当前位置:首页 » 网络连接 » 计算机网络传输层作用

计算机网络传输层作用

发布时间: 2023-03-04 14:36:00

❶ 分别用一句话描述计算机网络7层结构每层的用处

物理层:规范电压及提供电接口。
数据链路层:差错校验、流量控制、链路管理。
网络层 :寻址、路由选择。
传输层:建立端到端连接。
会话层:建立、管理、维护会话。
表示层:转换数据格式及数据加密
应用层:提供各种应用程序接口。

❷ [计算机网络之六] 传输层

  传输层向它上面的应用层提供通信服务,它属于面向通信部分的最高层,同时也是用户功能中的最底层。

  从传输层的角度,通信的真正端点并不是主机而是主机中的进程。

  传输层有 分用 复用 的功能。 “复用” 是指在发送方不同的应用进程都可以使用同一个运输层协议传送数据, “分用” 是指接收方的运输层在剥去报文的首部后能够把这些数据正确交付目的应用进程。

  网络层和运输层有明显的区别,网络层为主机之间提供逻辑通信,而运输层为应用进程之间提供端到端的逻辑通信。

知名端口号 :0~1023
登记端口号 :1024~49151
客户端短暂端口号 :49152~65535


① 无连接。 发送数据之前不需要建立连接,因此减少了开销和发送数据之前的时延。
② 尽最大努力交付。 即不保证可靠交付,因此主机不需要维持复杂的连接状态表。
③ 面向报文的。 对应用层交下来的报文,既不合并,也不拆分,而是保留这些报文的边界,UDP 一次交付一个完整的报文。

  用户数据报 UDP 有两个字段:数据字段和首部字段。首部字段很简单,只有 8 个字节,由四个字段组成,每个字段的长度都是两个字节。各字段意义如下:

① 源端口 在需要对方回信时选用。不需要时可用全0。
② 目的端口 目的端口号。这在终点交付报文时必须使用。
③ 长度 用户数据报的长度,最小值为 8 (仅有首部)。
④ 检验和 检测用户数据报在传输中是否有错。有错就丢弃。

  用户数据报首部检验和的计算和校验都要计算出一个伪首部。


① 面向连接。

  应用程序在使用 TCP 协议之前,必须先建立 TCP 连接;传送数据完毕后,必须释放已经建立的 TCP 连接。类似于打电话:通话前要先拨号建立连接,通话结束后要挂机释放连接。

② 一对一。

  TCP 连接只能是点对点的(一对一)。

③ 可靠交付。

  通过 TCP 连接传送的数据,无差错、不丢失、不重复,并且按序到达。

④ 全双工通信。

  通信双方的应用进程在任何时候都能发送和接收数据,TCP 连接的两端都设有发送缓存和接收缓存,用来临时存放双向通信的数据。

⑤ 面向字节流。

  TCP 中的 “流” 指的是流入到进程或从进程流出的字节序列。

  “面向字节流” 的含义:虽然应用程序和 TCP 的交互式一次一个数据块(大小不等),但 TCP 把应用程序交下来的数据仅仅看成是一连串无结构的字节流。TCP 并不知道所传送的字节流的含义。TCP 不保证接收方应用程序锁收到的数据块和发送方应用程序所发出的数据块具有对应的大小关系。但接收方应用程序收到的字节流必须和发送方应用程序发出的字节流完全一样,当然接收方的应用程序必须有能力识别收到的字节流,把它还原成有意义的应用层数据。

  TCP 连接是协议软件提供的一种抽象,每一条 TCP 连接唯一地被通信两端的两个端点(即两个套接字)所确定,即:

  TCP 连接 ::= {socket1, socket2} = {(IP1: port1), (IP2: port2)}

  IP1 和 IP2 分别是两个端点主机的 IP 地址,port1 和 port2 分别是两端端点主机中的端口号。


  网络只能提供最大努力的服务,是不可靠的,因此 TCP 必须采用适当的措施才能使得两个运输层之间的通信变得可靠。当出现差错时让发送方重传出现差错的数据,同时在接收方来不及处理收到的数据时,及时告知发送方适当降低发送数据的速度,这样就可以在不可靠的传输信道实现可靠传输。

  ARQ(Auto Repeat-reQuest):自动重传请求。

  发送方每发送完一个分组就停止发送,等待接收方确认,在收到确认后再发送下一个分组。
  A 是发送方,B 是接收方。

  A 每发送一个分组后,等待 B 对该分组的确认后,再接着发送下一个分组。

【发送方】A 发送的分组在传输过程中出错,可能是丢失了,也可能是分组受到干扰出错了
【接收方】这时 B 直接丢弃分组,什么也不做(也不通知 A 受到的分组有差错)。

【解决方案】发送方在每发送完一个分组时设置一个 超时计数器 ,只要超过一段时间仍然没有接收到确认,就认为刚才发送的分组丢失了,因而重传前面发送过的分组,这叫 超时重传 。反之在超时计时器到期之前收到了相应的确认,就撤销该超时计时器。

第一,A 在发送完一个分组后, 必须暂时保留已发送的分组的副本 (在发生超时重传时使用)。只有在收到相应的确认后才能清楚暂时保留的分组副本。

第二,分组和确认分组都必须进行 编号 。这样才能明确是哪一个发送出去的分组受到了确认,而哪一个分组还没有收到确认。

第三,超时计时器设置的 重传时间应当比数据在分组传输的平均往返时间更长一些

【发送方】超时重传时间内没有收到确认报文,无法确认是发送出错、丢失,还是接收方的确认丢失,超时计时器到期后就要重传。
【接收方】丢弃收到的重复分组,不向上层交付;向发送方发送确认。

【发送方】收下迟到的确认,并且丢弃

  发送方大部分时间都在等待确认,信道的利用率低

  使用流水线的 ARQ 可以提高信道利用率

【发送方】维持一个发送窗口,位于发送窗口内的分组都可连续发送出去,而不需要等待对方的确认。

回退N帧协议 :如果发送方发送了多个分组,但中间的某个分组丢失了,这时接收方只能对丢失分组之前的分组发出确认,而发送方无法知道丢失分组及后面分组的接收情况,只好把丢失分组及后面的分组重传一次,这叫 Go-back-N ,表示需要再退回来重传已发送过的 N 个分组。


  前面 20 个字节固定,因此 TCP 首部最小长度是 20 字节。

  TCP 的滑动窗口以字节为单位,窗口后沿的部分表示已发送且已收到通知,窗口里的序号表示允许发送的序号,窗口前沿之前的数据暂时不允许发送,需要等待收到接收方的确认后前沿往前移才可发送。

描述一个发送窗口需要三个指针:P1、P2 和 P3,如图所示:

  小于 P1 的是已发送并已收到确认的部分,而大于 P3 的是不允许发送的部分。

  P3 - P1 = A 的发送窗口

  P2 - P1 = 已发送但尚未收到确认的字节数

  P3 - P2 = 允许发送但当前尚未发送的字节数(又称为 可用窗口 有效窗口

  接收方 B 接收窗口大小为20,因为未收到 31 的数据,即使已收到后面的序号 32、33 的数据,返回的确认号仍然是 31。

  现在接收方收到了 31、32、33,并返回确认号 33,接收窗口往前滑动 3 个序号,发送方接收到确认,发送窗口也向前滑动 3 个序号大小,现在 A 可以发送序号 51~53 的数据了。

  当发送方将发送窗口内的数据都发送出去,但是接收方的确认可能由于网络拥塞滞留,这时发送方发送窗口已满,可用窗口为 0,只能等待接收方的确认报文到达。

  TCP 为了保证可靠传输,要求必须受到对已发送报文的确认,如果超过一定时间未受到确认报文,则重传已发送的报文。这个时间就叫 超时重传时间 ,很明显超时重传时间的大小设置应该更贴近网络的实际情况,如果网络状况好,就设短一点,否则使网络的空闲时间增大,降低了传输效率;网络差就设长一点,否则会引起很多不必要的重传,使网络负荷增大。

  TCP 采用了一种自适应的算法:

  RTT(报文段的往返时间)、RTTs(加权平均往返时间),RTTs 的计算公式:

RTTd(RTT 的偏差的加权平均值)、RTO(RetransmissionTime-Out 超时重传时间):

【场景】TCP 的接收方在接收对方发送过来的数据字节流的序号不连续,形成一些不连续的字节块,如果简单按照回退N帧协议处理,意味着要重传第一个未收到的序号数据块及之后的数据,如果能通知发送方已收到了哪些数据(选择确认),就可以让发送方只发送接收方未收到的数据。



  流量控制就是让发送方的发送速率不要太快,要让接收方来得及接收。

  当发送方收到接收方通知,将窗口缩小为 0 时,发送方将暂时不能发送数据了,必须等接收方通知更新接收窗口大小,但是这个通知又有可能丢失,导致发送方没收到通知。

  为了避免双方互相等待死锁,TCP 为每个链接设有一个 持续计时器 ,只要 TCP 连接的一方收到对方的零窗口通知,就启动持续计时器。若持续计时器设置的时间到期,就发送一个零窗口 探测报文段 (仅携带 1 字节的数据),而对方就在确认这个探测报文段时给出了现在的窗口值。如果窗口仍然是零,那么受到这个报文段的一方就重新设置持续计时器;如果窗口不是零,那么死锁的僵局就可以打破了。



【优点】提高网络利用率
【缺点】可能会发生某种程度的延迟

【场景】接收数据的主机如果每次都立刻回复确认应答的话,可能会返回一个较小的窗口,因为接收方刚接收完数,缓冲区已满。

【糊涂窗口综合征问题】
TCP 接收方缓存已满,而交互式的应用进程一次只从接收缓存中读取 1 个字节(这样就使接收缓存空间仅腾出 1 个字节),然后向发送方发送确认,并把窗口设置为 1 个字节(但发送的数据报是 40 字节长,TCP 首部 + IP 数据报首部)。接着,发送方又发来 1 个字节的数据(注意发送方发送的 IP 数据报是 41 字节长)。接收方发回确认,仍然将窗口设置为 1 个字节。这样进行下去,使网络的效率很低。

  TCP 文件传输中,就采用了两个数据段返回一次确认应答,并且等待一定时间后没有其他数据包到达时也依然发送确认应答。

  当对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏,这种情况就叫做 拥塞



  慢开始(slow-start)、拥塞避免(congestion avoidance)、快重传(fast retransmit)和快恢复(fast recovery)。

【算法思路】

  当主机开始发送数据时,由于并不清楚网络的负荷情况,所以如果立即把大量数据字节注入网络,那么就有可能引起网络发生拥塞。较好的方法是先探测一下,即 由小到大逐渐增大发送窗口 ,也就是说, 由小到大逐渐增大拥塞窗口数值

【处理过程】

   慢开始门限值 ssthresh 决定了拥塞窗口达到多大时要执行什么算法。

① 当 cwnd < ssthresh 时,使用慢开始算法;
② 当 cwnd > ssthresh 时,停止使用慢开始算法而改用拥塞避免算法;
③ 当 cwnd = ssthresh 时,既可使用慢开始算法,也可使用拥塞避免算法。

  在拥塞窗口 cwnd 达到门限值之前,发送方每一轮次收到确认应答后,cwnd 就增大为原来的两倍;达到门限值后,执行拥塞避免算法。

PS. 慢开始只是表示初始发送数据少,不代表发送速率增长速度慢,实际上是指数级增长非常快。

【算法思路】

  让拥塞窗口 cwnd 缓慢地增大,即每经过一个往返时间 RTT 就把发送方的拥塞窗口 cwnd 加 1,而不是像慢开始阶段那样加倍增长。拥塞避免阶段有 “加法增大” 的特点,按线性规律缓慢增长,使网络比较不容易出现拥塞

【处理过程】

  在执行拥塞避免算法阶段,当网络出现超时时,发送方判断为网络拥塞,调整门限值为当前拥塞窗口的一半,即 ssthresh = cwnd / 2,同时拥塞窗口重置为 1,即 cwnd = 1,进入慢开始阶段。

【算法原理】

① 快重传

【场景】有时,个别报文段会在网络中丢失,但实际上网络并未发生拥塞。如果发送方迟迟收不到确认,就会产生超时,就会误认为网络发生了拥塞,导致发送方错误地启动慢开始,把拥塞窗口 cwnd 又设置为 1,因而降低了传输效率。

【方案】接收方不要等待自己发送数据时才进行捎带确认,而是要立即发送确认,即使收到了失序的报文段也要立即发出对已收到的报文段的重复确认,当发送方 一连收到 3 个重复确认 ,就知道接收方确实没有收到某个报文段,因而应当 立即进行重传

② 快恢复:

  发送方知道只是丢失了个别的报文段,于是不启动慢开始,而是执行快恢复算法,调整发送方门限值 ssthresh = cwnd / 2,同时设置拥塞窗口 cwnd = ssthresh = 8,并开始执行拥塞避免算法。


拥塞控制的流程如下:

  拥塞窗口 cwnd,接收方窗口 rwnd, 发送方发送窗口的上限值 = Min[rwnd, cwnd]

① 当 rwnd < cwnd,接收方的接收能力限制发送方窗口大小;
② 当 cwnd < rwnd,网络的拥塞程度限制发送方窗口大小。


【问题背景】

  路由器采取分组丢弃策略,即按照 先进先出(FIFO) 规则处理分组,当队列已满时,则丢弃后面到达的分组,这叫 尾部丢弃策略

  丢失的分组会导致发送方出现超时重传,发送方转而执行慢开始算法,不同分组属于不同 TCP 连接,导致很多 TCP 同时进入慢开始状态,这种现象称为 全局同步

【解决方案】

  主动队列管理 AQM:不等到路由器的队列长度已经达到最大值时才不得不丢弃后面到达的分组,而是在队列长度达到某个警惕值时就主动丢弃到达的分组,这样就提醒了发送方放慢发送的速率,因而有可能使网络拥塞的程度减轻,甚至不出现网络拥塞。


  TCP 是面向连接的协议,运输连接有三个阶段: 连接建立、数据传送、连接释放

  TCP 连接建立过程要解决的几个问题:

① 使每一方能够确知对方的存在;
② 允许双方协商一些参数(如最大窗口值、是否使用窗口扩大选项和时间戳选项以及服务质量等);
③ 能够对运输实体资源(如缓存大小、连接表中的项目等)进行分配。

  TCP 建立连接的过程叫做握手,握手需要在客户和服务器之间交换三个 TCP 报文段,即 三次握手

  最初客户端和服务端都处于 CLOSED(关闭) 状态,A(Client)主动打开连接,B(Server)被动打开连接。

  一开始,B 的 TCP 服务器进程先创建 传输控制块 TCB ,准备接受客户进程的连接请求。然后服务器进程就处于 LISTEN(收听)状态,等待客户端的连接请求。如有,即作出响应。

   第一次握手 :A 的 TCP 客户进程也是首先创建传输控制块 TCB,准备接受客户进程的连接请求。然后在打算建立 TCP 连接时,向 B 发出连接请求报文段,这时首部中的同步位 SYN = 1,同时选择一个初始序号 seq = x。TCP 规定,SYN 报文段(即 SYN = 1 的报文段)不能携带数据,但要 消耗掉一个序号 。这时,TCP 客户进程进入 SYN-SENT(同步已发送) 状态。

   第二次握手 :B 收到连接请求报文段后,如同意建立连接,则向 A 发送确认。在确认报文段中应把 SYN 位和 ACK 位都置 1,确认号是 ack = x + 1,同时也为自己选择一个初始序号 seq = y。请注意,这个报文段也不能携带数据,但同样 要消耗掉一个序号 。这时 TCP 服务器进程进入 SYN-RCVD(同步收到) 状态。

   第三次握手 :TCP 客户进程收到 B 的确认后,还要向 B 给出确认。确认报文段的 ACK 置 1,确认号 ack = y + 1,而自己的序号 seq = x + 1。TCP 的标准规定,ACK 报文段可以携带数据。但 如果不携带数据则不消耗序号 ,在这种情况下,下一个数据报文段的序号仍是 seq = x + 1。这时,TCP 连接已经建立,A 进入 ESTABLISHED(已建立连接) 状态。当 B 收到 A 的确认后,也进入 ESTABLISHED(已建立连接)状态。








  数据传输结束后,通信的方法都可释放连接。现在 A 和 B 都处于 ESTABLISHED 状态。

   第一次挥手 :A 的应用进程先向其 TCP 发出连接释放报文段,并停止再发送数据,主动关闭 TCP 连接。A 把连接释放报文段首部的终止控制位 FIN 置 1,其序号 seq = u,它等于前面已传送过的数据的最后一个字节的序号加 1。这时 A 进入 FIN-WAIT-1(终止等待 1)状态,等待 B 的确认。请注意,TCP 规定,FIN 报文段即使不携带数据,它也消耗掉一个序号。

   第二次挥手 :B 收到连接释放报文后即发出确认,确认号是 ack = u + 1,而这个报文段自己的序号是 v,等于 B 前面已传送过的最后一个字节的序号加 1。然后 B 就进入 CLOSE-WAIT(关闭等待)状态。TCP 服务器进程这时应通知高层应用程序,因而从 A 到 B 这个方向的连接就释放了,这时的 TCP 连接处于半关闭(half-close)状态,即 A 已经没有数据要发送了,但 B 若发送数,A 仍要接收。也就是说,从 B 到 A 这个方向的连接并未关闭,这个状态可能会持续一段时间。A 收到来自 B 的确认后,就进入 FIN-WAIT-2(终止等待 2)状态,等待 B 发出的连接释放报文段。

   第三次挥手 :若 B 已经没有要向 A 发送的数据,其应用进程就通知 TCP 释放连接。这时 B 发出的连接释放报文段必须使 FIN = 1。现假定 B 的序号为 w(在半关闭状态 B 可能又发送了一些数据)。B 还必须重复上次已发送过的确认号 ack = u + 1。这时 B 就进入 LAST-ACK(最后确认)状态,等待 A 的确认。

   第四次挥手 :A 在收到 B 的连接释放报文段后,必须对此发出确认。在确认报文段中把 ACK 置 1,确认号 ack = w + 1,而自己的序号是 seq = u + 1(根据 TCP 标准,前面发送过的 FIN 报文段要消耗一个序号)。然后进入 TIME-WAIT(时间等待)状态。请注意,现在 TCP 连接还没有释放掉。必须经过时间等待计时器(TIME-WAIT timer)设置的时间 2MSL 后,A 才进入到 CLOSED 状态,然后撤销传输控制块,结束这次 TCP 连接。当然如果 B 一收到 A 的确认就进入 CLOSED 状态,然后撤销传输控制块。所以在释放连接时,B 结束 TCP 连接的时间要早于 A。




❸ 网络的七层各自的作用是什么要简单的解释,有例子最好

申请一下,来自COPY

OSI七层模型介绍
OSI是一个开放性的通行系统互连参考模型,他是一个定义的非常好的协议规范。OSI模型有7层结构,每层都可以有几个子层。下面我简单的介绍一下这7层及其功能。

OSI的7层从上到下分别是

7 应用层
6 表示层
5 会话层
4 传输层
3 网络层
2 数据链路层
1 物理层

其中高层,既7、6、5、4层定义了应用程序的功能,下面3层,既3、2、1层主要面向通过网络的端到端的数据流。下面我给大家介绍一下这7层的功能:

(1)应用层:与其他计算机进行通讯的一个应用,它是对应应用程序的通信服务的。例如,一个没有通信功能的字处理程序就不能执行通信的代码,从事字处理工作的程序员也不关心OSI的第7层。但是,如果添加了一个传输文件的选项,那么字处理器的程序员就需要实现OSI的第7层。示例:telnet, HTTP,FTP,WWW,NFS,SMTP等。

(2)表示层:这一层的主要功能是定义数据格式及加密。例如,FTP允许你选择以二进制或ASII格式传输。如果选择二进制,那么发送方和接收方不改变文件的内容。如果选择ASII格式,发送方将把文本从发送方的字符集转换成标准的ASII后发送数据。在接收方将标准的ASII转换成接收方计算机的字符集。示例:加密,ASII等。

(3)会话层:他定义了如何开始、控制和结束一个会话,包括对多个双向小时的控制和管理,以便在只完成连续消息的一部分时可以通知应用,从而使表示层看到的数据是连续的,在某些情况下,如果表示层收到了所有的数据,则用数据代表表示层。示例:RPC,SQL等。

(4)传输层:这层的功能包括是否选择差错恢复协议还是无差错恢复协议,及在同一主机上对不同应用的数据流的输入进行复用,还包括对收到的顺序不对的数据包的重新排序功能。示例:TCP,UDP,SPX。

(5)网络层:这层对端到端的包传输进行定义,他定义了能够标识所有结点的逻辑地址,还定义了路由实现的方式和学习的方式。为了适应最大传输单元长度小于包长度的传输介质,网络层还定义了如何将一个包分解成更小的包的分段方法。示例:IP,IPX等。

(6)数据链路层:他定义了在单个链路上如何传输数据。这些协议与被讨论的歌种介质有关。示例:ATM,FDDI等。

(7)物理层:OSI的物理层规范是有关传输介质的特性标准,这些规范通常也参考了其他组织制定的标准。连接头、针、针的使用、电流、电流、编码及光调制等都属于各种物理层规范中的内容。物理层常用多个规范完成对所有细节的定义。示例:Rj45,802.3等。

OSI分层的优点:

(1)人们可以很容易的讨论和学习协议的规范细节。

(2)层间的标准接口方便了工程模块化。

(3)创建了一个更好的互连环境。

(4)降低了复杂度,使程序更容易修改,产品开发的速度更快。

(5)每层利用紧邻的下层服务,更容易记住个层的功能。

大多数的计算机网络都采用层次式结构,即将一个计算机网络分为若干层次,处在高层次的系统仅是利用较低层次的系统提供的接口和功能,不需了解低层实现该功能所采用的算法和协议;较低层次也仅是使用从高层系统传送来的参数,这就是层次间的无关性。因为有了这种无关性,层次间的每个模块可以用一个新的模块取代,只要新的模块与旧的模块具有相同的功能和接口,即使它们使用的算法和协议都不一样。

网络中的计算机与终端间要想正确的传送信息和数据,必须在数据传输的顺序、数据的格式及内容等方面有一个约定或规则,这种约定或规则称做协议。网络协议主要有三个组成部分:

1、语义:

是对协议元素的含义进行解释,不同类型的协议元素所规定的语义是不同的。例如需要发出何种控制信息、完成何种动作及得到的响应等。

2、语法:

将若干个协议元素和数据组合在一起用来表达一个完整的内容所应遵循的格式,也就是对信息的数据结构做一种规定。例如用户数据与控制信息的结构与格式等。

3、时序:

对事件实现顺序的详细说明。例如在双方进行通信时,发送点发出一个数据报文,如果目标点正确收到,则回答源点接收正确;若接收到错误的信息,则要求源点重发一次。

70年代以来,国外一些主要计算机生产厂家先后推出了各自的网络体系结构,但它们都属于专用的。
为使不同计算机厂家的计算机能够互相通信,以便在更大的范围内建立计算机网络,有必要建立一个国际范围的网络体系结构标准。

国际标准化组织ISO 于1981年正式推荐了一个网络系统结构----七层参考模型,叫做开放系统互连模型(Open System Interconnection,OSI)。由于这个标准模型的建立,使得各种计算机网络向它靠拢, 大大推动了网络通信的发展。

OSI 参考模型将整个网络通信的功能划分为七个层次,见图1。它们由低到高分别是物理层(PH)、链路层(DL)、网络层(N)、传输层(T)、会议层(S)、表示层(P)、应用层(A)。每层完成一定的功能,每层都直接为其上层提供服务,并且所有层次都互相支持。第四层到第七层主要负责互操作性,而一层到三层则用于创造两个网络设备间的物理连接.

1.物理层

物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。

1.1媒体和互连设备

物理层的媒体包括架空明线、平衡电缆、光纤、无线信道等。通信用的互连设备指DTE和DCE间的互连设备。DTE既数据终端设备,又称物理设备,如计算机、终端等都包括在内。而DCE则是数据通信设备或电路连接设备,如调制解调器等。数据传输通常是经过DTE——DCE,再经过DCE——DTE的路径。互连设备指将DTE、DCE连接起来的装置,如各种插头、插座。LAN中的各种粗、细同轴电缆、T型接、插头,接收器,发送器,中继器等都属物理层的媒体和连接器。

1.2物理层的主要功能

1.2.1为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒体连接而成.一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接.所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路.

1.2.2传输数据.物理层要形成适合数据传输需要的实体,为数据传送服务.一是要保证数据能在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞.传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要.

1.3物理层的一些重要标准

物理层的一些标准和协议早在OSI/TC97/C16 分技术委员会成立之前就已制定并在应用了,OSI也制定了一些标准并采用了一些已有的成果.下面将一些重要的标准列出,以便读者查阅.ISO2110:称为"数据通信----25芯DTE/DCE接口连接器和插针分配".它与EIA(美国电子工
业协会)的"RS-232-C"基本兼容。ISO2593:称为"数据通信----34芯DTE/DCE----接口连接器和插针分配"。 ISO4092:称为"数据通信----37芯DTE/DEC----接口连接器和插针分配".与EIARS-449兼容。CCITT V.24:称为"数据终端设备(DTE)和数据电路终接设备之间的接口电路定义表".其功能与EIARS-232-C及RS-449兼容于100序列线上.

2.数据链路层

数据链路可以粗略地理解为数据通道。物理层要为终端设备间的数据通信提供传输媒体及其连接.媒体是长期的,连接是有生存期的.在连接生存期内,收发两端可以进行不等的一次或多次数据通信.每次通信都要经过建立通信联络和拆除通信联络两过程.这种建立起来的数据收发关系就叫作数据链路.而在物理媒体上传输的数据难免受到各种不可靠因素的影响而产生差错,为了弥补物理层上的不足,为上层提供无差错的数据传输,就要能对数据进行检错和纠错.数据链路的建立,拆除,对数据的检错,纠错是数据链路层的基本任务。

2.1链路层的主要功能

链路层是为网络层提供数据传送服务的,这种服务要依靠本层具备的功能来实现。链路层应具备如下功能:

2.1.1链路连接的建立,拆除,分离。

2.1.2帧定界和帧同步。链路层的数据传输单元是帧,协议不同,帧的长短和界面也有差别,但无论如何必须对帧进行定界。

2.1.3顺序控制,指对帧的收发顺序的控制。

2.1.4差错检测和恢复。还有链路标识,流量控制等等.差错检测多用方阵码校验和循环码校验来检测信道上数据的误码,而帧丢失等用序号检测.各种错误的恢复则常靠反馈重发技术来完成。

2.2数据链路层的主要协议

数据链路层协议是为发对等实体间保持一致而制定的,也为了顺利完成对网络层的服务。主要协议如下:

2.2.1ISO1745--1975:"数据通信系统的基本型控制规程".这是一种面向字符的标准,利用10个控制字符完成链路的建立,拆除及数据交换.对帧的收发情况及差错恢复也是靠这些字符来完成.ISO1155, ISO1177, ISO2626, ISO2629等标准的配合使用可形成多种链路控制和数据传输方式.

2.2.2ISO3309--1984:称为"HDLC 帧结构".ISO4335--1984:称为"HDLC 规程要素 ".ISO7809--1984:称为"HDLC 规程类型汇编".这3个标准都是为面向比特的数据传输控制而制定的.有人习惯上把这3个标准组合称为高级链路控制规程.

2.2.3ISO7776:称为"DTE数据链路层规程".与CCITT X.25LAB"平衡型链路访问规程"相兼容.

2.3链路层产品

独立的链路产品中最常见的当属网卡,网桥也是链路产品。MODEM的某些功能有人认为属于链路层,对些还有争议.数据链路层将本质上不可靠的传输媒体变成可靠的传输通路提供给网络层。在IEEE802.3情况下,数据链路层分成了两个子层,一个是逻辑链路控制,另一个是媒体访问控制。下图所示为 IEEE802.3LAN体系结构。

AUI=连接单元接口 PMA=物理媒体连接
MAU=媒体连接单元 PLS=物理信令
MDI=媒体相关接口

3.网络层

网络层的产生也是网络发展的结果.在联机系统和线路交换的环境中,网络层的功能没有太大意义.当数据终端增多时.它们之间有中继设备相连.此时会出现一台终端要求不只是与唯一的一台而是能和多台终端通信的情况,这就是产生了把任意两台数据终端设备的数据链接起来的问题,也就是路由或者叫寻径.另外,当一条物理信道建立之后,被一对用户使用,往往有许多空闲时间被浪费掉.人们自然会希望让多对用户共用一条链路,为解决这一问题就出现了逻辑信道技术和虚拟电路技术.

3.1网络层主要功能

网络层为建立网络连接和为上层提供服务,应具备以下主要功能:

3.1.1路由选择和中继.

3.1.2激活,终止网络连接.

3.1.3在一条数据链路上复用多条网络连接,多采取分时复用技术 .

3.1.4差错检测与恢复.

3.1.5排序,流量控制.

3.1.6服务选择.

3.1.7网络管理.

3.2网络层标准简介

网络层的一些主要标准如下:

3.2.1 ISO.DIS8208:称为"DTE用的X.25分组级协议"

3.2.2 ISO.DIS8348:称为"CO 网络服务定义"(面向连接)

3.2.3 ISO.DIS8349:称为"CL 网络服务定义"(面向无连接)

3.2.4 ISO.DIS8473:称为"CL 网络协议"

3.2.5 ISO.DIS8348:称为"网络层寻址"

3.2.6 除上述标准外,还有许多标准。这些标准都只是解决网络层的部分功能,所以往往需要在网络层中同时使用几个标准才能完成整个网络层的功能.由于面对的网络不同,网络层将会采用不同的标准组合.

在具有开放特性的网络中的数据终端设备,都要配置网络层的功能.现在市场上销售的网络硬设备主要有网关和路由器.

4.传输层

传输层是两台计算机经过网络进行数据通信时,第一个端到端的层次,具有缓冲作用。当网络层服务质量不能满足要求时,它将服务加以提高,以满足高层的要求;当网络层服务质量较好时,它只用很少的工作。传输层还可进行复用,即在一个网络连接上创建多个逻辑连接。传输层也称为运输层.传输层只存在于端开放系统中,是介于低3层通信子网系统和高3层之间的一层,但是很重要的一层.因为它是源端到目的端对数据传送进行控制从低到高的最后一层.

有一个既存事实,即世界上各种通信子网在性能上存在着很大差异.例如电话交换网,分组交换网,公用数据交换网,局域网等通信子网都可互连,但它们提供的吞吐量,传输速率,数据延迟通信费用各不相同.对于会话层来说,却要求有一性能恒定的界面.传输层就承担了这一功能.它采用分流/合流,复用/介复用技术来调节上述通信子网的差异,使会话层感受不到.

此外传输层还要具备差错恢复,流量控制等功能,以此对会话层屏蔽通信子网在这些方面的细节与差异.传输层面对的数据对象已不是网络地址和主机地址,而是和会话层的界面端口.上述功能的最终目的是为会话提供可靠的,无误的数据传输.传输层的服务一般要经历传输连接建立阶段,数据传送阶段,传输连接释放阶段3个阶段才算完成一个完整的服务过程.而在数据传送阶段又分为一般数据传送和加速数据传送两种。传输层服务分成5种类型.基本可以满足对传送质量,传送速度,传送费用的各种不同需要.传输层的协议标准有以下几种:

4.1 ISO8072:称为"面向连接的传输服务定义"

4.2 ISO8072:称为"面向连接的传输协议规范"

5.会话层
会话层提供的服务可使应用建立和维持会话,并能使会话获得同步。会话层使用校验点可使通信会话在通信失效时从校验点继续恢复通信。这种能力对于传送大的文件极为重要。会话层,表示层,应用层构成开放系统的高3层,面对应用进程提供分布处理,对话管理,信息表示,恢复最后的差错等.

会话层同样要担负应用进程服务要求,而运输层不能完成的那部分工作,给运输层功能差距以弥补.主要的功能是对话管理,数据流同步和重新同步。要完成这些功能,需要由大量的服务单元功能组合,已经制定的功能单元已有几十种.现将会话层主要功能介绍如下.

5.1为会话实体间建立连接。为给两个对等会话服务用户建立一个会话连接,应该做如下几项工作:

5.1.1将会话地址映射为运输地址

5.1.2选择需要的运输服务质量参数(QOS)

5.1.3对会话参数进行协商

5.1.3识别各个会话连接

5.1.4传送有限的透明用户数据

5.2数据传输阶段

这个阶段是在两个会话用户之间实现有组织的,同步的数据传输.用户数据单元为SSDU,而协议数据单元为SPDU.会话用户之间的数据传送过程是将SSDU转变成SPDU进行的.

5.3连接释放

连接释放是通过"有序释放","废弃","有限量透明用户数据传送"等功能单元来释放会话连接的.会话层标准为了使会话连接建立阶段能进行功能协商,也为了便于其它国际标准参考和引用,定义了12种功能单元.各个系统可根据自身情况和需要,以核心功能服务单元为基础,选配其他功能单元组成合理的会话服务子集.会话层的主要标准有"DIS8236:会话服务定义"和"DIS8237:会话协议规范".

6.表示层

表示层的作用之一是为异种机通信提供一种公共语言,以便能进行互操作。这种类型的服务之所以需要,是因为不同的计算机体系结构使用的数据表示法不同。例如,IBM主机使用EBCDIC编码,而大部分PC机使用的是ASCII码。在这种情况下,便需要会话层来完成这种转换。

通过前面的介绍,我们可以看出,会话层以下5层完成了端到端的数据传送,并且是可靠,无差错的传送.但是数据传送只是手段而不是目的,最终是要实现对数据的使用.由于各种系统对数据的定义并不完全相同,最易明白的例子是键盘,其上的某些键的含义在许多系统中都有差异.这自然给利用其它系统的数据造成了障碍.表示层和应用层就担负了消除这种障碍的任务.

对于用户数据来说,可以从两个侧面来分析,一个是数据含义被称为语义,另一个是数据的表示形式,称做语法.像文字,图形,声音,文种,压缩,加密等都属于语法范畴.表示层设计了3类15种功能单位,其中上下文管理功能单位就是沟通用户间的数据编码规则,以便双方有一致的数据形式,能够互相认识. ISO表示层为服务,协议,文本通信符制定了DP8822,DP8823,DIS6937/2等一系列标准.

7.应用层

应用层向应用程序提供服务,这些服务按其向应用程序提供的特性分成组,并称为服务元素。有些可为多种应用程序共同使用,有些则为较少的一类应用程序使用。应用层是开放系统的最高层,是直接为应用进程提供服务的。其作用是在实现多个系统应用进程相互通信的同时,完成一系列业务处理所需的服务.其服务元素分为两类:公共应用服务元素CASE和特定应用服务元素SASE.CASE提供最基本的服务,它成为应用层中任何用户和任何服务元素的用户,主要为应用进程通信,分布系统实现提供基本的控制机制.特定服务SASE则要满足一些特定服务,如文卷传送,访问管理,作业传送,银行事务,订单输入等.

这些将涉及到虚拟终端,作业传送与操作,文卷传送及访问管理,远程数据库访问,图形核心系统,开放系统互连管理等等.应用层的标准有DP8649"公共应用服务元素",DP8650"公共应用服务元素用协议",文件传送,访问和管理服务及协议.

讨论:OSI七层模型是一个理论模型,实际应用则千变万化,因此更多把它作为分析、评判各种网络技术的依据;对大多数应用来说,只将它的协议族(即协议堆栈)与七层模型作大致的对应,看看实际用到的特定协议是属于七层中某个子层,还是包括了上下多层的功能。

这样分层的好处有:

1.使人们容易探讨和理解协议的许多细节。

2.在各层间标准化接口,允许不同的产品只提供各层功能的一部分,(如路由器在一到三层),或者只提供协议功能的一部分。(如Win95中的Microsoft TCP/IP)

3. 创建更好集成的环境。

4. 减少复杂性,允许更容易编程改变或快速评估。

5. 用各层的headers和trailers排错。

6.较低的层为较高的层提供服务。

7. 把复杂的网络划分成为更容易管理的层。

❹ 网络体系结构中为什么要设置传输层

因为两个主机进行通信实际上是两个主机中的应用进程通信,一个主机中经常有多个应用进程同时分别与另外一个主机中的多个应用进程互相通信,网络层协议能够将分组送达目的主机,但它无法交付给主机中的应用程序,网络体系结构中要设置传输层,为主机之间提供逻辑通信。

传输层是整个网络体系结构中的关键层次之一,主要负责向两个主机中进程之间的通信提供服务。由于一个主机同时运行多个进程,因此运输层具有复用和分用功能。传输层在终端用户之间提供透明的数据传输,向上层提供可靠的数据传输服务。

端口概念

传输层的任务是根据通信子网的特性,最佳的利用网络资源,为两个端系统的会话层之间,提供建立、维护和取消传输连接的功能,负责端到端的可靠数据传输。在这一层,信息传送的协议数据单元称为段或报文。

网络层只是根据网络地址将源结点发出的数据包传送到目的结点,而传输层则负责将数据可靠地传送到相应的端口。计算机网络中的资源子网是通信的发起者和接收者,其中的每个设备称为端点。

以上内容参考网络-传输层

❺ 计算机网络的网络层有什么功能

计算机网络中,网络层的功能是包括寻址和路由选择、连接的建立、保持和终止等。它提供的服务使传输层不需要了解网络中的数据传输和交换技术。如果您想用尽量少的词来记住网络层,那就是"路径选择、路由及逻辑寻址"。网络层的目的是实现两个端系统之间的数据透明传送。

网络层中涉及众多的协议,其中包括最重要的协议,也是TCP/IP的核心协议——IP协议。IP协议非常简单,仅仅提供不可靠、无连接的传送服务。IP协议的主要功能有:无连接数据报传输、数据报路由选择和差错控制。与IP协议配套使用实现其功能的还有地址解析协议ARP、逆地址解析协议RARP、因特网报文协议ICMP、因特网组管理协议IGMP。

(5)计算机网络传输层作用扩展阅读:

计算机网络体系结构的通信协议划分为七层,自下而上依次为:物理层(Physics Layer)、数据链路层(Data Link Layer)、网络层(Network Layer)、传输层(Transport Layer)、会话层(Session Layer)、表示层(Presentation Layer)、应用层(Application Layer)。其中第四层完成数据传送服务,上面三层面向用户。

除了标准的OSI七层模型以外,常见的网络层次划分还有TCP/IP四层协议以及TCP/IP五层协议。

大多数的计算机网络都采用层次式结构,即将一个计算机网络分为若干层次,处在高层次的系统仅是利用较低层次的系统提供的接口和功能,不需了解低层实现该功能所采用的算法和协议;较低层次也仅是使用从高层系统传送来的参数,这就是层次间的无关性。因为有了这种无关性,层次间的每个模块可以用一个新的模块取代,只要新的模块与旧的模块具有相同的功能和接口,即使它们使用的算法和协议都不一样。