A. 2011年4月自考计算机网络原理 路由表更新题目解答
分析:
路由器B的新学习到的路由项为:
网络 距离
N2 4
N3 8
N6 4
N8 3
N9 5
1、我们从这题无法判断哪些网络跟路由器B直接连接,但是如果学习到的路由表项目如果有B直接连接的,那么就直接跳过。
2、根据最短距离的原则,在原来B的路由表中,出现重复的网络有:
N2 、N6 、 N8 、N9那么比原来短的,或者差不多的有:
N6、N8
3、根据学习的原则没有的项目为:N3,N3直接加入到B的路由表项
4、路径更新:因为N6在原来的项目中距离为8,下一条为F路由器,现在C通告的为4,比原来的好,那么实际B经过C到达N6的路径为4+1=5(需要经过C为一跳)所以N6 更新为 N6 5 C
同理,N8计算过后,发现跟原来的一样3+1 =4 所以不需要更新这个项目。
最后N3 新增 距离为8+1=9 最后的路由项为 N3 9 C
是否完了?还没,我们看看原来B的路由表:其中:
网络 距离 下一跳
N2 2 C
N7 5 C
这个时候发现N2、N7原来是从C学习的,而C新发来的数据没有N7,表示这时候可能N7已经不可达了,那么需要从B中将N7删除掉,另外N2的网络通告尽管比旧表的路径低(差),但是因为发生了变化,所以只能更新(刷新)此时N2 的路径为:4+1=5
所以最后的表项为:
网络 距离 下一跳
N1 7 A
N2 5 C
N3 9 C
N6 5 C
N8 4 E
N9 4 F
B. rip路由表更新算法题
RIP是距离矢量,按照管理距离最短首侍来寻路。
N1: 从A->D->N1 = 5, 从C->N1 = 3, A->C=2, 因此 N1的nexthop=C,或者D都可以,距离都是5
如果者棚吵开启备份路由,则加入FIB,作为备份
N2: 从A->C->N2 = 2, 从A->C = 2, 因此不变
N3:直连最优
N4:不变
N5:加入FIB,A->N5, 分为A-C->N5,因此距离=5,下一和滑跳C
C. 计算机网络原理怎么由路由表计算下一跳
N1 6 E 原路由表不存在该路由条目,收到更新,需添加进去,跳数+1
N2 3 D 原路由表存在去往N2网段的路由条目,但原距离3=2+1现路由距离,距离相等,不更新
N4 4 E 原路由表存在去往N4网段的路由条目,且原距离4<16+1现路由距离,不更新路由条目
N5 3 E 原路由表不存在该路由条目,收到更新,需添加进去,跳数+1
N6 4 E 原路由表存在去往N6网段的路由条目,但原距离5>3+1现路由距离,我们选近的走,因此替换原路由条目,跳数+1
跳数+1是因为,我们路由器收到邻居路由器更新后,需要加上到邻居路由器这一跳的距离,且下一跳为邻居路由器。
D. 路由表更新怎么计算
看到上面几个回答,外行人表示很懵逼滑唤局。
相信来这里看答案的都是备考三级的,给你们说一下我总结的规律吧。
第一种情况,若更新,即更新之后的距离发生变化,则R2的距离小于R1的距离,且数值为更新之后的距离减1。
第二种情况,若不更新,即距离不变。则R2的距离加1大于等于更信让新之后的距离。
感谢各链汪位看官的赞赏。
E. 计算机三级中rip路由协议更新路由表遵循的规则
路由信息协议(RIP)更新路由表的原则是使到各目的网络的距离最短。
路由信息协议(RIP)是内部网关协议(IGP)中使用得最广泛的一种基于距离矢量路由算法的协议,其最大优点是简单。RIP协议更新路由表的原则是使到各目的网络的距离最短。路由最少意味着数据包通过的节点少,同时就反映了数据包到达目标节点的距离最短。
RIP翻译为路由信息协议,是基于距离矢量算法的路由协议,使用跳数作为计量标准。在带宽、配置和管理方面要求较低,主要适用于较小规模的网络中。路由器运行RIP后,会首先发送路由更新请求,收到请求的路由器会发送自己的RIP路由进行响应;网络稳定后,路由器会周期性发送路由更新信息。
F. rip协议更新路由表
R I P为每个目的地只记录一条路由的事实要求R I P积极地维护路由表的完整性。通过要求所有活跃的R I P路由器在固定时间间隔广播其路由表内容至相邻的R I P路由器来做到这一点,所有收到的更新自动代替已经存储在路由表中的信息。
R I P依赖3个计时器来维护路由表:
·更新计时器
·路由超时计时器
·路由刷新计时器
更新计时器用于在节点一级初始化路由表更新。每个R I P节点只使用一个更新计时器。相反的,路由超时计时器和路由刷新计时器为每一个路由维护一个。
如此看来,不同的超时和路由刷新计时器可以在每个路由表项中结合在一起。这些计时器一起能使R I P节点维护路由的完整性并且通过基于时间的触发行为使网络从故障中得到恢复。
1. 初始化表更新
R I P路由器每隔3 0秒触发一次表更新。更新计时器用于记录时间量。一旦时间到, R I P节点就会产生一系列包含自身全部路由表的报文。
这些报文广播到每一个相邻节点。因此,每一个R I P路由器大约每隔3 0秒钟应收到从每个相邻R I P节点发来的更新。
注意在更大的基于R I P的自治系统中,这些周期性的更新会产生不能接受的流量。因此,一个节点一个节点地交错进行更新更理想一些。R I P自动完成更新,每一次更新计时器携禅迅会被复位,一个小的、任意的时间值加到时钟上。
如果更新并没有如所希望的一样出现,说明互联网络中的某个地方发生了故障或错误。故障可能是简单的如把包含更新内容的报文丢掉了。故障也可能是严重的如路由器故障,或者是介于这两个极端之间的情况。显然,采取合适的措施会因不同的故障而有很大区别。由
于更新报文丢失而作废一系列路由是不明智的(记住, R I P更新报文使用不可靠的传输协议以最小化开销)。因此,当一个更新丢失时,不采取更正行为是合理的。为了帮助区别故障和错误的重要程度,R I P使用多个计时器来标识无效路由。
2. 标识无效路由
有两种方式使路由变为无效:
路由终止。
路由器从其他路由器处学习到路由不可用。
在任何一种情形下, R I P路由器需要改变路由表以反映给定路由已不可达。
一个路由如果在一个给定时间之内没有收到更辩此新就中止。比如,路由超时计时器通常设为1 8 0秒。当路由变为活跃或被更新时,这个时钟被初始化。
1 8 0秒是大致估计的时间,这个时间足以令一台路由器从它的相邻路由器处收到6个路由表更新报文(假设它们每隔3 0秒发送一次路由更新),如果1 8 0秒消逝之后, R I P路由器没收到关于那条路由的更新, R I P路由器就认为那个目的I P地址不再是可达的。因此,路由器就会把那条路由表项标记为无效。通过设置它的路由度量值为1 6来实现,并且要设置路由变化标志。这个信息可以通过周期性的路由表更新来与其相邻路由器交流。
注意 对于R I P节点而言,1 6等于无穷。因此,简单的设置耗费度量值为1 6能作废一条路由。
接到路由新的无效状态通知的相邻节点使用此信息来更新它们自己的路由表。这是路由变为无效的第二种方式。
无效项在路由表中存在很短时间,路由器决定是否应该删除它。即使表项保持在路由表中,报文也不能发送到那个表项的目的地址: R I P不能把报文转发至无效的目的地。
3. 删除无效路由
一旦路由器认识到路由已无效,它会初始化一个秒计时器:路由刷新计时器。因此,在最后一次超时计时器初始化后1 8 0秒,路由刷新计时器被初始化。这个计时器通常设为9 0秒。
如果路由更新在2 7 0秒之后仍未收到( 1 8 0秒超时加上9 0秒路由刷新时间),就从路由表中移去此路由(也就是刷新)。而为了路由刷新递减计数的计时器称为路由刷新计时器。这个计时器对于R I P从网络故障中恢复的能力绝对必要。
主动和被动站点
注意到为了使R I P互联网络正常工作,网络中的每一个网关必须参与进去这一点很重要。参与可以是主动参与也可以是被动参与,但所有的网关必须参与。主动节点是那些主动地进行共享路由信息的节点。它们从相邻者处袭含接收更新,并且转发它们的路由表项拷贝至那些相
邻节点。
被动站点从相邻者处接收更新,并且使用那些更新来维护它们的路由表。然而被动节点不主动地发布它们自己路由表项的拷贝。
被动维护路由表的能力在硬件路由器出现之前的日子里是特别有用的特性,那时路由是一个运行在U N I X处理器下的后台程序,这样会使U N I X主机上的路由开销达到最小。
G. 路由器原理和常用的路由协议及算法的介绍
近十年来,随着计算机网络规模的不断扩大,大型互联网络(如Internet)的迅猛发展,路由技术在网络技术中已逐渐成为关键部分,路由器也随之成为最重要的网络设备。用户的需求推动着路由技术的发展和路由器的普及,人们已经不满足于仅在本地网络上共享信息,而希望最大限度地利用全球各个地区、各种类型的网络资源。而在目前的情况下,任何一个有一定规模的计算机网络(如企业网、校园网、智能大厦等),无论采用的是快速以大网技术、FDDI技术,还是ATM技术,都离不开路由器,否则就无法正常运作和管理。
1、网络互连
把自己的网络同其它的网络互连起来,从网络中获取更多的信息和向网络发布自己的消息,是网络互连的最主要的动力。网络的互连有多种方式,其中使用最多的是网桥互连和路由器互连。
1.1 网桥互连的网络
网桥工作在OSI模型中的第二层,即链路层。完成数据帧(frame)的转发,主要目的是在连接的网络间提供透明的通信。网桥的转发是依据数据帧中的源地址和目的地址来判断一个帧是否应转发和转发到哪个端口。帧中的地址称为“MAC”地址或“硬件”地址,一般就是网卡所带的地址。
网桥的作用是把两个或多个网络互连起来,提供透明的通信。网络上的设备看不到网桥的存在,设备之间的通信就如同在一个网上一样方便。由于网桥是在数据帧上进行转发的,因此只能连接相同或相似的网络(相同或相似结构的数据帧),如以太网之间、以太网与令牌环(tokenring)之间的互连,对于不同类型的网络(数据帧结构不同),如以太网与X.25之间,网桥就无能为力了。
网桥扩大了网络的规模,提高了网络的性能,给网络应用带来了方便,在以前的网络中,网桥的应用较为广泛。但网桥互连也带来了不少问题:一个是广播风暴,网桥不阻挡网络中广播消息,当网络的规模较大时(几个网桥,多个以太网段),有可能引起广播风暴(broadcastingstorm),导致整个网络全被广播信息充满,直至完全瘫痪。第二个问题是,当与外部网络互连时,网桥会把内部和外部网络合二为一,成为一个网,双方都自动向对方完全开放自己的网络资源。这种互连方式在与外部网络互连时显然是难以接受的。问题的主要根源是网桥只是最大限度地把网络沟通,而不管传送的信息是什么。
1.2 路由器互连网络
路由器互连与网络的协议有关,我们讨论限于TCP/IP网络的情况。
路由器工作在OSI模型中的第三层,即网络层。路由器利用网络层定义的“逻辑”上的网络地址(即IP地址)来区别不同的网络,实现网络的互连和隔离,保持各个网络的独立性。路由器不转发广播消息,而把广播消息限制在各自的网络内部。发送到其他网络的数据茵先被送到路由器,再由路由器转发出去。
IP路由器只转发IP分组,把其余的部分挡在网内(包括广播),从而保持各个网络具有相对的独立性,这样可以组成具有许多网络(子网)互连的大型的网络。由于是在网络层的互连,路由器可方便地连接不同类型的网络,只要网络层运行的是IP协议,通过路由器就可互连起来。
网络中的设备用它们的网络地址(TCP/IP网络中为IP地址)互相通信。IP地址是与硬件地址无关的“逻辑”地址。路由器只根据IP地址来转发数据。IP地址的结构有两部分,一部分定义网络号,另一部分定义网络内的主机号。目前,在Internet网络中采用子网掩码来确定IP地址中网络地址和主机地址。子网掩码与IP地址一样也是32bit,并且两者是一一对应的,并规定,子网掩码中数字为“1”所对应的IP地址中的部分为网络号,为“0”所对应的则为主机号。网络号和主机号合起来,才构成一个完整的IP地址。同一个网络中的主机IP地址,其网络号必须是相同的,这个网络称为IP子网。
通信只能在具有相同网络号的IP地址之间进行,要与其它IP子网的主机进行通信,则必须经过同一网络上的某个路由器或网关(gateway)出去。不同网络号的IP地址不能直接通信,即使它们接在一起,也不能通信。
路由器有多个端口,用于连接多个IP子网。每个端口的IP地址的网络号要求与所连接的IP子网的网络号相同。不同的端口为不同的网络号,对应不同的IP子网,这样才能使各子网中的主机通过自己子网的IP地址把要求出去的IP分组送到路由器上。
2、路由原理
当IP子网中的一台主机发送IP分组给同一IP子网的另一台主机时,它将直接把IP分组送到网络上,对方就能收到。而要送给不同IP于网上的主机时,它要选择一个能到达目的子网上的路由器,把IP分组送给该路由器,由路由器负责把IP分组送到目的地。如果没有找到这样的路由器,主机就把IP分组送给一个称为“缺省网关(defaultgateway)”的路由器上。“缺省网关”是每台主机上的一个配置参数,它是接在同一个网络上的某个路由器端口的IP地址。
路由器转发IP分组时,只根据IP分组目的IP地址的网络号部分,选择合适的端口,把IP分组送出去。同主机一样,路由器也要判定端口所接的是否是目的子网,如果是,就直接把分组通过端口送到网络上,否则,也要选择下一个路由器来传送分组。路由器也有它的缺省网关,用来传送不知道往哪儿送的IP分组。这样,通过路由器把知道如何传送的IP分组正确转发出去,不知道的IP分组送给“缺省网关”路由器,这样一级级地传送,IP分组最终将送到目的地,送不到目的地的IP分组则被网络丢弃了。
目前TCP/IP网络,全部是通过路由器互连起来的,Internet就是成千上万个IP子网通过路由器互连起来的国际性网络。这种网络称为以路由器为基础的网络(routerbasednetwork),形成了以路由器为节点的“网间网”。在“网间网”中,路由器不仅负责对IP分组的转发,还要负责与别的路由器进行联络,共同确定“网间网”的路由选择和维护路由表。
路由动作包括两项基本内容:寻径和转发。寻径即判定到达目的地的最佳路径,由路由选择算法来实现。由于涉及到不同的路由选择协议和路由选择算法,要相对复杂一些。为了判定最佳路径,路由选择算法必须启动并维护包含路由信息的路由表,其中路由信息依赖于所用的路由选择算法而不尽相同。路由选择算法将收集到的不同信息填入路由表中,根据路由表可将目的网络与下一站(nexthop)的关系告诉路由器。路由器间互通信息进行路由更新,更新维护路由表使之正确反映网络的拓扑变化,并由路由器根据量度来决定最佳路径。这就是路由选择协议(routingprotocol),例如路由信息协议(RIP)、开放式最短路径优先协议(OSPF)和边界网关协议(BGP)等。
转发即沿寻径好的最佳路径传送信息分组。路由器首先在路由表中查找,判明是否知道如何将分组发送到下一个站点(路由器或主机),如果路由器不知道如何发送分组,通常将该分组丢弃;否则就根据路由表的相应表项将分组发送到下一个站点,如果目的网络直接与路由器相连,路由器就把分组直接送到相应的端口上。这就是路由转发协议(routedprotocol)。
路由转发协议和路由选择协议是相互配合又相互独立的概念,前者使用后者维护的路由表,同时后者要利用前者提供的功能来发布路由协议数据分组。下文中提到的路由协议,除非特别说明,都是指路由选择协议,这也是普遍的习惯。
3、路由协议
典型的路由选择方式有两种:静态路由和动态路由。
静态路由是在路由器中设置的固定的路由表。除非网络管理员干预,否则静态路由不会发生变化。由于静态路由不能对网络的改变作出反映,一般用于网络规模不大、拓扑结构固定的网络中。静态路由的优点是简单、高效、可靠。在所有的路由中,静态路由优先级最高。当动态路由与静态路由发生冲突时,以静态路由为准。
动态路由是网络中的路由器之间相互通信,传递路由信息,利用收到的路由信息更新路由器表的过程。它能实时地适应网络结构的变化。如果路由更新信息表明发生了网络变化,路由选择软件就会重新计算路由,并发出新的路由更新信息。这些信息通过各个网络,引起各路由器重新启动其路由算法,并更新各自的路由表以动态地反映网络拓扑变化。动态路由适用于网络规模大、网络拓扑复杂的网络。当然,各种动态路由协议会不同程度地占用网络带宽和CPU资源。
静态路由和动态路由有各自的特点和适用范围,因此在网络中动态路由通常作为静态路由的补充。当一个分组在路由器中进行寻径时,路由器首先查找静态路由,如果查到则根据相应的静态路由转发分组;否则再查找动态路由。
根据是否在一个自治域内部使用,动态路由协议分为内部网关协议(IGP)和外部网关协议(EGP)。这里的自治域指一个具有统一管理机构、统一路由策略的网络。自治域内部采用的路由选择协议称为内部网关协议,常用的'有RIP、OSPF;外部网关协议主要用于多个自治域之间的路由选择,常用的是BGP和BGP-4。下面分别进行简要介绍。
3.1 RIP路由协议
RIP协议最初是为Xerox网络系统的Xeroxparc通用协议而设计的,是Internet中常用的路由协议。RIP采用距离向量算法,即路由器根据距离选择路由,所以也称为距离向量协议。路由器收集所有可到达目的地的不同路径,并且保存有关到达每个目的地的最少站点数的路径信息,除到达目的地的最佳路径外,任何其它信息均予以丢弃。同时路由器也把所收集的路由信息用RIP协议通知相邻的其它路由器。这样,正确的路由信息逐渐扩散到了全网。
RIP使用非常广泛,它简单、可靠,便于配置。但是RIP只适用于小型的同构网络,因为它允许的最大站点数为15,任何超过15个站点的目的地均被标记为不可达。而且RIP每隔30s一次的路由信息广播也是造成网络的广播风暴的重要原因之一。
3.2 OSPF路由协议
80年代中期,RIP已不能适应大规模异构网络的互连,0SPF随之产生。它是网间工程任务组织(1ETF)的内部网关协议工作组为IP网络而开发的一种路由协议。
0SPF是一种基于链路状态的路由协议,需要每个路由器向其同一管理域的所有其它路由器发送链路状态广播信息。在OSPF的链路状态广播中包括所有接口信息、所有的量度和其它一些变量。利用0SPF的路由器首先必须收集有关的链路状态信息,并根据一定的算法计算出到每个节点的最短路径。而基于距离向量的路由协议仅向其邻接路由器发送有关路由更新信息。
与RIP不同,OSPF将一个自治域再划分为区,相应地即有两种类型的路由选择方式:当源和目的地在同一区时,采用区内路由选择;当源和目的地在不同区时,则采用区间路由选择。这就大大减少了网络开销,并增加了网络的稳定性。当一个区内的路由器出了故障时并不影响自治域内其它区路由器的正常工作,这也给网络的管理、维护带来方便。
3.3 BGP和BGP-4路由协议
BGP是为TCP/IP互联网设计的外部网关协议,用于多个自治域之间。它既不是基于纯粹的链路状态算法,也不是基于纯粹的距离向量算法。它的主要功能是与其它自治域的BGP交换网络可达信息。各个自治域可以运行不同的内部网关协议。BGP更新信息包括网络号/自治域路径的成对信息。自治域路径包括到达某个特定网络须经过的自治域串,这些更新信息通过TCP传送出去,以保证传输的可靠性。
为了满足Internet日益扩大的需要,BGP还在不断地发展。在最新的BGp4中,还可以将相似路由合并为一条路由。
3.4 路由表项的优先问题
在一个路由器中,可同时配置静态路由和一种或多种动态路由。它们各自维护的路由表都提供给转发程序,但这些路由表的表项间可能会发生冲突。这种冲突可通过配置各路由表的优先级来解决。通常静态路由具有默认的最高优先级,当其它路由表表项与它矛盾时,均按静态路由转发。
4、路由算法
路由算法在路由协议中起着至关重要的作用,采用何种算法往往决定了最终的寻径结果,因此选择路由算法一定要仔细。通常需要综合考虑以下几个设计目标:
——(1)最优化:指路由算法选择最佳路径的能力。
——(2)简洁性:算法设计简洁,利用最少的软件和开销,提供最有效的功能。
——(3)坚固性:路由算法处于非正常或不可预料的环境时,如硬件故障、负载过高或操作失误时,都能正确运行。由于路由器分布在网络联接点上,所以在它们出故障时会产生严重后果。最好的路由器算法通常能经受时间的考验,并在各种网络环境下被证实是可靠的。
——(4)快速收敛:收敛是在最佳路径的判断上所有路由器达到一致的过程。当某个网络事件引起路由可用或不可用时,路由器就发出更新信息。路由更新信息遍及整个网络,引发重新计算最佳路径,最终达到所有路由器一致公认的最佳路径。收敛慢的路由算法会造成路径循环或网络中断。
——(5)灵活性:路由算法可以快速、准确地适应各种网络环境。例如,某个网段发生故障,路由算法要能很快发现故障,并为使用该网段的所有路由选择另一条最佳路径。
路由算法按照种类可分为以下几种:静态和动态、单路和多路、平等和分级、源路由和透明路由、域内和域间、链路状态和距离向量。前面几种的特点与字面意思基本一致,下面着重介绍链路状态和距离向量算法。
链路状态算法(也称最短路径算法)发送路由信息到互联网上所有的结点,然而对于每个路由器,仅发送它的路由表中描述了其自身链路状态的那一部分。距离向量算法(也称为Bellman-Ford算法)则要求每个路由器发送其路由表全部或部分信息,但仅发送到邻近结点上。从本质上来说,链路状态算法将少量更新信息发送至网络各处,而距离向量算法发送大量更新信息至邻接路由器。
由于链路状态算法收敛更快,因此它在一定程度上比距离向量算法更不易产生路由循环。但另一方面,链路状态算法要求比距离向量算法有更强的CPU能力和更多的内存空间,因此链路状态算法将会在实现时显得更昂贵一些。除了这些区别,两种算法在大多数环境下都能很好地运行。
最后需要指出的是,路由算法使用了许多种不同的度量标准去决定最佳路径。复杂的路由算法可能采用多种度量来选择路由,通过一定的加权运算,将它们合并为单个的复合度量、再填入路由表中,作为寻径的标准。通常所使用的度量有:路径长度、可靠性、时延、带宽、负载、通信成本等。
5、新一代路由器
由于多媒体等应用在网络中的发展,以及ATM、快速以太网等新技术的不断采用,网络的带宽与速率飞速提高,传统的路由器已不能满足人们对路由器的性能要求。因为传统路由器的分组转发的设计与实现均基于软件,在转发过程中对分组的处理要经过许多环节,转发过程复杂,使得分组转发的速率较慢。另外,由于路由器是网络互连的关键设备,是网络与其它网络进行通信的一个“关口”,对其安全性有很高的要求,因此路由器中各种附加的安全措施增加了CPU的负担,这样就使得路由器成为整个互联网上的“瓶颈”。
传统的路由器在转发每一个分组时,都要进行一系列的复杂操作,包括路由查找、访问控制表匹配、地址解析、优先级管理以及其它的附加操作。这一系列的操作大大影响了路由器的性能与效率,降低了分组转发速率和转发的吞吐量,增加了CPU的负担。而经过路由器的前后分组间的相关性很大,具有相同目的地址和源地址的分组往往连续到达,这为分组的快速转发提供了实现的可能与依据。新一代路由器,如IPSwitch、TagSwitch等,就是采用这一设计思想用硬件来实现快速转发,大大提高了路由器的性能与效率。
新一代路由器使用转发缓存来简化分组的转发操作。在快速转发过程中,只需对一组具有相同目的地址和源地址的分组的前几个分组进行传统的路由转发处理,并把成功转发的分组的目的地址、源地址和下一网关地址(下一路由器地址)放人转发缓存中。当其后的分组要进行转发时,茵先查看转发缓存,如果该分组的目的地址和源地址与转发缓存中的匹配,则直接根据转发缓存中的下一网关地址进行转发,而无须经过传统的复杂操作,大大减轻了路由器的负担,达到了提高路由器吞吐量的目标。
H. 计算机网络-网络层-内部网关协议RIP
RIP (Routing Information Protocol))是内部网关协议IGP中最先得到广泛使用的协议,它的中文名称叫做 路由信息协议 ,但很少被使用。RIP是一种分布式的基于距离向量的路由选择协议,是互联网的标准协议,其最大优点就是简单。
RIP协议要求网络中的每一个路由器都要维护从它自己到其他每一个目的网络的距离记录(因此,这是一组距离,即“距离向量”)。RIP协议将“ 距离 ”定义如下:从一路由器到直接连接的网络的距离定义为1。从一路由器到非直接连接的网络的距离定义为所经过的路由器数加1。“加1”是因为到达目的网络后就进行直接交付,而到直接连接的网络的距离已经定义为1。例如路由器R1到网1或网2的距离都是1(直接连接),而到网3的距离是2,到网4的距离是3。
RIP协议的“距离”也称为“跳数”(hop count)吧,因为每经过一个路由器,跳数就加1。RP认为好的路由就是它通过的路由器的数目少,即“距离短”, RIP允许一条路径最多只能包含15个路由器 。因此“距离”等于16时即相当于不可达,可见RIP只适用于小型互联网。
"需要注意的是,到直接连接的网络的距离也可定义为0(采用这种定义的理由是:路由器在和直接连接在该网络上的主机通信时,不需要经过另外的路由器。既然每经过一个路由器要将距高加1,那么不再经过路由器的距离就应当为0)。但两种不同的定义对实现RIP协议并无影响,因为重要的是要找出最短距离,将所有的距离都加1或都减1,对迭择最佳路由其实是一样的。"
RIP不能在两个网格之间同时使用多条路由 ,RIP选择一条具有最少路由器的路由(即最短路由),哪怕还存在另一条高速(低时廷)但路由器较多的路由。
RIP协议和OSPF协议,都是分布式路由选择协议。 它们的共同特点就是每一个路由器都要不新地和其他一些路由器交换路由信息。我们一定要弄清以下三个要点,即和哪些路由器交换信息?交换什么信息?在什么时候交换信息?
RIP协议的特点是:
(1) 仅和相邻路由器交换信息 。如果两个路由器之间的通信不需要经过另一个路由器,那么这两个路由器就是相邻的。RIP协议规定,不相邻的路由器不交换信息。
(2) 路由器交换的信息是当前本路由器所知道的全部信息,即自己现在的路由表。 也就是说,交换的信息是:“我到本自治系统中所有网络的(最短)距离,以及到每个网络应经过的下一跳路由器”。
(3) 按因定的时间间隔交换路由信息 ,例如,母隔30秒。然后路由器根据收到的路由信息更新路由表。当网路拓扑发生变化时,路由器也及时向相邻路由器通告拓扑变化后的路由信息。
路由器在刚刚开始工作时,它的路由表是空的,然后路由器就得出到直接相连的几个网络的距离(这些距离定义为1)。接着,每一个路由器也只和数目非常有限的相邻路由器交换并更新路由信息。但经过若干次的更新后,所有的路由器最终都会知道到达本自治系统中任何一个网络的最短距离和下一跳路由器的地址。
看起来RIP协议有些奇怪,因为“我的路由表中的信息要依赖于你的,而你的信息又依赖于我的。”然而事实证明,通过这样的方式一“我告诉别人一些信息,而别人又告诉我一些信息。我再把我知道的更新后的信息告诉别人,别人也这样把更新后的信息再告诉我”,最后在自治系统中所有的结点都得到了正确的路由选择信息。在一般情况下,RIP协议可以收敛,并且过程也较快。 “收敛”就是在自治系统中所有的结点都得到正确的路由选信的过程。
路由表中最主要的信息就是: 到某个网铬的距离(即最短距离),以及应经过的下一跳地址 。路由表更新的原则是找出到每个目的网络的最短距离。这种 更新算法又称为距离向量算法 。
对每一个相邻路由器发送过来的RIP报文,进行以下步骤:
现在较新的RIP版本是1998年1I月公布的RIP2RFC2453](已成为互联网标准),新版本协议本身并无多大变化,但性能上有些改进。RIP2可以支持变长子网掩码和无分类域间路由选择CIDR。此外,RIP2还提供简单的鉴别过程支特多播。图4-32是RP2的报文格式,它和RIP1的首部相同,但后面的路由部分不一样。
RIP报文由首部和路由部分组成。
RIP的首部占4个字节,其中的命令字段指出报文的意义。例如,1 表示请求路由信息,2表示对请求路由信息的响应或未被请求而发出的路由更新报文,首部后而的“必为0”是为了4字节字的对齐。
RIP2报文中的路由部分由若干个路由信息组成,每个路由信息需要用20个字节。 地址族标识符(又称为地址类别)字段用来标志所使用的地址协议。 如采用IP地址就令这个字段的值为2(原来考虑RIP也可用于其他非TCPP协议的情况), 路由标记填入自治系统号ASN (Autonomous System Number))( 自治系统号ASN原来规定为一个16位的号码(最大的号码是655),由1ANA分配.现在已经把ASN扩展到32位),这是考虑使RIP有可能收到本自治系统以外的路由选择信息。再后面指出某个网络地址、该网络的子网掩码、下一跳路由器地址以及到此网络的距离,一个RIP报文最多可包括25个路由,因而RIP报文的最大长度是4+20×25=504字节。如超过,必须再用一个RIP报文来传送。
RIP2还具有简单的鉴别功能。若使用鉴别功能,则将原来写入第一个路由信息(20字节)的位置用作鉴别。这时应将地址族标识符置为全1(即0 xFFFF),而路由标记写入鉴别类型,剩下的16字节为鉴别数据。在鉴别数据之后才写入路由信息,但这时最多只能再放入24个路由信息。
优点: RIP协议最大的优点就是实现简单,开销较小;如果发现更短的路由,这种更新信息传播的很快。
缺点: 限制了网络的规模,它能使用的最大距离为15(16表示不可达);路由器之间交换的路由信息是路由器中的完整路由表,因而随着网络规模的扩大,开销也就增加; 当出现网络故障时,要经过比较长的时间才能将此信息传送到所有的路由器。
设三个网络通过两个路由器互连起来,并且都已建立了各自的路由表。图中路由器交换的信息只给出了我们感兴趣的一行内容。路由器R1中的“ 1,1,直接 ”表示“到网1的距离是1,直接交付”。路由器R2中的“ 1,2,R1 ”表示“到网1的距离是2,下一跳经过R1”。
现在假定路由器R1到网1的链路出了故障,R1无法到达网1。于是路由器R1把到网1的距离改为16(表示到网1不可达),因而在R1的路由表中的相应项目变为“ 1,16,直接 ”。但是,很可能要经过30秒钟后R1才把更新信息发送给R2。然而R2可能已经先把自己的路由表发送给了R1,其中有“1,2,R1”这一项。