当前位置:首页 » 网络连接 » 简述社会网络连接的特点
扩展阅读
iphone官解id无法连接网络 2025-09-24 17:47:50
平板电脑折旧价格 2025-09-24 17:04:51

简述社会网络连接的特点

发布时间: 2023-06-14 23:54:08

㈠ 互联网有哪些特点

互联网的特点有传递性、自由性、实时性、交换性、共享性、开放性。利用互联网进行视频观看,文字阅读,通过互联网浏览时事热点,说明互联网具有信息传递的特点。

互联网的自由性较强,利用互联网进行通讯,可以与人时刻沟通,说明互联网有实时性的特点。可以利用互联网进行贸易交易,这说明互联网具有交换功能。互联网可以更高效、便捷、快速的沟通现实世界,同时也离不开现实世界的支撑。

互联网越来越普及,互联网不仅改变了人们的生活习惯,还改变了传统的办公方式。利用互联网可以提高办公效率,改善人们生活,丰富人们的业余生活。

互联网作为一个新的沟通虚拟社区,它可以鲜明突出个人的特色,只有有特色的信息和服务,才可能在互联网上不被信息的海洋所淹没,互联网引导的是个性化的时代。

不过在互联网上活动的时候,每个人都要约束自己,不可违反法律法规,在网络监管下合法上网。

㈡ 复杂网络 --- 社会网络分析

“社会网络”指的是社会成员及其相互关系的集合。社会网络中所说的“点”是各个社会成员,而社会网络中的“边”指的是成员之间的各种社会关系。成员间的关系可以是有向的,也可以是无向的。同时,社会关系可以表现为多种形式,如人与人之间的朋友关系、上下级关系、科研合作关系等,组织成员之间的沟通关系,国家之间的贸易关系等。社会网络分析(Social Network Analysis)就是要对社会网络中行为者之间的关系进行量化研究,是社会网络理论中的一个具体工具。

因此,社会网络分析关注的焦点是关系和关系的模式,采用的方式和方法从概念上有别于传统的统计分析和数据处理方法。

社会网络通常表达人类的个体通过各种关系连接起来,比如朋友、婚姻、商业等,这些连接宏观上呈现出一定的模式。很早的时候,一些社会学家开始关注人们交往的模式。Ebel等进行了一个电子邮件版的小世界问题的实验,完成了Kiel大学的5000个学生的112天电子邮件连接数据,节点为电子邮件地址,连接为消息的传递,得到带指数截断的幂律度分布,指数为r=1.18。同时证明,该网络是小世界的,平均分隔为4.94。

社会网络分析,可以解决或可以尝试解决下列问题:

“中心性”是社会网络分析的重点之一,用于分析个人或组织在其社会网络中具有怎样的权力,或者说居于怎样的中心地位,这一思想是社会网络分析者最早探讨的内容之一。

点度中心度表示与该点直接相连的点的个数,无向图为(n-1),有向图为(入度,出度)。

个体的中心度(Centrality)测量个体处于网络中心的程度,反映了该点在网络中的重要性程度。网络中每个个体都有一个中心度,刻画了个体特性。除了计算网络中个体的中心度外,还可以计算整个网络的集中趋势(可简称为中心势,Centralization)。网络中心势刻画的是整个网络中各个点的差异性程度,一个网络只有一个中心势。

根据计算方法的不同,中心度和中心势都可以分为3种:点度中心度/点度中心势、中间中心度/中间中心势、接近中心度/接近中心势。

在一个社会网络中,如果一个个体与其他个体之间存在大量的直接联系,那么该个体就居于中心地位,在该网络中拥有较大的“权力”。在这种思想的指导下,网络中一个点的点度中心性就可以用网络中与该点之间有联系的点的数目来衡量,这就是点度中心度。

网络中心势指的是网络中点的集中趋势,其计算依据如下步骤:首先找到图中的最大点度中心度的数值,然后计算该值与任何其他点的中心度的差值,再计算这些“差值”的总和,最后用这个总和除以各个“差值”总和的最大可能值。

在网络中,如果一个个体位于许多其他两个个体之间的路径上,可以认为该个体居于重要地位,因为他具有控制其他两个个体之间的交往能力,这种特性用中间中心度描述,它测量的是个体对资源控制的程度。一个个体在网络中占据这样的位置越多,代表它具有很高的中间中心性,就有越多的个体需要通过它才能发生联系。

中间中心势定义为网络中 中间中心性最高的节点的中间中心性与其他节点的中间中心性的差距,用于分析网络整体结构。中间中心势越高,表示该网络中的节点可能分为多个小团体,而且过于依赖某一个节点传递关系,说明该节点在网络中处于极其重要的地位。

接近中心性用来描述网络中的个体不受他人“控制”的能力。在计算接近中心度的时候,我们关注的是捷径,而不是直接关系。如果一个点通过比较短的路径与许多其他点相连,我们就说该点具有较高的接近中心性。

对一个社会网络来说,接近中心势越高,表明网络中节点的差异性越大;反之,则表明网络中节点间的差异越小。

注:以上公式都是针对无向图,如果是有向图则根据定义相应修改公式即可

当网络中某些个体之间的关系特别紧密,以至于结合成一个次级团体时,这样的团体在社会网络分析中被称为凝聚子群。分析网络中存在多少个这样的子群,子群内部成员之间关系的特点,子群之间关系特点,一个子群的成员与另一个子群成员之间的关系特点等就是凝聚子群分析。

由于凝聚子群成员之间的关系十分紧密,因此有的学者也将凝聚子群分析形象地称为“小团体分析”或“社区现象”。

常用的社区检测方法主要有如下几种:

(1)基于图分割的方法,如Kernighan-Lin算法,谱平分法等;

(2)基于层次聚类的方法,如GN算法、Newman快速算法等;

(3)基于模块度优化的方法,如贪婪算法、模拟退火算法、Memetic算法、PSO算法、进化多目标优化算法等。

凝聚子群密度(External-Internallndex,E-IIndex)主要用来衡量一个大的网络中小团体现象是否十分严重,在分析组织管理等问题时非常有效。

最差的情形是大团体很散漫,核心小团体却有高度内聚力。另外一种情况是,大团体中有许多内聚力很高的小团体,很可能就会出现小团体间相互斗争的现象。凝聚子群密度的取值范围为[-1,+1]。该值越向1靠近,意味着派系林立的程度越大;该值越接近-1,意味着派系林立的程度越小;该值越接近0,表明关系越趋向于随机分布,未出现派系林立的情形。

E-I Index可以说是企业管理者的一个重要的危机指数。当一个企业的E-I Index过高时,就表示该企业中的小团体有可能结合紧密而开始图谋小团体私利,从而伤害到整个企业的利益。其实E-I Index不仅仅可以应用到企业管理领域,也可以应用到其他领域,比如用来研究某一学科领域学者之间的关系。如果该网络存在凝聚子群,并且凝聚子群的密度较高,说明处于这个凝聚子群内部的这部分学者之间联系紧密,在信息分享和科研合作方面交往频繁,而处于子群外部的成员则不能得到足够的信息和科研合作机会。从一定程度上来说,这种情况也是不利于该学科领域发展的。

核心-边缘(Core-Periphery)结构分析的目的是研究社会网络中哪些节点处于核心地位,哪些节点处于边缘地位。核心-边缘结构分析具有较广的应用性,可用于分析精英网络、论文引用关系网络以及组织关系网络等多种社会现象。

根据关系数据的类型(定类数据和定比数据),核心—边缘结构有不同的形式。定类数据和定比数据是统计学中的基本概念,一般来说,定类数据是用类别来表示的,通常用数字表示这些类别,但是这些数值不能用来进行数学计算;定比数据是用数值来表示的,可以用来进行数学计算。如果数据是定类数据,可以构建离散的核心-边缘模型;如果数据是定比数据,可以构建连续的核心-边缘模型。

离散的核心-边缘模型,根据核心成员和边缘成员之间关系的有无及紧密程度,又可分为3种:核心-边缘全关联模型、核心-边缘局部关联模型、核心-边缘关系缺失模型。如果把核心和边缘之间的关系看成是缺失值,就构成了核心-边缘关系缺失模型。

这里介绍适用于定类数据的4种离散的核心-边缘模型:

参考

㈢ 网络的特点

计算机网络有无中心性、开放性、信息容量巨大、信息种类丰富、信息传播“交互性”镇棚等特点。计算机网络遍布全世界,无论采取何种连接方式,只要上了网,就成为计算机网络上的一个终端,并可以同网络上的任何一个其他终端相连接。

计算机网络具有无中心性和开放性的特点。计算机网络中,对信源的资格并无特殊扮旅肢限制,任何一个上网者都可以成为信源。

计算机网络具有信息容量巨大和信息种类丰富的特点。算机网络所容纳的信息量巨大,以至于人们创造出“海量”这一词语加以描述,网络数据库就是典型的例子。与此同时,计算机网络信息在种类方面也与传统形式有着根本的区别。

计算机网络具有信息传播“交互性”的特点。在计算厅世机网络环境下,信宿却可以“主动”地向信宿传递信息,要求信宿根据自己的要求提供信息。

㈣ 社会网络的特征有哪些

社会网络(social
network)是一种基于“网络”(节点之间的相互连接)而非“群体”(明确的边界和秩序)的社会组织形式,也是西方社会学从
1960
年代兴起的一种分析视角。随着工业化、城市化的进行和新的通讯技术的兴起,社会呈现越来越网络化的趋势,发生“社会网络革命”(social
network
revolution),与移动革命(mobile
revolution)、互联网革命(internet
revolution)并列为新时期影响人类社会的三大革命
特征:
(1)开放式的网络体系结构,使不同软硬件环境、不同网络协议的网可以互连,真正达到资源共享,数据通信和分布处理的目标。
(2)向高性能发展。追求高速、高可靠和高安全性,采用多媒体技术,提供文本、声音图像等综合性服务。
(3)计算机网络的智能化,多方面提高网络的性能和综合的多功能服务,并更加合理地进行网络各种业务的管理,真正以分布和开放的形式向用户提供服务。
随着社会及科学技术的发展,对计算机网络的发展提出了更加有利的条件。计算机网络与通信网的结合,可以使众多的个人计算机不仅能够同时处理文字、数据、图像、声音等信息,

什么是社会网络

社会网络(socialnetwork)是一种基于“网络”(节点之间的相互连接)而非“群体”(明确的边界和秩序)的社会组织形式,也是西方社会学从1960年代兴起的一种分析视角。随着工业化、城市化的进行和新的通讯技术的兴起,社会呈现越来越网络化的趋势,发生“社会网络革命”(socialnetworkrevolution),与移动革命(mobilerevolution)、互联网革命(internetrevolution)并列为新时期影响人类社会的三大革命.
社会网络是指社会个体成员之间因为互动而形成的相对稳定的关系体系,社会网络关注的是人们之间的互动和联系,社会互动会影响人们的社会行为。
社会网络是由许多节点构成的一种社会结构,节点通常是指个人或组织,社会网络代表各种社会关系,经由这些社会关系,把从偶然相识的泛泛之交到紧密结合的家庭关系的各种人们或组织串连起来。社会关系包括朋友关系、同学关系、生意伙伴关系、种族信仰关系等。
社会网络分析是社会科学领域的叫法。类似的东西在物理和计算机领域叫复杂网络。在数学领域叫做图论。也有一些学者叫网络科学。基本的东西都类似,但关注的点不同。就和一个男人有时是爸爸,有时是儿子,有时是孙子。
最早的溯源可以归到哥尼斯堡七桥问题。莫雷诺在上世纪初开始将可视化和类似的网络分析技术应用在分析社会现象上,比如女生的午餐关系。之后生物领域和社会领域分别独立发展出比较完善的分析技术。集大成者是Harvard的HarrisonWhite,许多之后着名的学者都是他的徒子徒孙。
很难说SocialNetworkAnalysis是一门特定的学科。更多的应用是作为一种研究方法,有时候也会作为一种研究视角(perspective)。当然,也产生了一些中层的理论(theory),比较常见的是Granovetter的弱联系理论,Burt的结构洞理论,Watts的小世界模型,Barabasi的PowerLaw。
之前的社会科学往往关注个体(或者行动者,如企业、个人)的特性,而忽略个体之间的关系。而社会网络的研究正是研究关系的方法、视角。最大的特征在于考虑了个体之间的互相依赖,更接近于现实社会。将这些关系用如题头所示的图片展示出来,可以直观的看到各个行动者在网络中的位置和网络整体结构。