当前位置:首页 » 网络连接 » 计算机网络基础中帧尾的作用
扩展阅读
电脑网络化怎么办 2025-09-27 21:50:58

计算机网络基础中帧尾的作用

发布时间: 2023-03-03 01:21:07

什么是计算机中的帧

什么是本帧:
运动预估及运动补偿(memc),在原有画面显示的每两帧画面中增加一帧,缩短每帧之间的显示时间,使液晶电视的响应时间得到了双倍提高,将屏幕显示的刷新频率从原有的60hz提升到120hz,彻底解决了液晶电视存在的闪烁、拖尾问题,消除了快速运动画面的图像边缘模糊现象,修正了人眼视觉暂留形成的“错觉”,有效提高了画面稳定性。
其实主要是其中泰鼎的芯片在起作用,所有用此芯片的厂家都推出了运动补偿的概念。
至于详细的运算方法估计只有芯片商知道了。
帧的基本概念及逐帧动画什么是帧
帧就是影像动画中最小单位的单幅影像画面,相当于电影胶片上的每一格镜头。一帧就
是一副静止的画面,连续的帧就形成动画了。
一帧就相当一张图片,我们以前看的电影,实际上就是照片的连续投影,1秒钟切换24帧以上,看起来就是电影了。实际上,那一张底片就是一郑
一般10帧的时间大概在0.3-0.4秒之间
如果现在是上网看视频或者玩游戏10帧/秒,速度就很慢了
有帮助请采纳下

计算机网络笔记——数据链路层

封装成帧 :在一段数据的前后部分添加 首部 和 尾部 ,这样就构成了一个帧。
接收端在收到物理层上交的比特流后,就能根据首部和尾部的标记,从收到的比特流中识别帧的开始和结束.

首部和尾部包含许多的控制信息,他们的一个重要作用: 帧定界 (确定帧的界限)。

帧同步 :接收方应当能从接收到的二进制比特流中区分出帧的起始和终止。

1. 字符计数法

2. 字符(节)填充法

3. 零比特填充法

4. 违规编码法。

字节计数法 : Count字段的脆弱性(其值若有差错将导致灾难性后果)
字符填充法 : 实现上的复杂性和不兼容性
目前较普遍使用的帧同步法是 比特填充 和 违规编码法 。

差错源于噪声:

冗余编码: 在数据前面添加校验数据,和最终收到的数据比对是否有误,有误证明传输出错

板栗🌰

一段晦涩的话

“可靠传输”:数据链路层发送端发送什么,接收端就收到什么。
链路层使用CRC检验,能够实现无比特差错的传输,但这还不是可靠传输。

原理: 多个校验位同时检验一个数据

构成: 检验位和数据位
检验位个数:海明不等式 2^r >= k + r + 1 计算得出(r为检验位个数,k为数据位位数)
检验位位置:2的(1-r次方)

编码: (以数据D = 101101为例)

最终传输数据(海明码): 00 1 0 011 1 01

校验:

🌰🌰板栗+1

㈢ 数据包和数据帧分别代表什么

1,包(Packet)是TCP/IP协议通信传输中的数据单位,一般也称“数据包”。

TCP/IP协议是工作在OSI模型第三层(网络层)、第四层(传输层)上的,帧工作在第二层(数据链路层)。上一层的内容由下一层的内容来传输,所以在局域网中,“包”是包含在“帧”里的。

2,所谓数据帧(Data frame),就是数据链路层的协议数据单元,它包括三部分:帧头,数据部分,帧尾。其中,帧头和帧尾包含一些必要的控制信息,比如同步信息、地址信息、差错控制信息等;数据部分则包含网络层传下来的数据,比如IP数据包,等等。



(3)计算机网络基础中帧尾的作用扩展阅读

数据包在传输过程中是以数据帧的形式传输的,数据帧由帧头+IP头+TCP/UDP头+数据+帧校验组成;

在每一个路由器上帧头与帧校验都会变化以适应不同的链路,其他内容基本不变;

所有数据都是以二进制数据进行编码的,根据各个链路类型在不同的物理链路上编码传输。

㈣ 何为帧

分类: 电脑/网络 >> 软件 >> 多媒体软件
问题描述:

刚接触到Premiere Pro 中用到了了一个叫“帧”的名字,它有撒作用?意思是?

解析:

什么是“帧”。

帧的组成

在网络中,计算机通信传输的是由“0”和“1”构成的二进制数据,二进制数据组成“帧”(Frame),帧是网络传输的最小单位。实际传输中,在铜缆(指双绞线等铜质电缆)网线中传递的是脉冲电流;在光纤网络和无线网络中传递的是光和电磁波(当然光也是一种电磁波)。

针对高速脉冲电流而言,我们人为地用低电平的脉冲代表“0”、用高电平的脉冲代表“1”。这些虚拟的“0”或“1”就是“位”(Bit)。在计算机网络中一般8个位组成了一个“字节”(Byte)。学过计算机的人都知道字节(Byte)是计算机的数据储存单位。网络技术的初学者大都会把“Bit”(位)与“Byte”(字节)相混淆,谈到100Mbps以太网,就会以为它是每秒钟能传100MB数据的网络,实际上只是25MB(理论值)。

如果把脉冲电流看成是轨道,那么帧就是运行在轨道上的火车。火车有机车和尾车,帧也有一个起点,我们称之为“帧头”,而且帧也有一个终点,我们称之为“帧尾”。帧头和帧尾之间的部分是这个帧负载的数据(相当于火车车头和车尾之间的车厢)。

帧的传输

在网络中,网络设备将“位”组成一个个的字节,然后这些字节“封装”成帧,在网络上传输。为什么要把数据“封装”成帧呢?因为用户数据一般都比较大,有的可以达到MB字节,一下子发送出去十分困难,于是就需要把数据分成许多小份,再按照一定的次序发送出去。

以太网的帧值总是在一定范围内浮动,最大的帧值是1518字节,最小的帧值是64字节。在实际应用中,帧的大小是由设备的MTU(最大传输单位)即设备每次能够传输的最大字节数自动来确定的。

帧是当计算机发送数据时产生的,确切地说,是由计算机中安装的网卡产生的。帧只对于能够识别它的设备才有意义。对于集线器来说,帧是没有意义的,因为它是物理层设备,只认识脉冲电流。有许多人对帧不理解,所以不能很好地理解交换机与集线器的区别。

看了以上这么多,也许你还是不明白,其实,二进制并不是网管员要打交道的东西,而帧才是网管员真正要注意的东西,所以在Windows 2000的“网络监视器”中,“帧”才是被监视的对象。但我们究竟怎样监视帧呢?

㈤ 在计算机网络中,帧的具体概念(即名词解释)

网络上的帧
数据在网络上是以很小的称为帧(Frame)的单位传输的,帧由几部分组成,不同的部分执行不同的功能.帧通过特定的称为网络驱动程序的软件进行成型,然后通过网卡发送到网线上,通过网线到达它们的目的机器,在目的机器的一端执行相反的过程.接收端机器的以太网卡捕获到这些帧,并告诉操作系统帧已到达,然后对其进行存储.就是在这个传输和接收的过程中,嗅探器会带来安全方面的问题 .
帧——就是影像动画中最小单位的单幅影像画面,相当于电影胶片上的每一格镜头.一帧就是一副静止的画面,连续的帧就形成动画,如电视图像等.我们通常说帧数,简单地说,就是在1秒钟时间里传输的图片的帧数,也可以理解为图形处理器每秒钟能够刷新几次,通常用fps(Frames Per Second)表示.每一帧都是静止的图像,快速连续地显示帧便形成了运动的假象.高的帧率可以得到更流畅、更逼真的动画.每秒钟帧数 (fps) 越多,所显示的动作就会越流畅.
数据帧
“帧”数据由两部分组成:帧头和帧数据.帧头包括接收方主机物理地址的定位以及其它网络信息.帧数据区含有一个数据体.为确保计算机能够解释数据帧中的数据,这两台计算机使用一种公用的通讯协议.互联网使用的通讯协议简称IP,即互联网协议.IP数据体由两部分组成:数据体头部和数据体的数据区.数据体头部包括IP源地址和IP目标地址,以及其它信息.数据体的数据区包括用户数据协议(UDP),传输控制协议(TCP),还有数据包的其他信息.这些数据包都含有附加的进程信息以及实际数据.
FLASH的帧
帧——就是影像动画中最小单位的单幅影像画面,相当于电影胶片上的每一格镜头.
关键帧——任何动画要表现运动或变化,至少前后要给出两个不同的关键状态,而中间状态的变化和衔接电脑可以自动完成,在Flash中,表示关键状态的帧叫做关键帧.
过渡帧——在两个关键帧之间,电脑自动完成过渡画面的帧叫做过渡帧.
关键帧和过渡帧的联系和区别
两个关键帧的中间可以没有过渡帧(如逐帧动画),但过渡帧前后肯定有关键帧,因为过渡帧附属于关键帧;
关键帧可以修改该帧的内容,但过渡帧无法修改该帧内容.
关键帧中可以包含形状、剪辑、组等多种类型的元素或诸多元素,但过渡帧中对象只能是剪辑(影片剪辑、图形剪辑、按钮)或独立形状.
影片是由一张张连续的图片组成的,每幅图片就是一帧,PAL制式每秒钟25帧,NTSC制式每秒钟30帧.

㈥ 计算机网络基础重要知识点

计算机网络基础重要知识点,第一章概述的知识点包含章节导引,第一节计算机网络的定义与作用,第二节计算机网络技术的发展,第三节计算机网络的分类与主要性能指标,第四节计算机网络的体系结构,。参考模型的七层结构很重要,要理解如下:
从最底层到最高层:物理层,内数据链路容层,网络层,传输层,会话层,表示层,应用层.
物理层:在通信系统间建立物理链接,实现原始位流的传输。工作在该层的设备有 中继器 集线器 网卡 数据的传输单位 是 比特流.
数据链路层:实现物理网络中的系统标识,具有组帧功能,在共赏传输介质的网络中,还提供访问控制功能,提供数据的无错传输。 工作在层的设备有 交换机
网桥。 传输单位 是帧。
网络层:对整个互联网络中的系统进行统一的标识,具有分段和重组功能还具有寻址的功能,实现拥塞控制功能。
传输层: 实现主机间进程到进程的数据通信。 数据传输的单位是 段。
会话层:组织和同步不同主机上各种进程间的通信。
表示层:为应用进程间传送的数据提供表示的方法即确定数据在计算机中编码方式。
应用层: 是(唯一)直接给网络应用进程提供服务。

㈦ 计算机网络第三章(数据链路层)

3.1、数据链路层概述

概述

链路 是从一个结点到相邻结点的一段物理线路, 数据链路 则是在链路的基础上增加了一些必要的硬件(如网络适配器)和软件(如协议的实现)

网络中的主机、路由器等都必须实现数据链路层

局域网中的主机、交换机等都必须实现数据链路层

从层次上来看数据的流动

仅从数据链路层观察帧的流动

主机H1 到主机H2 所经过的网络可以是多种不同类型的

注意:不同的链路层可能采用不同的数据链路层协议

数据链路层使用的信道

数据链路层属于计算机网路的低层。 数据链路层使用的信道主要有以下两种类型:

点对点信道

广播信道

局域网属于数据链路层

局域网虽然是个网络。但我们并不把局域网放在网络层中讨论。这是因为在网络层要讨论的是多个网络互连的问题,是讨论分组怎么从一个网络,通过路由器,转发到另一个网络。

而在同一个局域网中,分组怎么从一台主机传送到另一台主机,但并不经过路由器转发。从整个互联网来看, 局域网仍属于数据链路层 的范围

三个重要问题

数据链路层传送的协议数据单元是 帧

封装成帧

封装成帧 (framing) 就是在一段数据的前后分别添加首部和尾部,然后就构成了一个帧。

首部和尾部的一个重要作用就是进行 帧定界 。

差错控制

在传输过程中可能会产生 比特差错 :1 可能会变成 0, 而 0 也可能变成 1。

可靠传输

接收方主机收到有误码的帧后,是不会接受该帧的,会将它丢弃

如果数据链路层向其上层提供的是不可靠服务,那么丢弃就丢弃了,不会再有更多措施

如果数据链路层向其上层提供的是可靠服务,那就还需要其他措施,来确保接收方主机还可以重新收到被丢弃的这个帧的正确副本

以上三个问题都是使用 点对点信道的数据链路层 来举例的

如果使用广播信道的数据链路层除了包含上面三个问题外,还有一些问题要解决

如图所示,主机A,B,C,D,E通过一根总线进行互连,主机A要给主机C发送数据,代表帧的信号会通过总线传输到总线上的其他各主机,那么主机B,D,E如何知道所收到的帧不是发送给她们的,主机C如何知道发送的帧是发送给自己的

可以用编址(地址)的来解决

将帧的目的地址添加在帧中一起传输

还有数据碰撞问题

随着技术的发展,交换技术的成熟,

在 有线(局域网)领域 使用 点对点链路 和 链路层交换机 的 交换式局域网 取代了 共享式局域网

在无线局域网中仍然使用的是共享信道技术

3.2、封装成帧

介绍

封装成帧是指数据链路层给上层交付的协议数据单元添加帧头和帧尾使之成为帧

帧头和帧尾中包含有重要的控制信息

发送方的数据链路层将上层交付下来的协议数据单元封装成帧后,还要通过物理层,将构成帧的各比特,转换成电信号交给传输媒体,那么接收方的数据链路层如何从物理层交付的比特流中提取出一个个的帧?

答:需要帧头和帧尾来做 帧定界

但比不是每一种数据链路层协议的帧都包含有帧定界标志,例如下面例子

前导码

前同步码:作用是使接收方的时钟同步

帧开始定界符:表明其后面紧跟着的就是MAC帧

另外以太网还规定了帧间间隔为96比特时间,因此,MAC帧不需要帧结束定界符

透明传输

透明

指某一个实际存在的事物看起来却好像不存在一样。

透明传输是指 数据链路层对上层交付的传输数据没有任何限制 ,好像数据链路层不存在一样

帧界定标志也就是个特定数据值,如果在上层交付的协议数据单元中, 恰好也包含这个特定数值,接收方就不能正确接收

所以数据链路层应该对上层交付的数据有限制,其内容不能包含帧定界符的值

解决透明传输问题

解决方法 :面向字节的物理链路使用 字节填充 (byte stuffing) 或 字符填充 (character stuffing),面向比特的物理链路使用比特填充的方法实现透明传输

发送端的数据链路层在数据中出现控制字符“SOH”或“EOT”的前面 插入一个转义字符“ESC” (其十六进制编码是1B)。

接收端的数据链路层在将数据送往网络层之前删除插入的转义字符。

如果转义字符也出现在数据当中,那么应在转义字符前面插入一个转义字符 ESC。当接收端收到连续的两个转义字符时,就删除其中前面的一个。

帧的数据部分长度

总结

3.3、差错检测

介绍

奇偶校验

循环冗余校验CRC(Cyclic Rendancy Check)

例题

总结

循环冗余校验 CRC 是一种检错方法,而帧校验序列 FCS 是添加在数据后面的冗余码

3.4、可靠传输

基本概念

下面是比特差错

其他传输差错

分组丢失

路由器输入队列快满了,主动丢弃收到的分组

分组失序

数据并未按照发送顺序依次到达接收端

分组重复

由于某些原因,有些分组在网络中滞留了,没有及时到达接收端,这可能会造成发送端对该分组的重发,重发的分组到达接收端,但一段时间后,滞留在网络的分组也到达了接收端,这就造成 分组重复 的传输差错

三种可靠协议

停止-等待协议SW

回退N帧协议GBN

选择重传协议SR

这三种可靠传输实现机制的基本原理并不仅限于数据链路层,可以应用到计算机网络体系结构的各层协议中

停止-等待协议

停止-等待协议可能遇到的四个问题

确认与否认

超时重传

确认丢失

既然数据分组需要编号,确认分组是否需要编号?

要。如下图所示

确认迟到

注意,图中最下面那个数据分组与之前序号为0的那个数据分组不是同一个数据分组

注意事项

停止-等待协议的信道利用率

假设收发双方之间是一条直通的信道

TD :是发送方发送数据分组所耗费的发送时延

RTT :是收发双方之间的往返时间

TA :是接收方发送确认分组所耗费的发送时延

TA一般都远小于TD,可以忽略,当RTT远大于TD时,信道利用率会非常低

像停止-等待协议这样通过确认和重传机制实现的可靠传输协议,常称为自动请求重传协议ARQ( A utomatic R epeat re Q uest),意思是重传的请求是自动进行,因为不需要接收方显式地请求,发送方重传某个发送的分组

回退N帧协议GBN

为什么用回退N帧协议

在相同的时间内,使用停止-等待协议的发送方只能发送一个数据分组,而采用流水线传输的发送方,可以发送多个数据分组

回退N帧协议在流水线传输的基础上,利用发送窗口来限制发送方可连续发送数据分组的个数

无差错情况流程

发送方将序号落在发送窗口内的0~4号数据分组,依次连续发送出去

他们经过互联网传输正确到达接收方,就是没有乱序和误码,接收方按序接收它们,每接收一个,接收窗口就向前滑动一个位置,并给发送方发送针对所接收分组的确认分组,在通过互联网的传输正确到达了发送方

发送方每接收一个、发送窗口就向前滑动一个位置,这样就有新的序号落入发送窗口,发送方可以将收到确认的数据分组从缓存中删除了,而接收方可以择机将已接收的数据分组交付上层处理

累计确认

累计确认

优点:

即使确认分组丢失,发送方也可能不必重传

减小接收方的开销

减小对网络资源的占用

缺点:

不能向发送方及时反映出接收方已经正确接收的数据分组信息

有差错情况

例如

在传输数据分组时,5号数据分组出现误码,接收方通过数据分组中的检错码发现了错误

于是丢弃该分组,而后续到达的这剩下四个分组与接收窗口的序号不匹配

接收同样也不能接收它们,讲它们丢弃,并对之前按序接收的最后一个数据分组进行确认,发送ACK4, 每丢弃一个数据分组,就发送一个ACK4

当收到重复的ACK4时,就知道之前所发送的数据分组出现了差错,于是可以不等超时计时器超时就立刻开始重传,具体收到几个重复确认就立刻重传,根据具体实现决定

如果收到这4个重复的确认并不会触发发送立刻重传,一段时间后。超时计时器超时,也会将发送窗口内以发送过的这些数据分组全部重传

若WT超过取值范围,例如WT=8,会出现什么情况?

习题

总结

回退N帧协议在流水线传输的基础上利用发送窗口来限制发送方连续发送数据分组的数量,是一种连续ARQ协议

在协议的工作过程中发送窗口和接收窗口不断向前滑动,因此这类协议又称为滑动窗口协议

由于回退N帧协议的特性,当通信线路质量不好时,其信道利用率并不比停止-等待协议高

选择重传协议SR

具体流程请看视频

习题

总结

3.5、点对点协议PPP

点对点协议PPP(Point-to-Point Protocol)是目前使用最广泛的点对点数据链路层协议

PPP协议是因特网工程任务组IEIF在1992年制定的。经过1993年和1994年的修订,现在的PPP协议已成为因特网的正式标准[RFC1661,RFC1662]

数据链路层使用的一种协议,它的特点是:简单;只检测差错,而不是纠正差错;不使用序号,也不进行流量控制;可同时支持多种网络层协议

PPPoE 是为宽带上网的主机使用的链路层协议

帧格式

必须规定特殊的字符作为帧定界符

透明传输

必须保证数据传输的透明性

实现透明传输的方法

面向字节的异步链路:字节填充法(插入“转义字符”)

面向比特的同步链路:比特填充法(插入“比特0”)

差错检测

能够对接收端收到的帧进行检测,并立即丢弃有差错的帧。

工作状态

当用户拨号接入 ISP 时,路由器的调制解调器对拨号做出确认,并建立一条物理连接。

PC 机向路由器发送一系列的 LCP 分组(封装成多个 PPP 帧)。

这些分组及其响应选择一些 PPP 参数,并进行网络层配置,NCP 给新接入的 PC 机

分配一个临时的 IP 地址,使 PC 机成为因特网上的一个主机。

通信完毕时,NCP 释放网络层连接,收回原来分配出去的 IP 地址。接着,LCP 释放数据链路层连接。最后释放的是物理层的连接。

可见,PPP 协议已不是纯粹的数据链路层的协议,它还包含了物理层和网络层的内容。

3.6、媒体接入控制(介质访问控制)——广播信道

媒体接入控制(介质访问控制)使用一对多的广播通信方式

Medium Access Control 翻译成媒体接入控制,有些翻译成介质访问控制

局域网的数据链路层

局域网最主要的 特点 是:

网络为一个单位所拥有;

地理范围和站点数目均有限。

局域网具有如下 主要优点 :

具有广播功能,从一个站点可很方便地访问全网。局域网上的主机可共享连接在局域网上的各种硬件和软件资源。

便于系统的扩展和逐渐地演变,各设备的位置可灵活调整和改变。

提高了系统的可靠性、可用性和残存性。

数据链路层的两个子层

为了使数据链路层能更好地适应多种局域网标准,IEEE 802 委员会就将局域网的数据链路层拆成 两个子层 :

逻辑链路控制 LLC (Logical Link Control)子层;

媒体接入控制 MAC (Medium Access Control)子层。

与接入到传输媒体有关的内容都放在 MAC子层,而 LLC 子层则与传输媒体无关。 不管采用何种协议的局域网,对 LLC 子层来说都是透明的。

基本概念

为什么要媒体接入控制(介质访问控制)?

共享信道带来的问题

若多个设备在共享信道上同时发送数据,则会造成彼此干扰,导致发送失败。

随着技术的发展,交换技术的成熟和成本的降低,具有更高性能的使用点对点链路和链路层交换机的交换式局域网在有线领域已完全取代了共享式局域网,但由于无线信道的广播天性,无线局域网仍然使用的是共享媒体技术

静态划分信道

信道复用

频分复用FDM (Frequency Division Multiplexing)

将整个带宽分为多份,用户在分配到一定的频带后,在通信过程中自始至终都占用这个频带。

频分复用 的所有用户在同样的时间 占用不同的带宽资源 (请注意,这里的“带宽”是频率带宽而不是数据的发送速率)。