,在复用器和分用器之间是用户共享的高速信道。

(4)分用器(demultiplexer)的作用:把高速信道传送过来的数据进行分用,分别送交到相应的用户。

2、最基本的复用

(1)频分复用FDM(Frequency Division Multiplexing)

(2)时分复用TDM(Time Division Multiplexing):

3、统计时分复用STDM (Statistic TDM)

(1)统计时分复用STDM是一种改进的时分复用,能明显地提高信道的利用率。

(2)集中器(concentrator):将多个用户的数据集中起来通过高速线路发送到一个远地计算机。

(3)统计时分复用使用STDM帧来传送数据,每一个STDM帧中的时隙数小于连接在集中器上的用户数。

(4)STDM帧不是固定分配时隙,而是按需动态地分配时隙,提高了线路的利用率。

(5)统计复用又称为异步时分复用,而普通的时分复用称为同步时分复用。

(6)STDM帧中每个时隙必须有用户的地址信息,这是统计时分复用必须要有的和不可避免的一些开销。

(7)TDM帧和STDM帧都是在物理层传送的比特流中所划分的帧。和数据链路层的帧是完全不同的概念。

(8)使用统计时分复用的集中器也叫做智能复用器,能提供对整个报文的存储转发能力,通过排队方式使各用户更合理地共享信道。此外,许多集中器还可能具有路由选择、数据压缩、前向纠错等功能。

1、波分复用WDM (Wavelength Division Multiplexing)

波分复用WDM是光的频分复用,在一根光纤上用波长来复用两路光载波信号。

2、密集波分复用DWDM (Dense Wavelength Division Multiplexing)

密集波分复用DWDM是在一根光纤上复用几十路或更多路数的光载波信号。

1、码分复用CDM (Code Division Multiplexing)

(1)每一个用户可以在同样的时间使用同样的频带进行通信。

(2)各用户使用经过特殊挑选的不同码型,因此各用户之间不会造成干扰。

(3)码分复用最初用于军事通信,现已广泛用于民用的移动通信中,特别是在无线局域网中。

2、码分多址CDMA (Code Division Multiple Access)。

(1)在CDMA中,每一个比特时间再划分为m个短的间隔,称为码片(chip)。通常m的值是64或128。

(2)使用CDMA的每一个站被指派一个唯一的m bit码片序列(chip sequence)。

(3)一个站如果发送比特1,则发送m bit码片序列。如果发送比特0,则发送该码片序列的二进制反码。

(4)发送信息的每一个比特要转换成m个比特的码片,这种通信方式是扩频通信中的直接序列扩频DSSS。

(5)CDMA系统给每一个站分配的码片序列必须各不相同,并且还互相正交(orthogonal)。

(6)CDMA的工作原理:现假定有一个X站要接收S站发送的数据。

(7)扩频通信(spread spectrum)分为直接序列扩频DSSS(Direct Sequence Spread Spectrum)和跳频扩频FHSS(Frequency Hopping Spread Spectrum)两大类。

早起电话机用户使用双绞线电缆。长途干线采用的是频分复用FDM的模拟传输方式,现在大都采用时分复用PCM的数字传输方式。现代电信网,在数字化的同时,光纤开始成为长途干线最主要的传输媒体。

1、早期的数字传输系统最主要的缺点:

(1)速率标准不统一。互不兼容的国际标准使国际范围的基于光纤的高速数据传输就很难实现。

(2)不是同步传输。为了节约经费,各国的数字网主要采用准同步方式。

2、数字传输标准

(1)同步光纤网SONET(Synchronous Optical Network)

(2)同步数字系列SDH(Synchronous Digital Hierarchy)

(3)SDH/SONET定义了标准光信号,规定了波长为1310nm和1550nm的激光源。在物理层定义了帧结构。

(4)SDH/SONET标准的制定,使北美、日本和欧洲三种不同的数字传输体制在STM-1等级上获得了统一,第一次真正实现了数字传输体制上的世界性标准。

互联网的发展初期,用户利用电话的用户线通过调制解调器连接到ISP,速率最高只能达到56kbit/s。

从宽带接入的媒体来看,宽带接入技术可以分为有线宽带接入和无线宽带接入两大类。

1、非对称数字用户线ADSL (Asymmetric Digital Subscriber Line)

(1)ADSL技术是用数字技术对现有的模拟电话用户线进行改造,使它能够承载宽带数字业务。

(2)ADSL技术把0-4kHz低端频谱留给传统电话使用,把原来没有被利用的高端频谱留给用户上网使用。

(3)ADSL的ITU的标准是G.992.1(或称G.dmt,表示它使用DMT技术)。

(4)“非对称”是指ADSL的下行(从ISP到用户)带宽都远远大于上行(从用户到ISP)带宽。

(5)ADSL的传输距离取决于数据率和用户线的线径(用户线越细,信号传输时的衰减就越大)。

(6)ADSL所能得到的最高数据传输速率还与实际的用户线上的信噪比密切相关。

2、ADSL调制解调器的实现方案 :离散多音调DMT(Discrete Multi-Tone)调制技术

(1)ADSL在用户线(铜线)的两端各安装一个ADSL调制解调器。

(2)“多音调”就是“多载波”或“多子信道”的意思。

(3)DMT调制技术采用频分复用的方法,把40kHz-1.1MHz的高端频谱划分为许多子信道。

(4)当ADSL启动时,用户线两端的ADSL调制解调器就测试可用的频率、各子信道受到的干扰情况,以及在每一个频率上测试信号的传输质量。

(5)ADSL能够选择合适的调制方案以获得尽可能高的数据率,但不能保证固定的数据率。

3、数字用户线接入复用器DSLAM (DSL Access Multiplexer)

(1)数字用户线接入复用器包括许多ADSL调制解调器。

(2)ADSL调制解调器又称为接入端接单元ATU(Access Termination Unit)。

(3)ADSL调制解调器必须成对使用,因此把在电话端局记为ATU-C,用户家中记为ATU-R。

(4)ADSL最大的好处就是可以利用现有电话网中的用户线(铜线),而不需要重新布线。

(5)ADSL调制解调器有两个插口:

(6)一个DSLAM可支持多达500-1000个用户。

4、第二代ADSL

(1)ITU-T已颁布了G系列标准,被称为第二代ADSL,ADSL2。

(1)第二代ADSL通过提高调制效率得到了更高的数据率。

(2)第二代ADSL采用了无缝速率自适应技术SRA(Seamless Rate Adaptation),可在运营中不中断通信和不产生误码的情况下,根据线路的实时状况,自适应地调整数据率。

(3)第二代ADSL改善了线路质量评测和故障定位功能。

5、ADSL技术的变型 :xDSL

ADSL并不适合于企业,为了满足企业的需要,产生了ADSL技术的变型:xDSL。

(1)对称DSL(Symmetric DSL,SDSL):把带宽平均分配到下行和上行两个方向,每个方向的速度分别为384kbit/s或1.5Mbit/s,距离分别为5.5km或3km。

(2)HDSL(High speed DSL):使用一对线或两对线的对称DSL,是用来取代T1线路的高速数字用户线,数据速率可达768KBit/s或1.5Mbit/s,距离为2.7-3.6km。

(3)VDSL(Very high speed DSL):比ADSL更快的、用于短距离传送(300-1800m),即甚高速数字用户线,是ADSL的快速版本。

1、光纤同轴混合网HFC (Hybrid Fiber Coax)

(1)光纤同轴混合网HFC是在有线电视网的基础上改造开发的一种居民宽带接入网。

(2)光纤同轴混合网HFC可传送电视节目,能提供电话、数据和其他宽带交互型业务。

(3)有线电视网最早是树形拓扑结构的同轴电缆网络,采用模拟技术的频分复用进行单向广播传输。

2、光纤同轴混合网HFC的主要特点:

(1)HFC网把原有线电视网中的同轴电缆主干部分改换为光纤,光纤从头端连接到光纤结点(fiber node)。

(2)在光纤结点光信号被转换为电信号,然后通过同轴电缆传送到每个用户家庭。

(3)HFC网具有双向传输功能,而且扩展了传输频带。

(4)连接到一个光纤结点的典型用户数是500左右,但不超过2000。

3、电缆调制解调器 (cable modem)

(1)模拟电视机接收数字电视信号需要把机顶盒(set-top box)的设备连接在同轴电缆和电视机之间。

(2)电缆调制解调器:用于用户接入互联网,以及在上行信道中传送交互数字电视所需的一些信息。

(3)电缆调制解调器可以做成一个单独的设备,也可以做成内置式的,安装在电视机的机顶盒里面。

(4)电缆调制解调器不需要成对使用,而只需安装在用户端。

(5)电缆调制解调器必须解决共享信道中可能出现的冲突问题,比ADSL调制解调器复杂得多。

信号在陆地上长距离的传输,已经基本实现了光纤化。远距离的传输媒体使用光缆。只是到了临近用户家庭的地方,才转为铜缆(电话的用户线和同轴电缆)。

1、多种宽带光纤接入方式FTTx

(1)多种宽带光纤接入方式FTTx,x可代表不同的光纤接入地点,即光电转换的地方。

(2)光纤到户FTTH(Fiber To The Home):把光纤一直铺设到用户家庭,在光纤进入用户后,把光信号转换为电信号,可以使用户获得最高的上网速率。

(3)光纤到路边FTTC(C表示Curb)

(4)光纤到小区FTTZ(Z表示Zone)

(5)光纤到大楼FTTB(B表示Building)

(6)光纤到楼层FTTF(F表示Floor)

(7)光纤到办公室FTTO(O表示Office)

(8)光纤到桌面FTTD(D表示Desk)

2、无源光网络PON (Passive Optical Network)

(1)光配线网ODN(Optical Distribution Network):在光纤干线和广大用户之间,铺设的转换装置,使得数十个家庭用户能够共享一根光纤干线。

(2)无源光网络PON(Passive Optical Network),即无源的光配线网。

(3) 无源:表明在光配线网中无须配备电源,因此基本上不用维护,其长期运营成本和管理成本都很低。

(4)光配线网采用波分复用,上行和下行分别使用不同的波长。

(5)光线路终端OLT( Optical Line Terminal)是连接到光纤干线的终端设备。

(6)无源光网络PON下行数据传输

(7)无源光网络PON上行数据传输

当ONU发送上行数据时,先把电信号转换为光信号,光分路器把各ONU发来的上行数据汇总后,以TDMA方式发往OLT,而发送时间和长度都由OLT集中控制,以便有序地共享光纤主干。

(8)从ONU到用户的个人电脑一般使用以太网连接,使用5类线作为传输媒体。

(9)从总的趋势来看,光网络单元ONU越来越靠近用户的家庭,即“光进铜退”。

3、无源光网络PON的种类

(1)以太网无源光网络EPON(Ethernet PON)

(2)吉比特无源光网络GPON(Gigabit PON)

G. 《计算机网络(第5版)》pdf下载在线阅读,求百度网盘云资源

《计算机网络(第5版)》(Andrew S. Tanenbaum)电子书网盘下载免费在线阅读

链接:

提取码:gs93

书名:计算机网络(第5版)

作者:Andrew S. Tanenbaum

译者:严伟

豆瓣评分:9.0

出版社:清华大学出版社

出版年份:2012-3-1

页数:739

内容简介:

本书是国内外使用最广泛、最权威的计算机网络经典教材。全书按照网络协议模型自下而上(物理层、数据链路层、介质访问控制层、网络层、传输层和应用层)有系统地介绍了计算机网络的基本原理,并结合Internet给出了大量的协议实例。在讲述网络各层次内容的同时,还与时俱进地引入了最新的网络技术,包括无线网络、3G蜂窝网络、RFID与传感器网络、内容分发与P2P网络、流媒体传输与IP语音,以及延迟容忍网络等。另外,本书针对当前网络应用中日益突出的安全问题,用了一整章的篇幅对计算机网络的安全性进行了深入讨论,而且把相关内容与最新网络技术结合起来阐述。

作者简介:

Andrew S.Tanenbaum获得过美国麻省理工学院的理学学士学位和加利福尼亚大学伯克利分校的哲学博士学位,目前是荷兰阿姆斯特丹Vrije大学的计算机科学系的教授,并领导着一个计算机系统的研究小组。同时,他还是一家计算与图象处理学院的院长,这是由几家大学合作成立的研究生院。尽管社会工作很多,但他并没有中断学术研究。多年来,他在编译技术、操作系统、网络及局域分布式系统方面进行了大量的研究工作。目前的主要研究方向是设计规模达数百万用户的广域分布式系统。在进行这些研究项目的基础上,他在各种学术杂志及会议上发表了70多篇论文。他同时还是5本计算机专着的作者。