A. 路由器原理和常用的路由协议及算法的介绍
近十年来,随着计算机网络规模的不断扩大,大型互联网络(如Internet)的迅猛发展,路由技术在网络技术中已逐渐成为关键部分,路由器也随之成为最重要的网络设备。用户的需求推动着路由技术的发展和路由器的普及,人们已经不满足于仅在本地网络上共享信息,而希望最大限度地利用全球各个地区、各种类型的网络资源。而在目前的情况下,任何一个有一定规模的计算机网络(如企业网、校园网、智能大厦等),无论采用的是快速以大网技术、FDDI技术,还是ATM技术,都离不开路由器,否则就无法正常运作和管理。
1、网络互连
把自己的网络同其它的网络互连起来,从网络中获取更多的信息和向网络发布自己的消息,是网络互连的最主要的动力。网络的互连有多种方式,其中使用最多的是网桥互连和路由器互连。
1.1 网桥互连的网络
网桥工作在OSI模型中的第二层,即链路层。完成数据帧(frame)的转发,主要目的是在连接的网络间提供透明的通信。网桥的转发是依据数据帧中的源地址和目的地址来判断一个帧是否应转发和转发到哪个端口。帧中的地址称为“MAC”地址或“硬件”地址,一般就是网卡所带的地址。
网桥的作用是把两个或多个网络互连起来,提供透明的通信。网络上的设备看不到网桥的存在,设备之间的通信就如同在一个网上一样方便。由于网桥是在数据帧上进行转发的,因此只能连接相同或相似的网络(相同或相似结构的数据帧),如以太网之间、以太网与令牌环(tokenring)之间的互连,对于不同类型的网络(数据帧结构不同),如以太网与X.25之间,网桥就无能为力了。
网桥扩大了网络的规模,提高了网络的性能,给网络应用带来了方便,在以前的网络中,网桥的应用较为广泛。但网桥互连也带来了不少问题:一个是广播风暴,网桥不阻挡网络中广播消息,当网络的规模较大时(几个网桥,多个以太网段),有可能引起广播风暴(broadcastingstorm),导致整个网络全被广播信息充满,直至完全瘫痪。第二个问题是,当与外部网络互连时,网桥会把内部和外部网络合二为一,成为一个网,双方都自动向对方完全开放自己的网络资源。这种互连方式在与外部网络互连时显然是难以接受的。问题的主要根源是网桥只是最大限度地把网络沟通,而不管传送的信息是什么。
1.2 路由器互连网络
路由器互连与网络的协议有关,我们讨论限于TCP/IP网络的情况。
路由器工作在OSI模型中的第三层,即网络层。路由器利用网络层定义的“逻辑”上的网络地址(即IP地址)来区别不同的网络,实现网络的互连和隔离,保持各个网络的独立性。路由器不转发广播消息,而把广播消息限制在各自的网络内部。发送到其他网络的数据茵先被送到路由器,再由路由器转发出去。
IP路由器只转发IP分组,把其余的部分挡在网内(包括广播),从而保持各个网络具有相对的独立性,这样可以组成具有许多网络(子网)互连的大型的网络。由于是在网络层的互连,路由器可方便地连接不同类型的网络,只要网络层运行的是IP协议,通过路由器就可互连起来。
网络中的设备用它们的网络地址(TCP/IP网络中为IP地址)互相通信。IP地址是与硬件地址无关的“逻辑”地址。路由器只根据IP地址来转发数据。IP地址的结构有两部分,一部分定义网络号,另一部分定义网络内的主机号。目前,在Internet网络中采用子网掩码来确定IP地址中网络地址和主机地址。子网掩码与IP地址一样也是32bit,并且两者是一一对应的,并规定,子网掩码中数字为“1”所对应的IP地址中的部分为网络号,为“0”所对应的则为主机号。网络号和主机号合起来,才构成一个完整的IP地址。同一个网络中的主机IP地址,其网络号必须是相同的,这个网络称为IP子网。
通信只能在具有相同网络号的IP地址之间进行,要与其它IP子网的主机进行通信,则必须经过同一网络上的某个路由器或网关(gateway)出去。不同网络号的IP地址不能直接通信,即使它们接在一起,也不能通信。
路由器有多个端口,用于连接多个IP子网。每个端口的IP地址的网络号要求与所连接的IP子网的网络号相同。不同的端口为不同的网络号,对应不同的IP子网,这样才能使各子网中的主机通过自己子网的IP地址把要求出去的IP分组送到路由器上。
2、路由原理
当IP子网中的一台主机发送IP分组给同一IP子网的另一台主机时,它将直接把IP分组送到网络上,对方就能收到。而要送给不同IP于网上的主机时,它要选择一个能到达目的子网上的路由器,把IP分组送给该路由器,由路由器负责把IP分组送到目的地。如果没有找到这样的路由器,主机就把IP分组送给一个称为“缺省网关(defaultgateway)”的路由器上。“缺省网关”是每台主机上的一个配置参数,它是接在同一个网络上的某个路由器端口的IP地址。
路由器转发IP分组时,只根据IP分组目的IP地址的网络号部分,选择合适的端口,把IP分组送出去。同主机一样,路由器也要判定端口所接的是否是目的子网,如果是,就直接把分组通过端口送到网络上,否则,也要选择下一个路由器来传送分组。路由器也有它的缺省网关,用来传送不知道往哪儿送的IP分组。这样,通过路由器把知道如何传送的IP分组正确转发出去,不知道的IP分组送给“缺省网关”路由器,这样一级级地传送,IP分组最终将送到目的地,送不到目的地的IP分组则被网络丢弃了。
目前TCP/IP网络,全部是通过路由器互连起来的,Internet就是成千上万个IP子网通过路由器互连起来的国际性网络。这种网络称为以路由器为基础的网络(routerbasednetwork),形成了以路由器为节点的“网间网”。在“网间网”中,路由器不仅负责对IP分组的转发,还要负责与别的路由器进行联络,共同确定“网间网”的路由选择和维护路由表。
路由动作包括两项基本内容:寻径和转发。寻径即判定到达目的地的最佳路径,由路由选择算法来实现。由于涉及到不同的路由选择协议和路由选择算法,要相对复杂一些。为了判定最佳路径,路由选择算法必须启动并维护包含路由信息的路由表,其中路由信息依赖于所用的路由选择算法而不尽相同。路由选择算法将收集到的不同信息填入路由表中,根据路由表可将目的网络与下一站(nexthop)的关系告诉路由器。路由器间互通信息进行路由更新,更新维护路由表使之正确反映网络的拓扑变化,并由路由器根据量度来决定最佳路径。这就是路由选择协议(routingprotocol),例如路由信息协议(RIP)、开放式最短路径优先协议(OSPF)和边界网关协议(BGP)等。
转发即沿寻径好的最佳路径传送信息分组。路由器首先在路由表中查找,判明是否知道如何将分组发送到下一个站点(路由器或主机),如果路由器不知道如何发送分组,通常将该分组丢弃;否则就根据路由表的相应表项将分组发送到下一个站点,如果目的网络直接与路由器相连,路由器就把分组直接送到相应的端口上。这就是路由转发协议(routedprotocol)。
路由转发协议和路由选择协议是相互配合又相互独立的概念,前者使用后者维护的路由表,同时后者要利用前者提供的功能来发布路由协议数据分组。下文中提到的路由协议,除非特别说明,都是指路由选择协议,这也是普遍的习惯。
3、路由协议
典型的路由选择方式有两种:静态路由和动态路由。
静态路由是在路由器中设置的固定的路由表。除非网络管理员干预,否则静态路由不会发生变化。由于静态路由不能对网络的改变作出反映,一般用于网络规模不大、拓扑结构固定的网络中。静态路由的优点是简单、高效、可靠。在所有的路由中,静态路由优先级最高。当动态路由与静态路由发生冲突时,以静态路由为准。
动态路由是网络中的路由器之间相互通信,传递路由信息,利用收到的路由信息更新路由器表的过程。它能实时地适应网络结构的变化。如果路由更新信息表明发生了网络变化,路由选择软件就会重新计算路由,并发出新的路由更新信息。这些信息通过各个网络,引起各路由器重新启动其路由算法,并更新各自的路由表以动态地反映网络拓扑变化。动态路由适用于网络规模大、网络拓扑复杂的网络。当然,各种动态路由协议会不同程度地占用网络带宽和CPU资源。
静态路由和动态路由有各自的特点和适用范围,因此在网络中动态路由通常作为静态路由的补充。当一个分组在路由器中进行寻径时,路由器首先查找静态路由,如果查到则根据相应的静态路由转发分组;否则再查找动态路由。
根据是否在一个自治域内部使用,动态路由协议分为内部网关协议(IGP)和外部网关协议(EGP)。这里的自治域指一个具有统一管理机构、统一路由策略的网络。自治域内部采用的路由选择协议称为内部网关协议,常用的'有RIP、OSPF;外部网关协议主要用于多个自治域之间的路由选择,常用的是BGP和BGP-4。下面分别进行简要介绍。
3.1 RIP路由协议
RIP协议最初是为Xerox网络系统的Xeroxparc通用协议而设计的,是Internet中常用的路由协议。RIP采用距离向量算法,即路由器根据距离选择路由,所以也称为距离向量协议。路由器收集所有可到达目的地的不同路径,并且保存有关到达每个目的地的最少站点数的路径信息,除到达目的地的最佳路径外,任何其它信息均予以丢弃。同时路由器也把所收集的路由信息用RIP协议通知相邻的其它路由器。这样,正确的路由信息逐渐扩散到了全网。
RIP使用非常广泛,它简单、可靠,便于配置。但是RIP只适用于小型的同构网络,因为它允许的最大站点数为15,任何超过15个站点的目的地均被标记为不可达。而且RIP每隔30s一次的路由信息广播也是造成网络的广播风暴的重要原因之一。
3.2 OSPF路由协议
80年代中期,RIP已不能适应大规模异构网络的互连,0SPF随之产生。它是网间工程任务组织(1ETF)的内部网关协议工作组为IP网络而开发的一种路由协议。
0SPF是一种基于链路状态的路由协议,需要每个路由器向其同一管理域的所有其它路由器发送链路状态广播信息。在OSPF的链路状态广播中包括所有接口信息、所有的量度和其它一些变量。利用0SPF的路由器首先必须收集有关的链路状态信息,并根据一定的算法计算出到每个节点的最短路径。而基于距离向量的路由协议仅向其邻接路由器发送有关路由更新信息。
与RIP不同,OSPF将一个自治域再划分为区,相应地即有两种类型的路由选择方式:当源和目的地在同一区时,采用区内路由选择;当源和目的地在不同区时,则采用区间路由选择。这就大大减少了网络开销,并增加了网络的稳定性。当一个区内的路由器出了故障时并不影响自治域内其它区路由器的正常工作,这也给网络的管理、维护带来方便。
3.3 BGP和BGP-4路由协议
BGP是为TCP/IP互联网设计的外部网关协议,用于多个自治域之间。它既不是基于纯粹的链路状态算法,也不是基于纯粹的距离向量算法。它的主要功能是与其它自治域的BGP交换网络可达信息。各个自治域可以运行不同的内部网关协议。BGP更新信息包括网络号/自治域路径的成对信息。自治域路径包括到达某个特定网络须经过的自治域串,这些更新信息通过TCP传送出去,以保证传输的可靠性。
为了满足Internet日益扩大的需要,BGP还在不断地发展。在最新的BGp4中,还可以将相似路由合并为一条路由。
3.4 路由表项的优先问题
在一个路由器中,可同时配置静态路由和一种或多种动态路由。它们各自维护的路由表都提供给转发程序,但这些路由表的表项间可能会发生冲突。这种冲突可通过配置各路由表的优先级来解决。通常静态路由具有默认的最高优先级,当其它路由表表项与它矛盾时,均按静态路由转发。
4、路由算法
路由算法在路由协议中起着至关重要的作用,采用何种算法往往决定了最终的寻径结果,因此选择路由算法一定要仔细。通常需要综合考虑以下几个设计目标:
——(1)最优化:指路由算法选择最佳路径的能力。
——(2)简洁性:算法设计简洁,利用最少的软件和开销,提供最有效的功能。
——(3)坚固性:路由算法处于非正常或不可预料的环境时,如硬件故障、负载过高或操作失误时,都能正确运行。由于路由器分布在网络联接点上,所以在它们出故障时会产生严重后果。最好的路由器算法通常能经受时间的考验,并在各种网络环境下被证实是可靠的。
——(4)快速收敛:收敛是在最佳路径的判断上所有路由器达到一致的过程。当某个网络事件引起路由可用或不可用时,路由器就发出更新信息。路由更新信息遍及整个网络,引发重新计算最佳路径,最终达到所有路由器一致公认的最佳路径。收敛慢的路由算法会造成路径循环或网络中断。
——(5)灵活性:路由算法可以快速、准确地适应各种网络环境。例如,某个网段发生故障,路由算法要能很快发现故障,并为使用该网段的所有路由选择另一条最佳路径。
路由算法按照种类可分为以下几种:静态和动态、单路和多路、平等和分级、源路由和透明路由、域内和域间、链路状态和距离向量。前面几种的特点与字面意思基本一致,下面着重介绍链路状态和距离向量算法。
链路状态算法(也称最短路径算法)发送路由信息到互联网上所有的结点,然而对于每个路由器,仅发送它的路由表中描述了其自身链路状态的那一部分。距离向量算法(也称为Bellman-Ford算法)则要求每个路由器发送其路由表全部或部分信息,但仅发送到邻近结点上。从本质上来说,链路状态算法将少量更新信息发送至网络各处,而距离向量算法发送大量更新信息至邻接路由器。
由于链路状态算法收敛更快,因此它在一定程度上比距离向量算法更不易产生路由循环。但另一方面,链路状态算法要求比距离向量算法有更强的CPU能力和更多的内存空间,因此链路状态算法将会在实现时显得更昂贵一些。除了这些区别,两种算法在大多数环境下都能很好地运行。
最后需要指出的是,路由算法使用了许多种不同的度量标准去决定最佳路径。复杂的路由算法可能采用多种度量来选择路由,通过一定的加权运算,将它们合并为单个的复合度量、再填入路由表中,作为寻径的标准。通常所使用的度量有:路径长度、可靠性、时延、带宽、负载、通信成本等。
5、新一代路由器
由于多媒体等应用在网络中的发展,以及ATM、快速以太网等新技术的不断采用,网络的带宽与速率飞速提高,传统的路由器已不能满足人们对路由器的性能要求。因为传统路由器的分组转发的设计与实现均基于软件,在转发过程中对分组的处理要经过许多环节,转发过程复杂,使得分组转发的速率较慢。另外,由于路由器是网络互连的关键设备,是网络与其它网络进行通信的一个“关口”,对其安全性有很高的要求,因此路由器中各种附加的安全措施增加了CPU的负担,这样就使得路由器成为整个互联网上的“瓶颈”。
传统的路由器在转发每一个分组时,都要进行一系列的复杂操作,包括路由查找、访问控制表匹配、地址解析、优先级管理以及其它的附加操作。这一系列的操作大大影响了路由器的性能与效率,降低了分组转发速率和转发的吞吐量,增加了CPU的负担。而经过路由器的前后分组间的相关性很大,具有相同目的地址和源地址的分组往往连续到达,这为分组的快速转发提供了实现的可能与依据。新一代路由器,如IPSwitch、TagSwitch等,就是采用这一设计思想用硬件来实现快速转发,大大提高了路由器的性能与效率。
新一代路由器使用转发缓存来简化分组的转发操作。在快速转发过程中,只需对一组具有相同目的地址和源地址的分组的前几个分组进行传统的路由转发处理,并把成功转发的分组的目的地址、源地址和下一网关地址(下一路由器地址)放人转发缓存中。当其后的分组要进行转发时,茵先查看转发缓存,如果该分组的目的地址和源地址与转发缓存中的匹配,则直接根据转发缓存中的下一网关地址进行转发,而无须经过传统的复杂操作,大大减轻了路由器的负担,达到了提高路由器吞吐量的目标。
B. 网络协议-- 底层网络知识详解(从二层到三层)
网线
Hub 采取的是广播的模式,如果每一台电脑发出的包,宿舍的每个电脑都能收到,那就麻烦了。这就需要解决几个问题:
这几个问题,都是第二层, 数据链路层 ,也即 MAC 层要解决的问题。 MAC 的全称是 Medium Access Control ,即媒体访问控制。控制什么呢?其实就是控制在往媒体上发数据的时候,谁先发、谁后发的问题。防止发生混乱。这解决的是第二个问题。这个问题中的规则,学名叫 多路访问 。
三种方式:
方式一:分多个车道。每个车一个车道,你走你的,我走我的。这在计算机网络里叫作 信道划分 ;
方式二:今天单号出行,明天双号出行,轮着来。这在计算机网络里叫作 轮流协议 ;
方式三:不管三七二十一,有事儿先出门,发现特堵,就回去。错过高峰再出。我们叫作 随机接入协议 。着名的以太网,用的就是这个方式。
接下来要解决第一个问题:发给谁,谁接收?这里用到一个物理地址,叫作 链路层地址 。但是因为第二层主要解决媒体接入控制的问题,所以它常被称为 MAC 地址 。
解决第一个问题就牵扯到第二层的网络包格式。
对于以太网,第二层的最后面是 CRC,也就是循环冗余检测。通过 XOR 异或的算法,来计算整个包是否在发送的过程中出现了错误,主要解决第三个问题。
这里还有一个没有解决的问题,当源机器知道目标机器的时候,可以将目标地址放入包里面,如果不知道呢?一个广播的网络里面接入了 N 台机器,我怎么知道每个 MAC 地址是谁呢?这就是 ARP 协议 ,也就是已知 IP 地址,求 MAC 地址的协议。
ARP 是通过吼的方式(广播)来寻找目标 MAC 地址的,吼完之后记住一段时间,这个叫作缓存。
谁能知道目标 MAC 地址是否就是连接某个口的电脑的 MAC 地址呢?这就需要一个能把 MAC 头拿下来,检查一下目标 MAC 地址,然后根据策略转发的设备,这个设备显然是个二层设备,我们称为 交换机 。
交换机是有 MAC 地址学习能力的,学完了它就知道谁在哪儿了,不用广播了。(刚开始不知道的时候,是需要广播的)
当交换机的数目越来越多的时候,会遭遇环路问题,让网络包迷路,这就需要使用 STP 协议,通过华山论剑比武的方式,将有环路的图变成没有环路的树,从而解决环路问题。
在数据结构中,有一个方法叫做 最小生成树 。有环的我们常称为图。将图中的环破了,就生成了树。在计算机网络中,生成树的算法叫作 STP ,全称 Spanning Tree Protocol 。
STP 协议比较复杂,一开始很难看懂,但是其实这是一场血雨腥风的武林比武或者华山论剑,最终决出五岳盟主的方式。
交换机数目多会面临隔离问题,可以通过 VLAN 形成 虚拟局域网 ,从而解决广播问题和安全问题。
对于支持 VLAN 的交换机,有一种口叫作 Trunk 口。它可以转发属于任何 VLAN 的口。交换机之间可以通过这种口相互连接。
ping 是基于 ICMP 协议工作的。
ICMP 全称 Internet Control Message Protocol ,就是 互联网控制报文协议 。
ICMP 报文是封装在 IP 包里面的。因为传输指令的时候,肯定需要源地址和目标地址。它本身非常简单。因为作为侦查兵,要轻装上阵,不能携带大量的包袱。
ICMP总结:
ICMP 相当于网络世界的侦察兵。我讲了两种类型的 ICMP 报文,一种是主动探查的查询报文,一种异常报告的差错报文;
ping 使用查询报文,Traceroute 使用差错报文。
在进行网卡配置的时候,除了 IP 地址,还需要配置一个Gateway 的东西,这个就是 网关 。
一旦配置了 IP 地址和网关,往往就能够指定目标地址进行访问了。由于在跨网关访问的时候,牵扯到 MAC 地址和 IP 地址的变化,这里有必要详细描述一下 MAC 头和 IP 头的细节。
路由器是一台设备,它有五个网口或者网卡,相当于有五只手,分别连着五个局域网。每只手的 IP 地址都和局域网的 IP 地址相同的网段,每只手都是它握住的那个局域网的网关。
对于 IP 头和 MAC 头哪些变、哪些不变的问题,可以分两种类型。我把它们称为“欧洲十国游”型和“玄奘西行”型。
之前我说过, MAC 地址是一个局域网内才有效的地址。因而,MAC 地址只要过网关,就必定会改变,因为已经换了局域网 。
两者主要的区别在于 IP 地址是否改变。不改变 IP 地址的网关,我们称为 转发网关 ;改变 IP 地址的网关,我们称为 NAT 网关 。
网关总结:
路由分静态路由和动态路由,静态路由可以配置复杂的策略路由,控制转发策略;
动态路由主流算法有两种, 距离矢量算法 和 链路状态算法 。
距离矢量路由(distance vector routing)。它是基于 Bellman-Ford 算法的。
这种算法的基本思路是,每个路由器都保存一个路由表,包含多行,每行对应网络中的一个路由器,每一行包含两部分信息,一个是要到目标路由器,从那条线出去,另一个是到目标路由器的距离。
由此可以看出,每个路由器都是知道全局信息的。那这个信息如何更新呢?每个路由器都知道自己和邻居之间的距离,每过几秒,每个路由器都将自己所知的到达所有的路由器的距离告知邻居,每个路由器也能从邻居那里得到相似的信息。
每个路由器根据新收集的信息,计算和其他路由器的距离,比如自己的一个邻居距离目标路由器的距离是 M,而自己距离邻居是 x,则自己距离目标路由器是 x+M。
这种算法存在的问题:
第一个问题:好消息传得快,坏消息传得慢。
第二个问题:每次发送的时候,要发送整个全局路由表。
所以上面的两个问题,限制了距离矢量路由的网络规模。
链路状态路由(link state routing),基于 Dijkstra 算法。
这种算法的基本思路是:当一个路由器启动的时候,首先是发现邻居,向邻居 say hello,邻居都回复。然后计算和邻居的距离,发送一个 echo,要求马上返回,除以二就是距离。然后将自己和邻居之间的链路状态包广播出去,发送到整个网络的每个路由器。这样每个路由器都能够收到它和邻居之间的关系的信息。因而,每个路由器都能在自己本地构建一个完整的图,然后针对这个图使用 Dijkstra 算法,找到两点之间的最短路径。
不像距离距离矢量路由协议那样,更新时发送整个路由表。链路状态路由协议只广播更新的或改变的网络拓扑,这使得更新信息更小,节省了带宽和 CPU 利用率。而且一旦一个路由器挂了,它的邻居都会广播这个消息,可以使得坏消息迅速收敛。
基于两种算法产生两种协议,BGP 协议和 OSPF 协议。
OSPF(Open Shortest Path First,开放式最短路径优先) 就是这样一个基于链路状态路由协议,广泛应用在数据中心中的协议。由于主要用在数据中心内部,用于路由决策,因而称为 内部网关协议(Interior Gateway Protocol,简称 IGP) 。
内部网关协议的重点就是找到最短的路径。在一个组织内部,路径最短往往最优。当然有时候 OSPF 可以发现多个最短的路径,可以在这多个路径中进行负载均衡,这常常被称为 等价路由 。
但是外网的路由协议,也即国家之间的,又有所不同。我们称为 外网路由协议(Border Gateway Protocol,简称 BGP) 。
在网络世界,这一个个国家成为自治系统 AS(Autonomous System)。自治系统分几种类型。
每个自治系统都有边界路由器,通过它和外面的世界建立联系。
BGP 又分为两类, eBGP 和 iBGP 。自治系统间,边界路由器之间使用 eBGP 广播路由。内部网络也需要访问其他的自治系统。边界路由器如何将 BGP 学习到的路由导入到内部网络呢?就是通过运行 iBGP,使得内部的路由器能够找到到达外网目的地的最好的边界路由器。
BGP 协议使用的算法是 路径矢量路由协议 (path-vector protocol)。它是距离矢量路由协议的升级版。
前面说了距离矢量路由协议的缺点。其中一个是收敛慢。在 BGP 里面,除了下一跳 hop 之外,还包括了自治系统 AS 的路径,从而可以避免坏消息传得慢的问题,也即上面所描述的,B 知道 C 原来能够到达 A,是因为通过自己,一旦自己都到达不了 A 了,就不用假设 C 还能到达 A 了。
另外,在路径中将一个自治系统看成一个整体,不区分自治系统内部的路由器,这样自治系统的数目是非常有限的。就像大家都能记住出去玩,从中国出发先到韩国然后到日本,只要不计算细到具体哪一站,就算是发送全局信息,也是没有问题的。
参考:
极客时间-趣谈网络协议
极客时间-趣谈网络协议
极客时间-趣谈网络协议
极客时间-趣谈网络协议-网关
C. 图解TCP/IP
计算机使用模式的演变:
20世纪50年代 批处理时代
20世纪60年代 分时系统时代
20世纪70年代 计算机间通信时代
20世纪80年代 计算机网络时代
20世纪90年代 互联网普及时代
2000年 以互联网为中心的时代
2010年 无论何时何地地一切皆TCP/IP的网络时代
在计算机网络与信息通信领域,人们经常提及 “协议” 。简单来说。 协议 就是计算机与计算机之间通过网络实现通信时事先达成的一种“约定”。这种“约定”使那些由不同厂商的设备、不同的CPU以及不同的操作系统组成的计算机之间,只要遵循相同的协议就能实现通信。换句话说, 协议 就是计算机之氏猜此间的通信语言,只有支持相同的协议,计算机之间才能相互通信。
计算机通信也会在每一个分组中附加上源主机地址和目标主机地址送给通信线路。这些发送端地址、接收端地址以及分组序号写入的部分称为 “报文首部” 。
TCP/IP协议并非ISO(国际标准化组织)所制定的某种国际标准,而是由IETF(Internet Engineering Task Force国际互联网工程任务组)所建议的、致力于推进器标准化作业的一种协议。
OSI参考模型
应用层 :针对特定应用的协议。以电子邮件为例,用户A在主机A上新建一封电子邮件,指定收件人为B,并输入邮件内容为“早上好”。应用层协议会在所要传递数据的前端附加一个首部(标签)信息,该首部标明了邮件内容为“早上好”和收件人为B。
表示层 :设备固有数据格式和网络标准数据格式的转换。用户A和用户B使用的邮件客户端一致,便能够顺利收取和阅读邮件,不一致时表示层就发挥作用了:将数据从“某个计算机特定的数据格式”转换为“网络通用的标准数据格式”后再发送出去,接收端也进行相应处理。表示层与表示层之间为了识别编码格式也会附加首部信息,从而将实际传输的数据转交给下一层处理。
会话层 :通信管理。负责建立和断开通信连接(数据流动的逻辑通路)。管理传输层以下的分层。假定用户A新建了5封电子邮件准备发送给用户B,是建立一次连歼迅接一起发送,还是分别建立5次连接各自发送,都是会话层决定的,会话层和表示层一样,也会在数据前段附加首部或标签信息再转发给下一层。而这些首部或标签中兆和记录着数据传送顺序的信息。
传输层 :管理两个节点之间的数据传输。负责可靠传输(确保数据被可靠传送到目标地址)。用主机A将“早上好”这一数据发送给主机B,期间可能因为某些原因导致数据损坏,主机B只收到“早上”,此时也会将这一事实告诉主机A,主机A得知情况会将后面的“好”重发给主机B。保证数据传输的可靠性是传输层的一个重要作用。为了确保可靠性,这一层所要传输的数据附加首部以识别这一分层的数据。然而,实际上将数据传输给对端的处理是由网络层来完成的。
网络层 :地址管理与路由选择。两端主机之间虽然有众多数据链路,但能够将数据从主机A送到主机B也都是网络层的功劳。相当于TCP/IP协议中的IP协议,网络层不能保证数据的可达性,所以需要传输层TCP协议确保可达性,所以TCP/IP协议实现了可靠传输。
数据链路层 :互连设备之间传送和识别数据帧。网络层负责将整个数据发送给最终目标地址,而数据链路层则只负责发送一个分段内的数据。
物理层 :以“0”、“1”代表电压的高低、灯光的闪灭。界定连接器和网线的规格。将数据的0、1转换为电压和脉冲光传输给物理的传输介质。
计算机之间的网络连接通过 电缆 相互连接。任何一台计算机连接网络时,必须要使用 网卡 (网络适配器、NIC、LAN卡), 中继器 的作用是将电缆传过来的信号调整和放大再传给另一个电缆,可以完成不同媒介之间的连接工作。 网桥 是数据链路层面上连接两个网络的设备,提供的是传递数据帧的作用,并且还具备自学机制。 路由器 是在网络层面上(OSI七层模型网络层)连接两个网络、并对分组报文进行转发的设备。 网桥 是根据物理地址(MAC地址)进行处理,而路由器/3层交换机则是根据IP地址进行处理的。由此,TCP/IP中网络层的地址就成为了IP地址。对于并发访问量非常大的一个企业级Web站点,使用一台服务器不足以满足前端的访问需求,这时通常会架设多台服务器来分担。这些服务器的访问的入口地址通常只有一个,为了能通过同一个URL将前端访问分发到后台多个服务器上,可以将这些服务器的前端加一个负载均衡器。这种负载均衡器就是4-7层交换机的一种。 网关 是OSI参考模型中负责将从传输层到应用层的数据进行转换和转发的设备。在两个不能进行直接通信的协议之间进行翻译,最终实现两者的通信。非常典型的例子就是互联网邮件和手机邮件之间的转换服务。防火墙也是一款通过网关通信,针对不用应用提高安全性的产品。
美国军方利用分组交换技术组件的ARPANET网络是互联网的鼻祖。而BSD UNIX操作系统实现了TCP/IP协议,随着UNIX系统的普及,TCP/IP协议开始盛行。TCP/IP可以单纯的指这两种协议,然而在很多情况下,它指的是包含HTTP、SMTP、FTP、TCP、UDP、IP、ARP等很多协议的 网际协议族 。
发送数据包的过程,和上节OSI参考模型中介绍的差不多。数据链路层是由网络接口(以太网驱动)来处理的,它会改数据附加上 以太网首部 , 以太网首部 中包含接收端的MAC地址、发送端MAC地址以及标志以太网类型的以太网数据的协议。
在以太网普及之初,一般多台终端使用同一根同轴电缆的 共享介质型 连接方式,访问控制一般以半双工通信为前提采用CSMA/CD方式。随着ATM交换技术的进步和CAT5 UTP电缆的普及很快发生了变化,逐渐采用像 非共享介质网络 那样直接与交换机连接的方式。
网络层与数据链路层的关系
某人要去一个很远的地方旅行,并计划先后乘坐飞机、火车、公交车到达目的地。旅行社不仅帮他预订好了飞机票和火车票,甚至还为他指定了一个详细的行程表,详细到几点几分需要乘坐飞机或火车都一目了然。机票和火车票只能够在某一限定区间内移动,此处的“区间内”就如同通信网络上的数据链路。这个区间内的出发地点和目的地点就如同某一个数据链路的源地址和目标地址等首部信息。整个行程表的作用就相当于网络层。
DNS :将域名和IP地址相匹配。
ARP :以目标IP地址为线索,用来定位下一个应该接受数据分包的网络设备对应的MAC地址。ARP只适用于IPv4,IPv6可以用ICMPv6替代ARP发送邻居探索消息。
ICMP :在IP通信中如果某个IP包因为某种原因未能送达目标地址,那么这个具体的原因将由ICMP负责通知。
DHCP :使用移动设备时,每移动到一个新地方,都要重新设置IP地址,为了实现自动设置IP地址、统一管理IP地址分配,就产生了DHCP协议。
NAT :是用于在本地网络中使用私有地址,在连接互联网时转而使用全局IP地址的技术。
IP隧道 :IPv4和IPv6之间进行通信的技术就是IP隧道。
TCP用于低速可靠传输
UDP用于高速不可靠传输
端口号就是用来识别同一台计算机中进行通信的不同应用程序,也被称为程序地址。
TCP传输利用 窗口控制 提高速度,无需等到每次应答来进行下一次发送,而是有个窗口进行缓冲,来提高吞吐量。
TCP拥塞控制,利用拥塞窗口来调节发送的数据量,拥塞时减小窗口,流畅是增大窗口来控制吞吐量。
我们日常网络访问的 http 用的是 tcp ,那还是看一下这个过程吧
tcp 可以提供全双工的数据流传输服务,全双工说白了,就是同一时间 A 可以发信息给 B , B 也可以发消息给 A ,俩人同时都可以给对方发消息;半双工就是某个时间段 A 可以发给 B ,但 B 不能给 A ,换个时间段,就反过来了。
这个过程理解起来,就像两人在喊话:
A:喂,有人吗,我想建立连接
B:有哇,你建立吧,等你吆
A:好哒,我来啦
然后俩人就建立连接了...
一定要三次握手么,两次行不行?
这么一个场景:
A->B: 洞幺洞幺,我是洞拐,收到请回复。
B->A: 洞拐洞拐,洞幺收到。
请问根据以上对话判断:
1、B是否能收到A的信息? (答案是肯定的)
2、A是否能收到B的信息? (你猜?)
tcp的核心思想是保证数据可靠传输,如果 2 次,显然不行,但 3 次就一定行么?未必,可能第三次的时候网络中断了,然后 A 就认为 B 收到了,然后一通发消息,其实 B 没收到,但这是无法完全保证的。无论握手多少次都不能满足传输的绝对可靠,为了效率跟相对可靠而看, 3 次刚刚好,所以就 3 次了(正好 AB 相互确认了一次)。
举个栗子:把客户端比作男孩,服务器比作女孩。通过他们的分手来说明“四次挥手”过程:
"第一次挥手" :日久见人心,男孩发现女孩变成了自己讨厌的样子,忍无可忍,于是决定分手,随即写了一封信告诉女孩。
“第二次挥手” :女孩收到信之后,知道了男孩要和自己分手,怒火中烧,心中暗骂:你算什么东西,当初你可不是这个样子的!于是立马给男孩写了一封回信:分手就分手,给我点时间,我要把你的东西整理好,全部还给你!男孩收到女孩的第一封信之后,明白了女孩知道自己要和她分手。随后等待女孩把自己的东西收拾好。
“第三次挥手” :过了几天,女孩把男孩送的东西都整理好了,于是再次写信给男孩:你的东西我整理好了,快把它们拿走,从此你我恩断义绝!
“第四次挥手” :男孩收到女孩第二封信之后,知道了女孩收拾好东西了,可以正式分手了,于是再次写信告诉女孩:我知道了,这就去拿回来!
为什么连接的时候是三次握手,关闭的时候却是四次握手?
答:因为当 Server端 收到 Client端 的 SYN 连接请求报文后,可以直接发送 SYN+ACK报文 。其中 ACK报文 是用来应答的, SYN报文 是用来同步的。但是关闭连接时,当 Server端 收到 FIN报文 时,很可能并不会立即 关闭SOCKET ,所以只能先回复一个 ACK报文 ,告诉 Client端 ,"你发的 FIN报文 我收到了"。只有等到我 Server端 所有的报文都发送完了,我才能发送 FIN报文 ,因此不能一起发送。故需要四步握手。
静态路由 是指事先设置好路由器和主机中并将路由信息固定的一种方法。缺点是某个路由器发生故障,基本上无法自动绕过发生故障的节点,只有在管理员手工设置以后才能恢复正常。
动态路由 是管理员先设置好路由协议,其设定过程的复杂程度与具体要设置路由协议的类型有直接关系。在路由器个数较多的网络,采用动态路由显然能够减轻管理员负担。网络发生故障,只要有一个可绕的其他路径,数据包会自动选择这个路径,但路由器需要定期相互交换必要的路由控制信息,会增加一定程度的负荷。
根据路由控制范围分为 IGP (内部网关协议)和 EGP (外部网关协议)
路由算法分为 距离向量算法 和 链路状态算法
距离向量算法 :通过距离与方向确定通往目标网络的路径
链路状态算法 :链路状态中路由器知道网络的连接状态,并根据链路信息确定通往目标网络的路径。
IGP包含RIP、RIP2、OSPF
EGP包含EGP、BGP
RIP是距离向量型的一种路由协议,广泛应用于LAN
RIP2是RIP的第二版。新增以下特点:使用多播、支持子网掩码、路由选择域、外部路由标志、身份验证密钥
OSPF是一种链路状态型路由协议。
在RIP和OSPF中利用IP的网络地址部分进行着路由控制,然而BGP则需要放眼整个互联网进行路由控制。BGP的最终路由控制表有网络地址和下一站的路由器组来表示,不过它会根据所要经过的AS个数进行路由控制。有了AS编号的域,就相当于有了自己一个独立的“国家”。AS的代表可以决定AS内部的网络运营和相关政策。与其他AS相连的时候,可以像一位“外交官”一样签署合约再进行连接。正是有了这些不同地区的AS通过签约的相互连接,才有了今天全球范围内的互联网。
转发IP数据包的过程中除了使用路由技术外,还在使用标记交换技术。最有代表性的就是多协议标记交换技术(MPLS)。
MPLS的标记不像MAC地址直接对应到硬件设备。因此,MPLS不需要具备以外网或ATM等数据链路层协议的作用,而只需要关注它与下面一层IP层之间的功能和协议即可。
MPLS优点:
1.转发速度快
2.利用标记生成虚拟路径,并在它的上面实现IP等数据包的通信。