A. 什么是分组交换
原理如下:
将用户传送的数据划分成一定的长度,每个部分叫做一个分组,通过传输分组的方式传输信息册姿胡的一种技术。它是通过计算机和终端实现计算机与计算机之间的通信,在传输线路质量不高、网络技术手段还较单一的情况下,应运而生的一种交换技术。
每个分组的前面有一个分组头,用以指明该分组发往何地址州拦,然后由交换机根据每个分组的地址标志,转发至目的地,这一过程称为分组交换。
(1)计算机网络中的分组交换是指扩展阅读:
分组交换特点
1、信息传送的最小单位是分组
分组由组头和用户信息组成,分组头含有选路和控制信息。
2、面向连接(逻辑连接)和无连接两种册仿工作方式
虚电路采用面向连接的工作方式,数据报是无连接工作方式
3、统计时分复用(动态分配带宽)
统计时分复用的基本原理是把时间划分为不等长的时间片,长短不同的时间片就是传送不同长度分组所需的时间,对每路通信没有固定分配时间片,而是按需使用。
这就意味着使用这条复用线传送分组时间的长短,由此可见统计时分复用是动态分配带宽的。
B. 计算机网络与通信的分组交换
20世纪60年代,美苏冷战期间,美国国防部领导的远景研究规划局ARPA提出要研制一种崭新的网络对付来自前苏联的核攻击威胁。因为当时,传统的电路交换的电信网虽已经四通八达,但战争期间,一旦正在通信的电路有一个交换机或链路被炸,则整个通信电路就要中断,如要立即改用其他迂回电路,还必须重新拨号建立连接,这将要延误一些时间。这个新型网络必须满足一些基本要求:
1:不是为了打电话,而是用于计算机之间的数据传送。
2:能连接不同类型的计算机。
3:所有的网络节点都同等重要,这就大大提高了网络的生存性。
4:计算机在通信时,必须有迂回路由。当链路或结点被破坏时,迂回路由能使正在进行的通信自动地找到合适的路由。
5:网络结构要尽可能地简单,但要非常可靠地传送数据。
根据这些要求,一批专家设计出了使用分组交换的新型计算机网络。而且,用电路交换来传送计算机数据,其线路的传输速率往往很低。因为计算机数据是突发式地出现在传输线路上的,比如,当用户阅读终端屏幕上的信息或用键盘输入和编辑一份文件时或计算机正在进行处理而结果尚未返回时,宝贵的通信线路资源就被浪费了。
分组交换是采用存储转发技术。把欲发送的报文分成一个个的“分组”,在网络中传送。分组的首部是重要的控制信息,因此分组交换的特征是基于标记的。分组交换网由若干个结点交换机和连接这些交换机的链路组成。从概念上讲,一个结点交换机就是一个小型的计算机,但主机是为用户进行信息处理的,结点交换机是进行分组交换的。每个结点交换机都有两组端口,一组是与计算机相连,链路的速率较低。一组是与高速链路和网络中的其他结点交换机相连。注意,既然结点交换机是计算机,那输入和输出端口之间是没有直接连线的,它的处理过程是:将收到的分组先放入缓存,结点交换机暂存的是短分组,而不是整个长报文,短分组暂存在交换机的存储器(即内存)中而不是存储在磁盘中,这就保证了较高的交换速率。再查找转发表,找出到某个目的地址应从那个端口转发,然后由交换机构将该分组递给适当的端口转发出去。各结点交换机之间也要经常交换路由信息,但这是为了进行路由选择,当某段链路的通信量太大或中断时,结点交换机中运行的路由选择协议能自动找到其他路径转发分组。通讯线路资源利用率提高:当分组在某链路时,其他段的通信链路并不被当前通信的双方所占用,即使是这段链路,只有当分组在此链路传送时才被占用,在各分组传送之间的空闲时间,该链路仍可为其他主机发送分组。可见采用存储转发的分组交换的实质上是采用了在数据通信的过程中动态分配传输带宽的策略。
1.3计算机网络的分类4
计算机网络的分类与的一般的事物分类方法一样,可以按事物的所具有的不同性质特点即事物的属性分类。计算机网络通俗地讲就是由多台计算机(或其它计算机网络设备)通过传输介质和软件物理(或逻辑)连接在一起组成的。总的来说计算机网络的组成基本上包括:计算机、网络操作系统、传输介质(可以是有形的,也可以是无形的,如无线网络的传输介质就是空气)以及相应的应用软件四部分。
要学习网络,首先就要了解当前的主要网络类型,分清哪些是我们初级学者必须掌握的,哪些是现有的主流网络类型。
1.3.1按地理范围划分4
1.3.2按拓扑结构划分7
1.3.3按资源共享方式划分9
1.3.4局域网的分类10
1.4计算机网络结构12
1.4.1通信子网与资源子网12
1.4.2主机和终端12
1.4.3现代网络的结构特点12
1.5我国建立的计算机数据通信网简介13
1.5.1电话网上的数据传输13
1.5.2中国公用分组交换网13
1.5.3中国公用数字数据网14
1.6计算机网络的标准15
1.6.1世界重要的标准化组织15
1.6.2因特网的标准化16
小结16
习题16
第2章数据通信基础18
2.1数据通信基础知识18
2.1.1数据通信模型18
2.1.2并行传输和串行传输18
2.1.3同步传输和异步传输19
2.1.4传输方式20
2.1.5模拟传输和数字传输20
2.2数据通信中的基本概念21
2.2.1频率、频谱和带宽21
2.2.2数据传输速率24
2.2.3基带传输和宽带传输25
2.3传输介质25
2.3.1双绞线25
双绞线(Twisted Pair)是由两条相互绝缘的导线按照一定的规格互相缠绕(一般以逆时针缠绕)在一起而制成的一种通用配线,属于信息通信网络传输介质。双绞线过去主要是用来传输模拟信号的,但现同样适用于数字信号的传输。
双绞线是综合布线工程中最常用的一种传输介质。
双绞线是由一对相互绝缘的金属导线绞合而成。采用这种方式,不仅可以抵御一部分来自外界的电磁波干扰,而且可以降低自身信号的对外干扰。把两根绝缘的铜导线按一定密度互相绞在一起,一根导线在传输中辐射的电波会被另一根线上发出的电波抵消。“双绞线”的名字也是由此而来。
双绞线一般由两根22-26号绝缘铜导线相互缠绕而成,实际使用时,双绞线是由多对双绞线一起包在一个绝缘电缆套管里的。典型的双绞线有四对的,也有更多对双绞线放在一个电缆套管里的。这些我们称之为双绞线电缆。在双绞线电缆(也称双扭线电缆)内,不同线对具有不同的扭绞长度,一般地说,扭绞长度在3.81cm至14cm内,按逆时针方向扭绞。相邻线对的扭绞长度在1.27cm以上,一般扭线的越密其抗干扰能力就越强,与其他传输介质相比,双绞线在传输距离,信道宽度和数据传输速率等方面均受到一定限制,但价格较为低廉。
2.3.2同轴电缆27
同轴电缆从用途上分可分为基带同轴电缆和宽带同轴电缆(即网络同轴电缆和视频同轴电缆)。同轴电缆分50Ω基带电缆和75Ω宽带电缆两类。基带电缆又分细同轴电缆和粗同轴电缆。基带电缆仅仅用于数字传输,数据率可达10Mbps。
同轴电缆由里到外分为四层:中心铜线(单股的实心线或多股绞合线),塑料绝缘体,网状导电层和电线外皮。中心铜线和网状导电层形成电流回路。因为中心铜线和网状导电层为同轴关系而得名。
同轴电缆传导交流电而非直流电,也就是说每秒钟会有好几次的电流方向发生逆转。
如果使用一般电线传输高频率电流,这种电线就会相当于一根向外发射无线电的天线,这种效应损耗了信号的功率,使得接收到的信号强度减小。
同轴电缆的设计正是为了解决这个问题。中心电线发射出来的无线电被网状导电层所隔离,网状导电层可以通过接地的方式来控制发射出来的无线电。
同轴电缆也存在一个问题,就是如果电缆某一段发生比较大的挤压或者扭曲变形,那么中心电线和网状导电层之间的距离就不是始终如一的,这会造成内部的无线电波会被反射回信号发送源。这种效应减低了可接收的信号功率。为了克服这个问题,中心电线和网状导电层之间被加入一层塑料绝缘体来保证它们之间的距离始终如一。这也造成了这种电缆比较僵直而不容易弯曲的特性。
2.3.3光纤27
光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。前香港中文大学校长高锟和George A. Hockham首先提出光纤可以用于通讯传输的设想,高锟因此获得2009年诺贝尔物理学奖。
微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。通常,光纤的一端的发射装置使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至光纤,光纤的另一端的接收装置使用光敏元件检测脉冲。
在日常生活中,由于光在光导纤维的传导损耗比电在电线传导的损耗低得多,光纤被用作长距离的信息传递。
通常光纤与光缆两个名词会被混淆。多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆。光纤外层的保护层和绝缘层可防止周围环境对光纤的伤害,如水、火、电击等。光缆分为:光纤,缓冲层及披覆。光纤和同轴电缆相似,只是没有网状屏蔽层。中心是光传播的玻璃芯。
在多模光纤中,芯的直径是15μm~50μm, 大致与人的头发的粗细相当。而单模光纤芯的直径为8μm~10μm。芯外面包围着一层折射率比芯低的玻璃封套, 以使光线保持在芯内。再外面的是一层薄的塑料外套,用来保护封套。光纤通常被扎成束,外面有外壳保护。 纤芯通常是由石英玻璃制成的横截面积很小的双层同心圆柱体,它质地脆,易断裂,因此需要外加一保护层。
2.4无线通信与卫星通信技术30
2.4.1电磁波谱30
2.4.2无线电波的传输32
2.4.3卫星通信32
2.4.4微波传输(地面微波)33
2.4.5红外线及毫米波(室内通信)33
2.5编码和调制技术33
2.5.1数字数据编码为数字信号34
2.5.2数字数据调制为模拟信号36
2.5.3模拟数据转换为数字信号39
2.5.4模拟数据转换为模拟信号40
2.6数据交换技术41
2.6.1数据交换技术的类别41
2.6.2数据交换技术的比较45
2.7多路复用技术47
2.7.1频分多路复用47
2.7.2同步时分多路复用48
2.7.3异步时分多路复用48
2.7.4密集波分多路复用49
2.7.5码分多址访问52
2.8光纤通信54
2.8.1光纤通信的特点54
2.8.2光纤通信中的编码技术55
2.9移动通信及蜂窝无线通信57
2.9.1模拟蜂窝电话57
2.9.2数字蜂窝无线通信58
2.9.3第三代移动通信60
2.10差错控制的基础知识62
2.10.1差错产生的原因与差错类型62
2.10.2差错控制的方法62
小结64
习题64
第3章计算机网络体系结构66
3.1计算机网络体系结构66
3.1.1ISO/OSI参考模型的产生66
3.1.2各层功能概述68
3.1.3层间关系69
3.2TCP/IP的体系结构71
3.2.1TCP/IP与OSI参考模型的比较71
3.2.2TCP/IP的分层结构72
小结73
习题73
第4章物理层协议75
4.1物理层协议的基本概念75
4.1.1物理层的功能75
4.1.2物理层的服务76
4.1.3物理层对数据链路层提供的服务76
4.1.4常用的物理层标准77
4.2同步数字序列和同步光纤网79
4.2.1SDH/SONET的产生79
4.2.2SONET/SDH的传输速率80
4.2.3SONET数字体系第一级STS-1/OC-1的帧格式81
4.2.4SDH中的信元传输81
小结85
习题85
第5章数据链路层86
5.1数据链路层的功能与协议86
5.2流量控制方法88
5.3差错控制方法90
5.3.1自动请求重发协议91
5.3.2差错控制方法——循环冗余校验码92
5.4高级数据链路控制协议94
5.4.1面向字符和面向位的链路控制协议94
5.4.2HDLC协议的基本概念95
5.4.3HDLC协议的帧格式96
5.4.4HDLC协议的主要内容97
5.5因特网中的点对点协议99
5.5.1PPP的工作原理100
5.5.2PPP的应用102
小结103
习题103
第6章介质访问控制子层和局域网105
6.1局域网参考模型105
6.2逻辑链路控制子层协议106
6.3介质访问控制子层协议107
6.4CSMA/CD介质访问控制方法108
6.4.1CSMA/CD协议的工作原理108
6.4.2MAC子层的帧格式112
6.5局域网协议标准114
6.5.1IEEE 802协议标准114
6.5.2IEEE 802.3以太网标准115
6.6虚拟局域网122
6.6.1VLAN的作用123
6.6.2VLAN的连接和划分124
6.6.3VLAN的标准802.1Q和802.1P126
6.6.4VLAN之间的通信127
6.7无线局域网129
6.7.1无线局域网的优点130
6.7.2无线局域网的组成结构130
6.7.3CSMA/CA协议的工作原理133
小结134
习题134
第7章网络层协议138
7.1网络层提供的服务138
7.1.1网络层为传输层提供的服务138
7.1.2网络层的两种传输方式139
7.2网络层路由算法139
7.2.1路由算法的要求和分类139
7.2.2最短路径算法140
7.2.3扩散法141
7.2.4距离向量路由算法142
7.2.5链路状态路由算法143
7.3拥塞控制145
7.3.1拥塞控制的一般概念145
7.3.2拥塞控制的方法和算法147
7.4因特网中的网际协议149
7.4.1IP数据报的格式149
7.4.2IP地址151
7.4.3划分子网和子网掩码153
7.4.4专用地址与因特网地址转换NAT技术157
7.5地址解析159
7.5.1IP地址与物理地址的映射159
7.5.2地址解析协议161
7.5.3反向地址解析协议163
7.6无分类域间路由选择163
7.7因特网控制报文协议165
7.7.1差错报告报文166
7.7.2ICMP的查询报文168
7.8IPv6和ICMPv6169
7.8.1IPv6概述169
7.8.2IPv6基本报头格式171
7.8.3IPv6的地址结构172
7.8.4IPv6的扩展报头174
7.8.5IPv4向IPv6的过渡简介177
7.8.6ICMPv6177
7.9因特网的路由选择协议180
7.9.1内部网关路由协议180
7.9.2开放式最短路径优先协议186
7.9.3单区域中OSPF的工作原理189
7.9.4多区域中OSPF的工作原理195
7.9.5边界网关协议197
7.10虚拟专用网201
7.10.1VPN的基本概念201
7.10.2VPN连接和路由202
7.10.3VPN中的隧道技术204
7.11IP多播和IGMP206
7.11.1IP多播的用途207
7.11.2IGMP207
7.11.3多播地址208
7.11.4分布路由和多播路由协议210
小结211
习题211
第8章传输层协议214
8.1传输控制协议的基本功能214
8.1.1传输层的功能和服务214
8.1.2传输层的几个重要概念215
8.2传输控制协议217
8.2.1TCP报文段的报头217
8.2.2TCP的特性220
8.2.3TCP的流量控制222
8.2.4TCP的差错控制223
8.2.5TCP的拥塞控制224
8.3用户数据报协议225
8.3.1UDP概述225
8.3.2UDP通信过程和端口号226
8.3.3UDP用户数据报的报头格式227
8.3.4UDP的通信过程228
8.4服务质量保证230
8.4.1QoS的技术要求230
8.4.2QoS保证的相关技术231
8.4.3综合服务和区分服务235
8.4.4多协议标签交换协议238
小结242
习题242
第9章应用层协议245
9.1域名系统245
9.2TCP/IP应用层协议247
9.2.1文件传输协议247
9.2.2电子邮件248
9.2.3万维网249
9.2.4远程终端协议251
9.2.5信息检索252
9.2.6简单网络管理协议252
9.3博客和播客253
9.3.1新闻与公告服务253
9.3.2博客服务和播客服务254
9.4即时通信服务与网络电视服务256
9.4.1即时通信软件256
9.4.2网络电视服务256
9.5对等连接软件259
9.5.1P2P概述259
9.5.2P2P网络模型259
9.5.3P2P文件共享程序261
9.5.4P2P网络模型存在的问题和展望262
9.6动态主机配置协议262
9.6.1DHCP的用途262
9.6.2DHCP的工作流程263
小结264
习题264
第10章网络安全技术266
10.1网络安全概述266
10.1.1网络安全的概念266
10.1.2网络安全的分层理论267
10.1.3网络安全策略269
10.2信息加密技术270
10.2.1密码技术基础270
10.2.2加密算法271
10.2.3数字签名274
10.3报文鉴别275
10.4防火墙技术276
10.5入侵检测278
10.5.1入侵检测的概念278
10.5.2入侵检测系统模型278
10.5.3入侵检测原理279
10.6网络安全协议280
10.6.1网络层安全协议簇280
10.6.2安全套接字层282
10.6.3电子邮件安全283
小结285
习题285
第11章联网设备287
11.1网络接口卡287
11.1.1网卡的分类287
11.1.2网卡的工作原理290
11.2调制解调器292
11.2.1Modem的基本工作原理292
11.2.2电缆电视Modem293
11.2.3ADSL技术294
11.3中继器和集线器296
11.4网桥296
11.4.1网桥的功能296
11.4.2网桥的路径算法298
11.5交换机301
11.5.1交换机的功能和应用301
11.5.2交换机的工作原理303
11.5.3交换机的工作方式305
11.5.4交换机的模块结构305
11.6路由器309
11.6.1路由器的工作原理309
11.6.2路由器的结构310
11.6.3路由器的功能311
11.6.4网关312
11.7三层交换机313
11.7.1三层交换机的产生313
11.7.2Switch Node的总体结构314
小结314
习题315
第12章网络实验316
12.1网络实验室介绍316
12.1.1网络实验室拓扑结构316
12.1.2RACK实验柜的组成结构317
12.1.3配线架插座的说明317
12.1.4实验室的布局318
12.1.5访问控制服务器简介319
12.1.6基于Web的RCMS访问管理319
12.2双绞线制作实验320
12.2.1双绞线网线的制作标准320
12.2.2双绞线网线制作实验321
12.3交换机基础配置实验323
12.3.1交换机配置的基础知识323
12.3.2交换机的基础配置实验329
12.3.3VLAN实现交换机端口隔离实验332
12.3.4生成树协议的应用实验334
12.4路由器基础配置实验338
12.4.1路由器配置的基本知识339
12.4.2路由器的基本配置实验342
12.4.3路由器的静态路由配置实验347
12.4.4路由器的动态路由——RIP配置实验350
12.4.5配置PPP的PAP认证实验354
习题358
参考文献360
C. 分组交换技术在计算机网络技术中的作用及特点是什么
采用存储转发的分组交换技术,实质上是在计算机网络的通信过程中动态分配传输线路或信道带宽的一种策略。x0dx0a它的工作机理是:首先将待发的数据报文划分成若干个大小有限的短数据块,在每个数据块前面加上一些控制信息(即首部),包括诸如数据收发的目的地址、源地址,数据块的序号等,形成一个个分组,然后各分组在交换网内采用“存储转发”机制将数据从源端发送到目的端。由于节点交换机暂时存储的是一个个短的分组,而不是整个的长报文,且每一分组都暂存在交换机的轮橡内存中并可进行相应的处理,这就使得分组的转发速度非常快。x0dx0a分组交换网是由若干节点交换机和连接这些交换机的链路组成,每一结点就是一个小型计算机。 基于分组交换的数据通信是实现计算机与计算机之间或计算机与人之间的通信,其通信过程需要定义严格的协议;x0dx0a分组交换网的主要优点:x0dx0a1、高效。在分组传输的过程中动态分配传输带宽。2、灵活。每个结点均有智能,可根据情况决定路由和对数据做必要的处理。3、迅速。以分组作为传送单位,在每个结点存储转发,网络使用高速链路。4、可靠。完善的网络协议;分布式多路由的通信子网。x0dx0a电路交换相比,分组交换的不足之处是:① 每一分组在经过每一交换节点时都会产生一定的传输延时,考虑到节点处理分组的能力和分组排队等候处理的时间,以及每一分组经过的路由可能不等同,使得每一分组的传输延时长短不一。因此,它不适用于一些实时、连续的应用场合,如电话话音、视频图像等数据的传输;② 由于每一分组都额外附加一个头信息,从而降低了携带用户数据的通信容哪桐迟量; ③ 分组交换网中的每一节点需要更多地参与对信息转换的处理,如在发送端需要将长报文划分为若干段分组,在接收端必须按序将每个分组组装起来,恢复出原报文数据等,从而降低了数据传输的效率。 习题1-03 试从多个方面比较电路交换、报文交换和分组交换的主要优缺点。x0dx0a答:电路交换,它的主要特点是:① 在通话的全部时间内用户独占分配的传输线路或信道带宽,即采用的是静态分配策略;② 通信双方建李李立的通路中任何一点出现了故障,就会中断通话,必须重新拨号建立连接,方可继续,这对十分紧急而重要的通信是不利的。显然,这种交换技术适应模拟信号的数据传输。然而在计算机网络中还可以传输数字信号。数字信号通信与模拟信号通信的本质区别在于数字信号的离散性和可存储性。这些特性使得它在数据传输过程中不仅可以间断分时发送,而且可以进行再加工、再处理。x0dx0a③ 计算机数据的产生往往是“突发式”的,比如当用户用键盘输入数据和编辑文件时,或计算机正在进行处理而未得出结果时,通信线路资源实际上是空闲的,从而造成通信线路资源的极大浪费。据统计,在计算机间的数据通信中,用来传送数据的时间往往不到10%甚至1%。另外,由于各异的计算机和终端的传输数据的速率各不相同,采用电路交换就很难相互通信。x0dx0ax0dx0a分组交换具有高效、灵活、可靠等优点。但传输时延较电路交换要大,不适用于实时数据业务的传输。
D. 关于计算机网络的分组交换
我理解的意思是是重新封装是一个过程,里面的数据部分可变,部分不可变,IP数据包含很多内容,如果是一个简单网络数据传输,帧头信息可以不变,如果需要添加其他功能,比如记录路径和经过时间等内容,这个包头就是需要改变的。
E. 什么是分组交换有什么优点用在哪儿
在通信过程中,通信双方以分组为单位、使用存储-转发机制实现数据交互的通信方式,被称为分组交换(PS:packet switching)。在分组交换方式中,由于能够以分组方式进行数据的暂存交换,经交换机处理后,很容易地实现不同速率、不同规程的终端间通信。
优点
1、利用率高
较之电路交换对链路的独占性而言,不同的数据分组可以在同一条链路上以动态共享和复用方式进行传输,通信资源利用率高,从而使得信道的容量和吞吐量有了很大的提升。因为结点到结点的单个链路可以由很多分组动态答困凳共享。分组被排队,并被尽可能快速地在链路上传输。
2、数据率
一个分组交换网络可以实行数据率的转换:两个不同数据率的站之间能够交换分组,因为每一个站以它的自己的数据率连接到这个结点上。
3、排队机制
在同一个链路上可以同时传输不同类型和规格的数据,当分组网络上有大量的分组时,可以根据设定数据传输的排队机制,保证优先级高的分组优先传输。当电路交换网络上负载很大时,一些呼叫就被阻塞了。在分组交换网络上,分组仍然被接受,只是其交付时延会增加。
4、优先级
在使用优先级时,如果一个结点有大量的分组在排队等待传送,它可以先传送高优先级的分组。这些分组因此将比低优先级的分组经历更少的时延。
本质
分组交换的本质就是存储转发,它将所接受的分组暂时存储下来,在目的方向路由上排队,当它可以发送信息时,再将信息发送到相应的路由上,完成转发。清旅其存储转发的过程就是分组交换尺孙的过程。
分组交换的思想来源于报文交换,报文交换也称为存储转发交换,它们交换过程的本质都是存储转发,所不同的是分组交换的最小信息单位是分组,而报文交换则是一个个报文。由于以较小的分组为单位进行传输和交换,所以分组交换比报文交换快。报文交换主要应用于公用电报网中。
F. 计算机网络中的分组交换是什么意思
这个简单,你看下网桥原理,就是在需要传输的时候,给你搭建一条链路,传输完毕再断开,在两个网络中达到信息交换的意思。平时两个网络互不干扰,若要信息传输的时候,网桥给你通个路,传输完再断开。交换机是多个端口的网桥。通俗点说,交换就是两个网络之间的数据传输。《计算机网络基础》第三章局域网的传统以太网和交换以太网里有详细介绍。
G. 计算机网络中分组交换,我知道分组是把数据分成小块传输,那交换指什么(通俗点讲,谢谢)
网络中的分组交换就是把数据分为小的数据包,然后在其前面加上IP地址及MAC地址等信息放在网络上传输。这样很多不同地址的数据包就可以共用一条链路传输了。
H. 什么是分组交换分组交换的特点是什么
分组交换的优点:
线路利用率更高
因为结点到结点的单个链路可以由很多分组动态共享。分组被排队,并被尽可能快速地在链路上传输。
数据率转换
一个分组交换网络可以实行数据率的转换:两个不同数据率的站之间能够交换分组,因为每一个站以它的自己的数据率连接到这个结点上。
排队制
当电路交换网络上负载很大时,一些呼叫就被阻塞了。在分组交换网络上,分组仍然被接受,只是其交付时延会增加。
支持优先级
在使用优先级时,如果一个结点有大量的分组在察谈散排队等待传送,它可以先传送高优先级的分组。这些分组因此将比低优先级的分组经历更少的侍兆时延。
分组交换的缺点:
时延
分组交换
一个分组通过一个分组交换网结点时会产生时延,而在电路交换网中则不存在这种时延。
时延抖动
因为一个给定的源站和目的站之间的各分组可能具有不同的长度,可以走不同的路径,也可以在沿途的交换机中经历不同的时延,所以分组的总时延就可能变化很大。这种现象被称为抖动。抖动对一些应用来讲是不希望有的(例如:电话话音和实时图像等实时应用中)。
额外开销大
要将分组通过网络传送,包括目的地址在内的额外开销信息和分组排序信息必须加在每一个分组里。这些信息降低了可用来运输用户数据的通信容量。在电路交换中,一旦电路建立,这些开销就不再需要。另外,分组交换网络是一个分布的分组交换结点的集合,在理想情况下,所有的分组交换结点应该总是了解整个网络的状态。但是,不幸的是,因为结点是分布的,败氏在网络一部分状态的改变与网络其他部分得知这个改变之间总是有一个时延。此外,传递状态信息需要一定的费用,因此一个分组交换网络从来不会“完全理想地”运行。
I. 计算机网络中的分组交换是什么意思
这个简单,你看下网桥原理,就是在需要传输的时候,给你搭建一条链路,传输完毕再断开,在两个网络中达到信息交换的意思。平时两个网络互不干扰,若要信息传输的时候,网桥给你通个路,传输完再断开。交换机是多个端口的网桥。通俗点说,交换就是两个网络之间的数据传输。《计算机网络基础》第三章局域网的传统以太网和交换以太网里有详细介绍。