当前位置:首页 » 网络连接 » 计算机网络ip分组首部格式
扩展阅读
网络安全部门叫啥 2025-09-28 10:44:52
平板电脑网络和WIFI 2025-09-28 10:42:29

计算机网络ip分组首部格式

发布时间: 2023-05-13 10:23:30

计算机网络:网络层(2)

如图,一个IP数据报由首部和数据两部分组成。首部的前一部分是固定长度,共20字节,是所有IP数据报必须具有的。在首部的固定部分的后面是一些可选字段,其长度是可变的。

(1)版本
占4位,指IP协议的版本。通信双方使用的IP协议的版本必须一致。目前广泛使用的IP协议版本号为4(即IPv4)。也有使用IPv6的(即版本6的IP协议)。
(2)首部长度
占4位,可表示的最大十进制数值是15。 这个字段所表示数的单位是32位字(1个32位字长是4字节),因此,当I的首部长度为1111时(即十进制的15),首部长度就达到最大值60字节。当分组的首部长度不是4字节的整数倍时,必须利用最后的填充字段加以填充。 因此数据部分永远在4字节的整数倍时开始,这样在实现IP协议时较为方便。首部长度限制为60字节的缺点是有时可能不够用。但这样做是希望用户尽量减少开销。最常用的首部长度就是20字节(即首部长度为0101),这时不使用任何选项。
(3)区分服务
占8位,用来获得更好的服务。这个字段在旧标准中叫做服务类型,但实际上一直没有被使用过。1998年ITF把这个字段改名为区分服务DS( Differentiated Services。只有在使用区分服务时,这个字段才起作用。在一般的情况下都不使用这个字段。
(4)总长度
总长度指首部和数据之和的长度,单位为字节。总长度字段为16位,因此数据报的最大长度为216-1=65535字节。
在IP层下面的每一种数据链路层都有其自己的帧格式,其中包括帧格式中的数据字段的最大长度,这称为最大传送单元MTU( Maximum Transfer Unit)。当一个IP数据报封装成链路层的帧时,此数据报的总长度(即首部加上数据部分)一定不能超过下面的数据链路层的MTU值。虽然使用尽可能长的数据报会使传输效率提高,但由于以太网的普遍应用,所以实际上使用的数据报长度 很少有超过1500字节 的。为了不使IP数据报的传输效率降低,有关IP的标准文档规定,所有的主机和路由器必须能够处理的IP数据报长度不得小于576字节。这个数值也就是最小的IP数据报的总长度。当数据报长度超过网络所容许的最大传送单元MTU时,就必须把过长的数据报进行分片后才能在网络上传送。这时,数据报首部中的“总长度”字段不是指未分片前的数据报长度,而是指分片后的每一个分片的首部长度与数据长度的总和。
(5)标识 (identification)
占16位。软件在存储器中维持一个计数器,每产生一个数据报,计数器就加1,并将此值赋给标识字段。但这个“标识”并不是序号,因为IP是无连接服务,数据报不存在按序接收的问题。当数据报由于长度超过网络的MTU而必须分片时,这个标识字段的值就被复制到所有的数据报片的标识字段中。相同的标识字段的值使分片后的各数据报片最后能正确地重装成为原来的数据报。
(6)标志(flag)
占3位,但目前只有两位有意义。
标志字段中的最低位记为 MF ( More Fragment)。MF=1即表示后面“还有分片”的数据报。MF=0表示这已是若千数据报片中的最后一个。
标志字段中间的一位记为 DF (Dont Fragment),意思是“不能分片”。只有当DF=0时才允许分片。
(7)片偏移
占13位。片偏移指出:较长的分组在分片后,某片在原分组中的相对位置。也就是说,相对于用户数据字段的起点,该片从何处开始。片偏移以8个字节为偏移单位。这就是说,每个分片的长度一定是8字节(64位)的整数倍。
(8)生存时间
占8位,生存时间字段常用的英文缩写是TTL( Time To live),表明是数据报在网络中的寿命。由发出数据报的源点设置这个字段。其目的是防止无法交付的数据报无限制地在因特网中兜圈子(例如从路由器R1转发到R2,再转发到R3,然后又转发到R1),因而白白消耗网络资源。最初的设计是以秒作为TTL值的单位。每经过一个路由器时,就把TTL减去数据报在路由器所消耗掉的一段时间。若数据报在路由器消耗的时间小于1秒,就把TTL值减1。当TTL值减为零时,就丢弃这个数据报然而随着技术的进步,路由器处理数据报所需的时间不断在缩短,一般都远远小于1秒钟,后来就把TTL字段的功能改为“跳数限制”(但名称不变)。路由器在转发数据报之前就把TTL值减1。若TTL值减小到零,就丢弃这个数据报,不再转发。因此,现在TTL的单位不再是秒,而是跳数。 TTL的意义是指明数据报在因特网中至多可经过多少个路由器 。显然,数据报能在因特网中经过的路由器的最大数值是255。若把TTL的初始值设置为1,就表示这个数据报只能在本局域网中传送。因为这个数据报一传送到局域网上的某个路由器,在被转发之前TTL值就减小到零,因而就会被这个路由器丢弃。
(9)协议
占8位,协议字段指出此数据报携带的数据是使用何种协议,以便使目的主机的IP层知道应将数据部分上交给哪个处理过程。

过程大致如下:
(1)从数据报的首部提取目的主机的IP地址D,得出目的网络地址为N。
(2)若N就是与此路由器直接相连的某个网络地址,则进行直接交付,不需要再经过其他的路由器,直接把数据报交付给目的主机(这里包括把目的主机地址D转换为具体的硬件地址,把数据报封装为MAC帧,再发送此帧);否则就是间接交付,执行(3)。
(3)若路由表中有目的地址为D的特定主机路由,则把数据报传送给路由表中所指明的下一跳路由器;否则,执行(4)。
(4)若路由表中有到达网络N的路由,则把数据报传送给路由表中所指明的下一跳路由器;否则,执行(5)
(5)若路由表中有一个默认路由,则把数据报传送给路由表中所指明的默认路由器;否则,执行(6)。
(6)报告转发分组出错。

在进行更详细的转发解释之前,先要了解一下子网掩码:

上一篇说到了二级IP地址,也就是IP地址由网络号和主机号组成。

二级IP地址有以下缺点:
第一,IP地址空间的利用率有时很低每一个A类地址网络可连接的主机数超过1000万,而每一个B类地址网络可连接的主机数也超过6万。然而有些网络对连接在网络上的计算机数目有限制,根本达不到这样大的数值。例如10 BASE-T以太网规定其最大结点数只有1024个。这样的以太网若使用一个B类地址就浪费6万多个IP地址,地址空间的利用率还不到2%,而其他单位的主机无法使用这些被浪费的地址。有的单位申请到了一个B类地址网络,但所连接的主机数并不多,可是又不愿意申请一个足够使用的C类地址,理由是考虑到今后可能的发展。IP地址的浪费,还会使IP地址空间的资源过早地被用完。
第二,给每一个物理网络分配一个网络号会使路由表变得太大因而使网络性能变坏。
每一个路由器都应当能够从路由表査出应怎样到达其他网络的下一跳路由器。因此,互联网中的网络数越多,路由器的路由表的项目数也就越多。这样,即使我们拥有足够多的IP地址资源可以给每一个物理网络分配一个网络号,也会导致路由器中的路由表中的项目数过多。这不仅增加了路由器的成本(需要更多的存储空间),而且使查找路由时耗费更多的时间,同时也使路由器之间定期交换的路由信息急剧增加,因而使路由器和整个因特网的性能都下降了。
第三,两级IP地址不够灵活。
有时情况紧急,一个单位需要在新的地点马上开通一个新的网络。但是在申请到一个新的IP地址之前,新增加的网络是不可能连接到因特网上工作的。我们希望有一种方法,使一个单位能随时灵活地增加本单位的网络,而不必事先到因特网管理机构去申请新的网络号。原来的两级IP地址无法做到这一点。

于是为解决上述问题,从1985年起在IP地址中又增加了一个“子网号字段”,使两级IP地址变成为三级IP地址,它能够较好地解决上述问题,并且使用起来也很灵活。这种做法叫作划分子网 (subnetting),或子网寻址或子网路由选择。划分子网已成为因特网的正式标准协议。

划分子网的基本思路如下:
(1)一个拥有许多物理网络的单位,可将所属的物理网络划分为若干个子网 subnet)。划分子网纯属一个单位内部的事情。本单位以外的网络看不见这个网络是由多少个子网组成,因为这个单位对外仍然表现为一个网络。
(2)划分子网的方法是从网络的主机号借用若干位作为子网号 subnet-id,当然主机号也就相应减少了同样的位数。于是两级IP地址在本单位内部就变为三级IP地址:网络号、子网号和主机号。也可以用以下记法来表示:
IP地址:=(<网络号>,<子网号>,<主机号>}

(3)凡是从其他网络发送给本单位某个主机的IP数据报,仍然是根据IP数据报的目的网络号找到连接在本单位网络上的路由器。但此路由器在收到IP数据报后,再按目的网络号和子网号找到目的子网,把IP数据报交付给目的主机。

简单来说就是原来的IP地址总长度不变,把原来由“网络号+主机号”组成的IP地址,变为了“网络号+子网号+主机号”,因为其他网络找当前网络的主机时,使用的还是网络号,所以外面的网看不见当前网络的子网。当本网的路由器在收到IP数据报后,按目的网络号和子网号找到目的子网,把IP数据报交付给目的主机。

现在剩下的问题就是:假定有一个数据报(其目的地址是145.133.10)已经到达了路由器R1。那么这个路由器如何把它转发到子网145.3.3.0呢?
我们知道,从IP数据报的首部并不知道源主机或目的主机所连接的网络是否进行了子网的划分。这是因为32位的IP地址本身以及数据报的首部都没有包含任何有关子网划分的信息。因此必须另外想办法,这就是使用子网掩码( (subnet mask)。

子网掩码,简单来说就是把除了主机号设置为0,其他位置的数字都设置为1。
以B类地址为例:

把三级IP地址的网络号与子网号连起来,与子网掩码做“与”运算,就得到了子网的网络地址。

在因特网的标准规定:所有的网络都必须使用子网掩码,同时在路由器的路由表中也必须有子网掩码这一栏。如果一个网络不划分子网,那么该网络的子网掩码就使用默认子网掩码。
那么既然没有子网,为什么还要使用子网掩码?
这就是为了更便于査找路由表。
默认子网掩码中1的位置和IP地址中的网络号字段 net-id正好相对应。因此,若用默认子网掩码和某个不划分子网的IP地址逐位相“与”(AND),就应当能够得出该IP地址的网络地址来。这样做可以不用查找该地址的类别位就能知道这是哪一类的IP地址。显然,

子网掩码是一个网络或一个子网的重要属性。在RFC950成为因特网的正式标准后,路由器在和相邻路由器交换路由信息时,必须把自己所在网络(或子网)的子网掩码告诉相邻路由器。在路由器的路由表中的每一个项目,除了要给出目的网络地址外,还必须同时给出该网络的子网掩码。若一个路由器连接在两个子网上就拥有两个网络地址和两个子网掩码。
以一个B类地址为例,说明可以有多少种子网划分的方法。在采用固定长度子网时,所划分的所有子网的子网掩码都是相同的。

表中的“子网号的位数”中没有0,1,15和16这四种情况,因为这没有意义。虽然根据已成为因特网标准协议的RFC950文档,子网号不能为全1或全0,但随着无分类域间路由选择CIDR的广泛使用,现在全1和全0的子网号也可以使用了,但一定要谨慎使用,要弄清你的路由器所用的路由选择软件是否支持全0或全1的子网号。这种较新的用法我们可以看出,若使用较少位数的子网号,则每一个子网上可连接的主机数就较多。
反之,若使用较多位数的子网号,则子网的数目较多但每个子网上可连接的主机数就较少因此我们可根据网络的具体情况(一共需要划分多少个子网,每个子网中最多有多少个主机)来选择合适的子网掩码。

所以,划分子网增加了灵活性,但却减少了能够连接在网络上的主机总数。

在划分子网的情况下,分组转发的算法必须做相应的改动。
使用子网划分后,路由表必须包含以下三项内容:目的网络地址、子网掩码和下一跳地址。
所以之前的流程变成了下面这样:
(1)从收到的数据报的首部提取目的IP地址D。
(2)先判断是否为直接交付。对路由器直接相连的网络逐个进行检查:用各网络的子网掩码和D逐位相“与”(AND操作),看结果是否和相应的网络地址匹配。若匹配,则把分组进行直接交付(当然还需要把D转换成物理地址,把数据报封装成帧发送出去),转发任务结束。否则就是间接交付,执行(3)。
(3)若路由表中有目的地址为D的特定主机路由,则把数据报传送给路由表中所指明的下一跳路由器;否则,执行(4)。
(4)对路由表中的每一行(目的网络地址,子网掩码,下一跳地址),用其中的子网掩码和D逐位相“与”(AND操作),其结果为N。若N与该行的目的网络地址匹配,则把数据报传送给该行指明的下一跳路由器;否则,执行(5)。
5)若路由表中有一个默认路由,则把数据报传送给路由表中所指明的默认路由器;否则,执行(6)
(6)报告转发分组出错。

② IP子网划分的划分方法

子网掩码概念及子网划分规则
一、子网掩码概述

1.子网掩码的概念
子网掩码是一个32位地址,用于屏蔽IP地址的一部分以区别网络标识和主机标识,并说明该IP地址是在局域网上,还是在远程网上。

2.确定子网掩码数
用于子网掩码的位数决定于可能的子网数目和每个子网的主机数目。在定义子网掩码前,必须弄清楚本来使用的子网数和主机数目。

定义子网掩码的步骤为:

A、确定哪些组地址归我们使用。比如我们申请到的网络号为 “210.73.a.b”,该网络地址为c类IP地址,网络标识为“210.73”,主机标识为“a.b”。

B、根据我们现在所需的子网数以及将来可能扩充到的子网数,用宿主机的一些位来定义子网掩码。比如我们现在需要12个子网,将来可能需要16个。用第三个字节的前四位确定子网掩码。前四位都置为“1”,即第三个字节为“11110000”,这个数我们暂且称作新的二进制子网掩码。

C、把对应初始网络的各个位都置为“1”,即前两个字节都置为“1”,第四个字节都置为“0”,则子网掩码的间断二进制形式为:“11111111.11111111.11110000.00000000”

D、把这个数转化为间断十进制形式为:“255.255.240.0”

这个数为该网络的子网掩码。

3.IP掩码的标注
A、无子网的标注法

对无子网的IP地址,可写成主机号为0的掩码。如IP地址210.73.140.5,掩码为255.255.255.0,也可以缺省掩码,只写IP地址。

B、有子网的标注法

有子网时,一定要二者配对出现。以C类地址为例。

1.IP地址中的前3个字节表示网络号,后一个字节既表明子网号,又说明主机号,还说明两个IP地址是否属于一个网段。如果属于同一网络区间,这两个地址间的信息交换就不通过路由器。如果不属同一网络区间,也就是子网号不同,两个地址的信息交换就要通过路由器进行。例如:对于IP地址为210.73.140.5的主机来说,其主机标识为00000101,对于IP地址为210.73.140.16的主机来说它的主机标识为00010000,以上两个主机标识的前面三位全是000,说明这两个IP地址在同一个网络区域中,这两台主机在交换信息时不需要通过路由器进行10.73.60.1的主机标识为00000001,210.73.60.252的主机标识为11111100,这两个主机标识的前面三位000与011不同,说明二者在不同的网络区域,要交换信息需要通过路由器。其子网上主机号各为1和252。

2.掩码的功用是说明有子网和有几个子网,但子网数只能表示为一个范围,不能确切讲具体几个子网,掩码不说明具体子网号,有子网的掩码格式(对C类地址)。

二、子网掩码的用处之一

便于网络设备尽快地区分本网段地址和非本网段的地址。

主机A与主机B交互信息。

主机A: IP地址:202.183.58.11

子网掩码:255.255.255.0

路由地址:202.183.58.1

主机B: IP地址:202.183.56.5

子网掩码:255.255.255.0

路由地址:202.183.56.1

路由器从端口202.183.58.1接收到主机A发往主机B的IP数据报文后,

(1)首先用端口地址202.183.58.1与子网掩码地址255.255.255.0进行“逻辑与”,得到端口网段地址:202.183.58.0,

(2)然后将目的地址202.183.56.5与子网掩码地址255.255.255.0进行“逻辑与”,得202.183.56.0,

(3)将结果202.183.56.0与端口网段地址202.183.58.0比较,如果相同,则认为是本网段的,不予转发。如果不相同,则将该IP报文转发到端口202.183.56.1所对应的网段。

三、子网掩码的用处之二

将子网进一步划分,缩小子网地址空间。将一个网段划分多个子网段,便于网络管理。

学校校园网信息中心可以将202.183.56.0(C类地址)分配给两个系,每个系约有120

台计算机,则可以将子网掩码地址定义为:255.255.255.128

这样将原来的一个网段分成两个独立的子网段,便于网络管理。

系1的地址范围:202.183.56.1—202.183.56.126

子网地址:1100101010110111 00111000 0xxxxxxx

系2的地址范围:202.183.56.129—202.183.56.254

子网地址:1100101010110111 00111000 1xxxxxxx

四、子网掩码的算法

(一)、利用子网数来计算
在求子网掩码之前必须先搞清楚要划分的子网数目,以及每个子网内的所需主机数目。
1)将子网数目转化为二进制来表示
2)取得该二进制的位数,为 N
3)取得该IP地址的类子网掩码,将其主机地址部分的的前N位置 1 即得出该IP地址划分子网的子网掩码。
如欲将B类IP地址168.195.0.0划分成27个子网:
1)27=11011
2)该二进制为五位数,N = 5
3)将B类地址的子网掩码255.255.0.0的主机地址前5位置 1,得到 255.255.248.0
即为划分成 27个子网的B类IP地址 168.195.0.0的子网掩码。
(二)、利用主机数来计算
1)将主机数目转化为二进制来表示
2)如果主机数小于或等于254(注意去掉保留的两个IP地址),则取得该主机的二进制位数,为 N,这里肯定 N<8。如果大于254,则 N>8,这就是说主机地址将占据不止8位。
3)使用255.255.255.255来将该类IP地址的主机地址位数全部置1,然后从后向前的将N位全部置为 0,即为子网掩码值。
如欲将B(c)类IP地址168.195.0.0划分成若干子网,每个子网内有主机700台(17):
1) 700=1010111100
2)该二进制为十位数,N = 10(1001)
3)将该B类地址的子网掩码255.255.0.0的主机地址全部置 1,得到255.255.255.255
然后再从后向前将后 10位置0,即为: 11111111.11111111.11111100.00000000
即255.255.252.0。这就是该欲划分成主机为700台的B类IP地址 168.195.0.0的子网掩码。

五、子网的计算

在思科网络技术学院CCNA教学和考试当中,不少同学在进行IP地址规划时总是很头疼子网和掩码的计算。现在给大家一个小窍门,可以顺利解决这个问题。

首先,我们看一个CCNA考试中常见的题型:一个主机的IP地址是202.112.14.137,掩码是255.255.255.224,要求计算这个主机所在网络的网络地址和广播地址。

常规办法是把这个主机地址和子网掩码都换算成二进制数,两者进行逻辑与运算后即可得到网络地址。其实大家只要仔细想想,可以得到另一个方法:255.255.255.224的掩码所容纳的IP地址有256-224=32个(包括网络地址和广播地址),那么具有这种掩码的网络地址一定是32的倍数。而网络地址是子网IP地址的开始,广播地址是结束,可使用的主机地址在这个范围内,因此略小于137而又是32的倍数的只有128,所以得出网络地址是202.112.14.128。而广播地址就是下一个网络的网络地址减1。而下一个32的倍数是160,因此可以得到广播地址为202.112.14.159。

CCNA考试中,还有一种题型,要你根据每个网络的主机数量进行子网地址的规划和计算子网掩码。这也可按上述原则进行计算。比如一个子网有10台主机,那么对于这个子网需要的IP地址是:

10+1+1+1=13

注意:加的第一个1是指这个网络连接时所需的网关地址,接着的两个1分别是指网络地址和广播地址。因为13小于16(16等于2的4次方),所以主机位为4位。而

256-16=240

所以该子网掩码为255.255.255.240。

如果一个子网有14台主机,不少同学常犯的错误是:依然分配具有16个地址空间的子网,而忘记了给网关分配地址。这样就错误了,因为:

14+1+1+1=17

17大于16,所以我们只能分配具有32个地址(32等于2的5次方)空间的子网。这时子网掩码为:255.255.255.224。

六、子网掩码及其应用 (综合)

在TCP/IP协议中,SUBNET MASKS(子网掩码)的作用是用来区分网络上的主机是否在同一网络取段内。在大型网络中,CLASS A的SUBNET MASKS为255.0.0.0, CLASS B的SUBNET MASKS为255.255.0.0,CLASS C的SUBNET MASKS为255.255.255.0。

假如某台主机的SUBNET MASKS为IP地址为202.119.115.78,它的SUBNET MASKS为255.255.255.0。将这两个数据作AND运算后,所得出的值中的非0的BYTE部分即为NETWORK ID 。运算步骤如下:

202.119.115.78的二进制值为:
11001010.01110111.01110011.01001110
255.255.255.0的二进制值为:
11111111.11111111.11111111.00000000
AND后的结果为:
11001010.01110111.01110011.00000000
转为二进制后即为:
202.119.115.0

它就是NETWORK ID,在IP地址中剩下的即为HOST ID,即为78,这样当有另一台主机 的IP 地址为202.119.115.83,它的SUBNET MASKS也是255.255.255.0,则其NETWORK ID 为202.119.115,HOST ID为83,因为这两台主机的NETWORK ID都是202.119.115,因此,这两台主机在同一网段内。

但是,在实际应用中,可能会有多个分布与各地的网络,而且,每个网络的主机数量并不很多,如果申请多个NETWORK ID,会造成IP资源的浪费,而且很不经济,如果我们在SUBNET MASKS上动一下手脚,可以在只申请一个NETWORK ID的基础上解决这个问题。

比如,我们有三个不同的子网,每个网络的HOST数量各为20、25和50,下面依次称为甲、乙和丙网,但只申请了一个NETWORK ID 就是202.119.115。首先我们把甲和乙网的SUBNET MASKS改为255.255.255.224,224的二进制为11100000,即它的SUBNET MASKS为:

11111111.11111111.11111111.11100000

这样,我们把HOST ID的高三位用来分割子网,这三位共有000、001、010、011、100、 101、110、111八种组合,除去000(代表本身)和111(代表广播),还有六个组合,也就是可提供六个子网,它们的IP地址分别为:(前三个字节还是202.119.115)


00100001~00111110 即33~62为第一个子网
01000001~01011110 即65~94为第二个子网
01100001~01111110 即97~126为第三个子网
10000001~10011110 即129~158为第四个子网
10100001~10111110 即161~190为第五个子网
11000001~11011110 即193~222为第六个子网
选用161~190段给甲网,193~222段给乙网,因为各个子网都支持30台主机,足以应付甲网和乙网20台和25台的需求。

再来看丙网,由于丙网有50台主机,按上述分割方法无法满足它的IP需求,我们 可以将它的SUBNET MASKS设为255.255.255.192, 由于192的二进制值为11000000,按上述方法,它可以划分为两个子网,IP地址为:

01000001~01111110 即65~126为第一个子网
10000001~10111110 即129~190为第二个子网

这样每个子网有62个IP可用,将65~126分配丙网,多个子网用一个NETWORK ID 即告实现。


如果将子网掩码设置过大,也就是说子网范围扩大。那么根据子网寻径规则,很可能发往和本地机不在同一子网内的目的机的数据,会因为错误的相与结果而认为是在同一子网内,那么,数据包将在本子网内循环,直到超时并抛弃。数据不能正确到达目的机,导致网络传输错误。如果将子网掩码设置得过小,那么就会将本来属于同一子网内的机器之间的通信当做是跨子网传输,数据包都交给缺省网关处理,这样势必增加缺省网关的负担,造成网络效率下降。因此,任意设置子网掩码是不对的,应该根据网络管理部门的规定进行设置。

随着IP地址资源的日趋枯竭,可供分配的IP地址越来越少,往往一个拥 有几百台计算机规模的网络只能得到区区几个IP地址,于是,许多人开始采用其他技术来扩展IP空间。

③ 计算机网络-网络层-IPv6数据报格式

IPv6:解决IP地址耗尽的根本措施就是采用具有更大地址空间的新版本的IP,即IPv6。

IPv6仍支持无连接的传送,但将协议数据单元PDU称为分组,而不是Pv4的数据报。IPv6所引进的主要变化如下:

(1)更大的地址空间,Pv6把地址从Pv4的32位增大到4倍,即增大到128位,使地址空间增大了2^96倍,这样大的地址空间在可预见的将来是不会用完的。

(2)扩展的地址层次结构。IPv6由于地址空间很大,因此可以划分为更多的层次。

(3)灵活的首部格式。IPv6数据报的首部和Pv4的并不兼容。IPv6定义了许多可选的扩展首部,不仅可提供比Pv4更多的功能,而且还可提高路由器的处理效率,这是因为路由器对扩展首部不进行处理(除逐跳扩展首部外)。

(4)改进的选顶。Pv6允许数据报包含有选项的控制信县,因而可以包含一些新的选项。但IPv6的首部长度是固定的,其选项放在有效载荷中。IPv4所规定的选项放在首部的可变部分。

(5)允许协议继续扩充。这一点很重要,因为技术总是在不断地发展(如网络硬件的更新)而新的应用也还会出现。但我们知道,IP4的功能是固定不变的。

(6)支持即插即用(即自动配置),因此IPv6不需要使用DHCP。

(7)支持资源的预分配。Pv6支持实时视像等要求保证一定的带宽和时延的应用。

(8)IPv6首部改为8字节对齐(即首部长度必须是8字节的整数倍)。原来的IPv4首部是4字节对齐。

IPv6数据报由两大部分组成,即基本首部(base header)和后而的有效载荷(payload) ,有效载荷也称为净负荷。有效我荷允许有零个或多个扩展首部(extension header),再后面是数据部分(图4-46)。

IPv6各个字段:

(1)版本(version)占4位。它指明了协议的版本,对IPv6该字段是6。

(2)通信量类(traffic class)占8位。这是为了区分不同的IPv6数据报的类别或优先级。目前正在进行不同的通信量类性能的实验。

(3)流标号(flow labe)占20位。IPv6的一个新的机制是支持资源预分配,并且允许路由器把每一个数据报与一个给定的资源分配相联系。IPv6提出流(flow)的抽象概念。所谓“流”就是互联网络上从特定源点到特定终点(单播或多播)的一系列数据报(如实时音频或视频传输),而在这个“流”所经过的路径上的路由器都保证指明的服务质量。所有属于同一个流的数据报都具有同样的流标号小因此,流标号对实时音烦/视频数据的传送特别有用。对于传统的电子郎件或非实时数据,标号则没有用处,把它置为0即可。

(4)有效载荷长度(payload length)占16位。它指明IPv6数据报除基本首部以外的字节数(所有扩展首部都算在有效载荷之内)。这个字段的最大值是64KB(65535字节).

(5)下一个首部(next header)占8位。它相当于IPv4的协议字段或可选字段。

    ① 当Pv6数据报没有扩展首部时,下一个首部字段的作用和Pv4的协议字段一样,它的值指出了基本首部后面的数据应交付P层上面的哪一个高层协议(例如:6或17分别表示应交付运输层TCP或UDP)。

    ② 当出现扩展首部时, 下一个首部字段的值就标识后面第一个扩展首部的类型 。

(6)跳数限制(hop limit)占8位。用来防止数据报在网络中无限期地存在。源点在每

个数据报发出时即设定某个跳数限制(最大为255跳)。每个路由器在转发数据报时,要先

把跳数限制字段中的值减1。当跳数限制的值为零时,就要把这个数据报丢弃。

(7)源地址占128位。是数据报的发送端的IP地址。

(8)目的地址占128位。是数据报的接收端的IP地址。

扩展首部

IP4的数据报如果在其首部中使用了选项,那么沿着数据报传送的路径上的每一个路由器都必须对这些选项一一进行检查,这就降低了路由器处理数据报的速度。然而实际上很多的选项在途中的路由器上是不需要检查的(因为不需要使用这些选项的信息)。IPv6把原来IPv4首部中选项的功能都放在扩展首部中,并把扩展首部留给路径两端的源点和终点的主机来处理,而数据报途中经过的路由器都不处理这些扩展首部(只有一个首部例外,即逐跳选项扩展首部),这样就大大提高了路由器的处理效率。

在RFC2460中定义了以下六种扩展首部:(1)逐跳选项:(2)路由选择:(3)分片:(4)鉴别:(5)封装安全有效载荷:(6)目的站选项。

每一个扩展首部都由若干个字段组成,它们的长度也各不同。但所有扩展首部的第一个字段都是8位的“下一个首部”字段,此字段的值指出了在该扩展首部后面的字段是什么。当使用多个扩展首部时,应按以上的先后顺序出现。高层首部总是放在最后面。

④ 计算机网络ip地址划分的方法

ip地址是指互联网协议地址,是ip address的缩写,ip地址是ip协议提供的一种统一的地址格式,它为互联网上的每一个网络和每一台主机分配一个逻辑地址,以此来屏蔽物理地址的差异。

ip是网络之间互连的协议,也就是为计算机网络相互连接,进行通信而设计的协议,在因特网中,它是能使连接到网上的所有计算机网络,实现相互通信的一套规则,规定了计算机在因特网上进行通信时应当遵守的规则。任何厂家生产的计算机系统,只要遵守ip协议,就可以与因特网互连互通。

ip地址被用来给因特网上的电脑一个编号,大家日常见到的情况是,每台联网的PC上都需要有ip地址才能正常通信。

ip地址是一个32位的二进制数,通常被分割为四个八位二进制数,ip地址,常用点分十进制表示成abcd的形式。其中abcd都是0-255之间的十进制整数。

ip地址是一种在internet上的给主机编址的方式,也称为网络协议地址,常见的ip地址分为ipv4与ipv6两大类。

ip地址编址方案,ip地址编制方案,将ip地址空间划分为A,B,C,D,E 5类,其中A,B,C是基本类,D,E类是作为多播和保留使用。

ip v4就是有四段数字,每一段最大不超过255,由于互联网的蓬勃发展,ip位址的需求量越来越大,使得ip位址的发放愈趋严格。

ip地址的分类。

1.a类地址:

a类地址,第一字节为网络地址,其他三个字节为主机地址,它的第一个字节的第一位,固定为零,a类地范围,1.0.0.1-126.255.255.254。

2. B类地址:第一字节和第二字节为网络地址,其它两个字节为主机地址。他的第一个字节的前两位固定为10。

B类地址的范围:128.0.0.1----191.255.255.254。

3. C类地址:第一字节,第二字节和第三个字节为网络地址,第四个字节为主机地址,另外第一个字节的前三位固定为110。

c类地址范围:192.0.0.1-223.255.255.254。

D类地址和E类地址,不分主机地址和网络地址。

⑤ Ip地址格式是什么

Ip地址格式有四种:

一、A类地址。

一个A类IP地址是指, 在IP地址的四段号码中,第一段号码为网络号码,剩下的三段号码为本地计算机的号码。如果用二进制表示IP地址的话,A类IP地址就由1字节的网络地址和3字节主机地址组成,网络地址的最高位必须是“0”。A类IP地址中网络的标识长度为8位,主机标识的长度为24位,A类网络地址数量较少,可以用于主机数达1600多万台的大型网络。A类IP地址 地址范围1.0.0.0到126.255.255.255(二进制表示为:00000001 00000000 00000000 00000001 - 01111111 11111111 11111111 11111111)。最后一个是广播地址。A类IP地址的子网掩码为255.0.0.0,每个网络支持的最大主机数为256的3次方-2=16777214台。

二、B类地址。

一个B类IP地址是指,在IP地址的四段号码中,前两段号码为网络号码。如果用二进制表示IP地址的话,B类IP地址就由2字节的网络地址和2字节主机地址组成,网络地址的最歼大李高位必须是“10”。B类IP地址中网络的标识长度为16位,主机标识的长度为16位,B类网络地址适用于中等规模的网络仿信,每个网络所能容纳的计算机数为6万多台。B类IP地址地址范围128.0.0.0-191.255.255.255(二进制表示为:10000000 00000000 00000000 00000001----10111111 11111111 11111111 11111110)。 最后一个是广播地址。B类IP地址的子网掩码为255.255.0.0,每个网络支持的最大主机数为256的2次方-2=65534台

三、C类地址。

IP地址图片一个C类IP地址是指,在IP地址的四段号码中,前三段号码为网络号码,剩下的一段号码为本地计算机的号码。如果用二进制表示IP地址的话,C类IP地址就由3字节的网络地址和1字节主机地址组成,网络地址的最高位必须是“110”。C类IP地址中网络的标识长度为24位,主机标识的长度为8位,C类网络地址数量较多,适用于小规模的局域网络,每个网络最多只能包含254台计算机。C类IP地址范围192.0.0.0-223.255.255.255(二进制表示为: 11000000 00000000 00000000 00000001 - 11011111 11111111 11111111 11111110)。C类IP地址的子网掩码为255.255.255.0,每个网络支持的最大主机数为256-2=254台

四、特殊网址。

1、“lll0”开始的地址都叫多点广播地址。因此,任何第一个字节大于223小于240的IP地址(范围224.0.0.1-239.255.255.254)是多点广播地址。

2、每一个字节都为0的地址(“0.0.0.0”)对应于当前主机。

3、IP地址中的每一个字节都为1的IP地址(“255.255.255.255”)是当前子网的广播地址。

4、IP地址中凡是以“llll0”开头的E类IP地址都保留用于将来和实验使用。

5、IP地址中不能以十进制“127”作为开头,该类地址中数字127.0.0.1到127.255.255.255用于回路测试,如:127.0.0.1可以代表本机IP地址,用“http://127.0.0.1”就可以测试本机中配置的Web服务器氏迟。

6、网络ID的第一个6位组也不能全置为“0”,全“0”表示本地网络。

⑥ 计算机网络ip地址的划分

子公司1:
部门1:144.66.8.0 255.255.248.0 144.66.7.255
部门2:144.66.16.0 255.255.248.0 144.66.7.255
部门3:144.66.24.0 255.255.248.0 144.66.7.255 依此类推,每个加8
部门15:144.66.120.0 255.255.248.0 144.66.7.255

子公司2:
部门1:144.66.136.0 255.255.248.0 144.66.135.255
部门2:144.66.144.0 255.255.248.0 144.66.135.255 依此类推,每个加8
部门12:144.66.224.0 255.255.248.0 144.66.135.255

子公司1,部门三:
办公室1:144.66.25.0 255.255.255.0 144.66.0.255
办公室2:144.66.26.0 255.255.255.0 144.66.0.255
办公室3:144.66.27.0 255.255.255.0 144.66.0.255依此类推,每个加1
办公室6:144.66.30.0 255.255.255.0 144.66.0.255

子公司1:144.66.0.0 255.255.248.0 144.66.7.255
子公司2:144.66.128.0 255.255.248.0 144.66.135.255

纯手打,要给分哟^_^

⑦ ip是什么的缩写

ip是网络之间互连的协议InternetProtocol的外语缩写,中文缩写为网协。网络之间互连的协议也就是为计算机网络相互连接进行通信而设计的协尺扰带议,在因特网中IP是能使连接到网上的所有计算机陵芦网络实现相互通信的一套规则,规定计算机在因特网上进行通信时应当遵守的规则。

任何计算机系统,只要遵守IP协议就可以与因特网互连互通。


IP包含内容

IP编址方案、分组封装格式及分组转发规则。

IP分组的转发规则

路由器仅根据网络地址进行转发,当IP数据包经由路由器转发时,如果目标网络与本地路由器直接相连,则直接将数据包交付给目标主机,这称为直接交付;否则,路由器通过路由表查找路由信息,并将数据包转交给指明的下一跳路由器,这称为间接交付。

IP分片

一个IP包从源主机传输到目标主机可能需要经过多个不同的物理网络,由于各种网络的数据帧都有一个最大传输单元)的限制,如以太网帧的MTU是1500;因此,当路由器在转发IP包时,如果数据包的大小超过了出口链路的最大传输单元时,则会将该IP分组分解成很多足够小的片段,以便能够在目标链路上进行传输。

IP分组结构

一个IP分组由首部和数据两部分组成。首部的前20字节是所有IP分组必须具有的,也称固定首部。在首部固定部分的后面是一些可选字段,其长度是可李烂变的。

⑧ 计算机网络题,ip数据报首部的首部长度字段值为12时,首部的可选部分有多少字节急求,谢谢,

首部长度,这个字段所表示数的单位是32位字长(1个32位字长是4字节)

目前广泛使用的IP协议版本号为4(即IPv4),IPv4的数据报长度为20,首部长度为12*4=48字节,则可选部分就是 48-20=28字节