当前位置:首页 » 网络连接 » 计算机网络列举各层常见的协议
扩展阅读
抓手机防网络泄密承诺书 2025-09-24 15:20:05
加移动网络电视 2025-09-24 15:05:41

计算机网络列举各层常见的协议

发布时间: 2023-06-15 06:08:04

计算机网络应用层和传输层及网络层协议有哪些

计算机网络中应用层、传输层和网络层涉及到的一些协议如下:

  • 应用层协议:应用层协议是计算机网络中最高层的协议,用于处理应用程序之间的数据交换。常用的应用层协议包括HTTP、FTP、SMTP、POP3、DNS等。

  • 传输层协议:传输层协议主要弊祥负责实现数据在网络中的可靠传输,通常包括TCP和UDP两种协议。其中,TCP协议提供面向连接、可靠的数据传输,而UDP协议则提供无连接、不可靠的数据传输。

  • 网络层协议:网络层协议主要负责实现数据在网络中的路由和转发,以及网络地址的管桐卜局理。常用的网络层协议包括IP、ICMP、ARP、RARP、OSPF等。其中,IP协议是局让互联网中最重要的协议之一,负责实现数据包在网络中的传输和路由选择。

这些协议在计算机网络中各自扮演不同的角色,共同组成了网络通信的基础框架。应用层协议直接面向用户应用程序,为其提供数据传输和交互的功能;传输层协议则通过TCP或UDP协议保证数据的可靠传输;网络层协议则实现数据在网络中的路由和转发,保证数据能够从源节点到目标节点的可靠传输。

-------FunNet超有趣学网络

② 常见的网络协议有哪些

第一章 概述

电信网、计算机网和有线电视网 三网合一

TCP/IP是当前的因特网协议簇的总称,TCP和 IP是其中的两个最重要的协议。

RFC标准轨迹由3个成熟级构成:提案标准、草案标准和标准。

第二章 计算机网络与因特网体系结构

根据拓扑结构:计算机网络可以分为总线型网、环型网、星型网和格状网。

根据覆盖范围:计算机网络可以分为广域网、城域网、局域网和个域网。

网络可以划分成:资源子网和通信子网两个部分。

网络协议是通信双方共同遵守的规则和约定的集合。网络协议包括三个要素,即语法、语义和同步规则。

通信双方对等层中完成相同协议功能的实体称为对等实体 ,对等实体按协议进行通信。

有线接入技术分为铜线接入、光纤接入和混合光纤同轴接入技术。

无线接入技术主要有卫星接入技术、无线本地环路接入和本地多点分配业务。

网关实现不同网络协议之间的转换。

因特网采用了网络级互联技术,网络级的协议转换不仅增加了系统的灵活性,而且简化了网络互联设备。

因特网对用户隐藏了底层网络技术和结构,在用户看来,因特网是一个统一的网络。

因特网将任何一个能传输数据分组的通信系统都视为网络,这些网络受到网络协议的平等对待。

TCP/IP 协议分为 4 个协议层 :网络接口层、网络层、传输层和应用层。

IP 协议既是网络层的核心协议 ,也是 TCP/IP 协议簇中的核心协议。

第四章 地址解析

建立逻辑地址与物理地址之间 映射的方法 通常有静态映射和动态映射。动态映射是在需要获得地址映射关系时利用网络通信协议直接从其他主机上获得映射信息。 因特网采用了动态映射的方法进行地址映射。

获得逻辑地址与物理地址之间的映射关系称为地址解析 。

地址解析协议 ARP 是将逻辑地址( IP 地址)映射到物理地址的动态映射协议。

ARP 高速缓存中含有最近使用过的 IP 地址与物理地址的映射列表。

在 ARP 高速缓存中创建的静态表项是永不超时的地址映射表项。

反向地址解析协议 RARP 是将给定的物理地址映射到逻辑地址( IP地址)的动态映射。RARP需要有RARP 服务器帮助完成解析。

ARP请求和 RARP请求,都是采用本地物理网络广播实现的。

在代理ARP中,当主机请求对隐藏在路由器后面的子网中的某一主机 IP 地址进行解析时,代理 ARP路由器将用自己的物理地址作为解析结果进行响应。

第五章 IP协议

IP是不可靠的无连接数据报协议,提供尽力而为的传输服务。

TCP/IP 协议的网络层称为IP层.

IP数据报在经过路由器进行转发时一般要进行三个方面的处理:首部校验、路由选择、数据分片

IP层通过IP地址实现了物理地址的统一,通过IP数据报实现了物理数据帧的统一。 IP 层通过这两个方面的统一屏蔽了底层的差异,向上层提供了统一的服务。

IP 数据报由首部和数据两部分构成 。首部分为定长部分和变长部分。选项是数据报首部的变长部分。定长部分 20 字节,选项不超过40字节。

IP 数据报中首部长度以 32 位字为单位 ,数据报总长度以字节为单位,片偏移以 8 字节( 64 比特)为单位。数据报中的数据长度 =数据报总长度-首部长度× 4。

IP 协议支持动态分片 ,控制分片和重组的字段是标识、标志和片偏移, 影响分片的因素是网络的最大传输单元 MTU ,MTU 是物理网络帧可以封装的最大数据字节数。通常不同协议的物理网络具有不同的MTU 。分片的重组只能在信宿机进行。

生存时间TTL是 IP 数据报在网络上传输时可以生存的最大时间,每经过一个路由器,数据报的TTL值减 1。

IP数据报只对首部进行校验 ,不对数据进行校验。

IP选项用于网络控制和测试 ,重要包括严格源路由、宽松源路由、记录路由和时间戳。

IP协议的主要功能 包括封装 IP 数据报,对数据报进行分片和重组,处理数据环回、IP选项、校验码和TTL值,进行路由选择等。

在IP 数据报中与分片相关的字段是标识字段、标志字段和片偏移字段。

数据报标识是分片所属数据报的关键信息,是分片重组的依据

分片必须满足两个条件: 分片尽可能大,但必须能为帧所封装 ;片中数据的大小必须为 8 字节的整数倍 ,否则 IP 无法表达其偏移量。

分片可以在信源机或传输路径上的任何一台路由器上进行,而分片的重组只能在信宿机上进行片重组的控制主要根据 数据报首部中的标识、标志和片偏移字段

IP选项是IP数据报首部中的变长部分,用于网络控制和测试目的 (如源路由、记录路由、时间戳等 ),IP选项的最大长度 不能超过40字节。

1、IP 层不对数据进行校验。

原因:上层传输层是端到端的协议,进行端到端的校验比进行点到点的校验开销小得多,在通信线路较好的情况下尤其如此。另外,上层协议可以根据对于数据可靠性的要求, 选择进行校验或不进行校验,甚至可以考虑采用不同的校验方法,这给系统带来很大的灵活性。

2、IP协议对IP数据报首部进行校验。

原因: IP 首部属于 IP 层协议的内容,不可能由上层协议处理。

IP 首部中的部分字段在点到点的传递过程中是不断变化的,只能在每个中间点重新形成校验数据,在相邻点之间完成校验。

3、分片必须满足两个条件:

分片尽可能大,但必须能为帧所封装 ;

片中数据的大小必须为8字节的整数倍,否则IP无法表达其偏移量。

第六章 差错与控制报文协议(ICMP)

ICMP 协议是 IP 协议的补充,用于IP层的差错报告、拥塞控制、路径控制以及路由器或主机信息的获取。

ICMP既不向信宿报告差错,也不向中间的路由器报告差错,而是 向信源报告差错 。

ICMP与 IP协议位于同一个层次,但 ICMP报文被封装在IP数据报的数据部分进行传输。

ICMP 报文可以分为三大类:差错报告、控制报文和请求 /应答报文。

ICMP 差错报告分为三种 :信宿不可达报告、数据报超时报告和数据报参数错报告。数据报超时报告包括 TTL 超时和分片重组超时。

数据报参数错包括数据报首部中的某个字段的值有错和数据报首部中缺少某一选项所必须具有的部分参数。

ICMP控制报文包括源抑制报文和重定向报文。

拥塞是无连接传输时缺乏流量控制机制而带来的问题。ICMP 利用源抑制的方法进行拥塞控制 ,通过源抑制减缓信源发出数据报的速率。

源抑制包括三个阶段 :发现拥塞阶段、解决拥塞阶段和恢复阶段。

ICMP 重定向报文由位于同一网络的路由器发送给主机,完成对主机的路由表的刷新。

ICMP 回应请求与应答不仅可以被用来测试主机或路由器的可达性,还可以被用来测试 IP 协议的工作情况。

ICMP时间戳请求与应答报文用于设备间进行时钟同步 。

主机利用 ICMP 路由器请求和通告报文不仅可以获得默认路由器的 IP 地址,还可以知道路由器是否处于活动状态。

第七章 IP 路由

数据传递分为直接传递和间接传递 ,直接传递是指直接传到最终信宿的传输过程。间接传递是指在信

源和信宿位于不同物理网络时,所经过的一些中间传递过程。

TCP/IP 采用 表驱动的方式 进行路由选择。在每台主机和路由器中都有一个反映网络拓扑结构的路由表,主机和路由器能够根据 路由表 所反映的拓扑信息找到去往信宿机的正确路径。

通常路由表中的 信宿地址采用网络地址 。路径信息采用去往信宿的路径中的下一跳路由器的地址表示。

路由表中的两个特殊表目是特定主机路由和默认路由表目。

路由表的建立和刷新可以采用两种不同 的方式:静态路由和动态路由。

自治系统 是由独立管理机构所管理的一组网络和路由器组成的系统。

路由器自动获取路径信息的两种基本方法是向量—距离算法和链路 —状态算法。

1、向量 — 距离 (Vector-Distance,简称 V—D)算法的基本思想 :路由器周期性地向与它相邻的路由器广播路径刷新报文,报文的主要内容是一组从本路由器出发去往信宿网络的最短距离,在报文中一般用(V,D)序偶表示,这里的 V 代表向量,标识从该路由器可以到达的信宿 (网络或主机 ),D 代表距离,指出从该路由器去往信宿 V 的距离, 距离 D 按照去往信宿的跳数计。 各个路由器根据收到的 (V ,D)报文,按照最短路径优先原则对各自的路由表进行刷新。

向量 —距离算法的优点是简单,易于实现。

缺点是收敛速度慢和信息交换量较大。

2、链路 — 状态 (Link-Status,简称 L-S)算法的基本思想 :系统中的每个路由器通过从其他路由器获得的信息,构造出当前网络的拓扑结构,根据这一拓扑结构,并利用 Dijkstra 算法形成一棵以本路由器为根的最短路径优先树, 由于这棵树反映了从本节点出发去往各路由节点的最短路径, 所以本节点就可以根据这棵最短路径优先树形成路由表。

动态路由所使用的路由协议包括用于自治系统内部的 内部网关协 议和用于自治系统之间的外部网关协议。

RIP协议在基本的向量 —距离算法的基础上 ,增加了对路由环路、相同距离路径、失效路径以及慢收敛问题的处理。 RIP 协议以路径上的跳数作为该路径的距离。 RIP 规定,一条有效路径的距离不能超过

RIP不适合大型网络。

RIP报文被封装在 UDP 数据报中传输。RIP使用 UDP 的 520 端口号。

3、RIP 协议的三个要点

仅和相邻路由器交换信息。

交换的信息是当前本路由器所知道的全部信息,即自己的路由表。

按固定的时间间隔交换路由信息,例如,每隔30秒。

4、RIP 协议的优缺点

RIP 存在的一个问题是当网络出现故障时,要经过比较长的时间才能将此信息传送到所有的路由器。

RIP 协议最大的优点就是实现简单,开销较小。

RIP 限制了网络的规模,它能使用的最大距离为15(16表示不可达)。

路由器之间交换的路由信息是路由器中的完整路由表,因而随着网络规模的扩大,开销也就增加。

5、为了防止计数到无穷问题,可以采用以下三种技术。

1)水平 分割 法(Split Horizon) 水平分割法的基本思想:路由器从某个接口接收到的更新信息不允许再从这个接口发回去。在图 7-9 所示的例子中, R2 向 R1 发送 V-D 报文时,不能包含经过 R1 去往 NET1的路径。因为这一信息本身就是 R1 所产生的。

2) 保持法 (Hold Down) 保持法要求路由器在得知某网络不可到达后的一段时间内,保持此信息不变,这段时间称为保持时间,路由器在保持时间内不接受关于此网络的任何可达性信息。

3) 毒性逆转法 (Poison Reverse)毒性逆转法是水平分割法的一种变化。当从某一接口发出信息时,凡是从这一接口进来的信息改变了路由表表项的, V-D 报文中对应这些表目的距离值都设为无穷 (16)。

OSPF 将自治系统进一步划分为区域,每个区域由位于同一自治系统中的一组网络、主机和路由器构成。区域的划分不仅使得广播得到了更好的管理,而且使 OSPF能够支持大规模的网络。

OSPF是一个链路 —状态协议。当网络处于收敛状态时, 每个 OSPF路由器利用 Dijkstra 算法为每个网络和路由器计算最短路径,形成一棵以本路由器为根的最短路径优先 (SPF)树,并根据最短路径优先树构造路由表。

OSPF直接使用 IP。在IP首部的协议字段, OSPF协议的值为 89。

BGP 是采用路径 —向量算法的外部网关协议 , BGP 支持基于策略的路由,路由选择策略与政治、经济或安全等因素有关。

BGP 报文分为打开、更新、保持活动和通告 4 类。BGP 报文被封装在 TCP 段中传输,使用TCP的179 号端口 。

第八章 传输层协议

传输层承上启下,屏蔽通信子网的细节,向上提供通用的进程通信服务。传输层是对网络层的加强与弥补。 TCP 和 UDP 是传输层 的两大协议。

端口分配有两种基本的方式:全局端口分配和本地端口分配。

在因特网中采用一个 三元组 (协议,主机地址,端口号)来全局惟一地标识一个进程。用一个五元组(协议 ,本地主机地址 ,本地端口号 ,远地主机地址 ,远地端口号)来描述两个进程的关联。

TCP 和 UDP 都是提供进程通信能力的传输层协议。它们各有一套端口号,两套端口号相互独立,都是从0到 65535。

TCP 和 UDP 在计算校验和时引入伪首部的目的是为了能够验证数据是否传送到了正确的信宿端。

为了实现数据的可靠传输, TCP 在应用进程间 建立传输连接 。TCP 在建立连接时采用 三次握手方法解决重复连接的问题。在拆除连接时采用 四次握手 方法解决数据丢失问题。

建立连接前,服务器端首先被动打开其熟知的端口,对端口进行监听。当客户端要和服务器建立连接时,发出一个主动打开端口的请求,客户端一般使用临时端口。

TCP 采用的最基本的可靠性技术 包括流量控制、拥塞控制和差错控制。

TCP 采用 滑动窗口协议 实现流量控制,滑动窗口协议通过发送方窗口和接收方窗口的配合来完成传输控制。

TCP 的 拥塞控制 利用发送方的窗口来控制注入网络的数据流的速度。发送窗口的大小取通告窗口和拥塞窗口中小的一个。

TCP通过差错控制解决 数据的毁坏、重复、失序和丢失等问题。

UDP 在 IP 协议上增加了进程通信能力。此外 UDP 通过可选的校验和提供简单的差错控制。但UDP不提供流量控制和数据报确认 。

1、传输层( Transport Layer)的任务 是向用户提供可靠的、透明的端到端的数据传输,以及差错控制和流量控制机制。

2 “传输层提供应用进程间的逻辑通信 ”。“逻辑通信 ”的意思是:传输层之间的通信好像是沿水平方向传送数据。但事实上这两个传输层之间并没有一条水平方向的物理连接。

TCP 提供的可靠传输服务有如下五个特征 :

面向数据流 ; 虚电路连接 ; 有缓冲的传输 ; 无结构的数据流 ; 全双工连接 .

3、TCP 采用一种名为 “带重传功能的肯定确认 ( positive acknowledge with retransmission ) ”的技术作为提供可靠数据传输服务的基础。

第九章 域名系统

字符型的名字系统为用户提供了非常直观、便于理解和记忆的方法,非常符合用户的命名习惯。

因特网采用层次型命名机制 ,层次型命名机制将名字空间分成若干子空间,每个机构负责一个子空间的管理。 授权管理机构可以将其管理的子名字空间进一步划分, 授权给下一级机构管理。名字空间呈一种树形结构。

域名由圆点 “.”分开的标号序列构成 。若域名包含从树叶到树根的完整标号串并以圆点结束,则称该域名为完全合格域名FQDN。

常用的三块顶级域名 为通用顶级域名、国家代码顶级域名和反向域的顶级域名。

TCP/IP 的域名系统是一个有效的、可靠的、通用的、分布式的名字 —地址映射系统。区域是 DNS 服务器的管理单元,通常是指一个 DNS 服务器所管理的名字空间 。区域和域是不同的概念,域是一个完整的子树,而区域可以是子树中的任何一部分。

名字服务器的三种主要类型是 主名字服务器、次名字服务器和惟高速缓存名字服务器。主名字服务器拥有一个区域文件的原始版本,次名字服务器从主名字服务器那里获得区域文件的拷贝,次名字服务器通过区域传输同主名字服务器保持同步。

DNS 服务器和客户端属于 TCP/IP 模型的应用层, DNS 既可以使用 UDP,也可以使用 TCP 来进行通信。 DNS 服务器使用 UDP 和 TCP 的 53 号熟知端口。

DNS 服务器能够使用两种类型的解析: 递归解析和反复解析 。

DNS 响应报文中的回答部分、授权部分和附加信息部分由资源记录构成,资源记录存放在名字服务器的数据库中。

顶级域 cn 次级域 e.cn 子域 njust.e.cn 主机 sery.njust.e.cn

TFTP :普通文件传送协议( Trivial File Transfer Protocol )

RIP: 路由信息协议 (Routing Information Protocol)

OSPF 开放最短路径优先 (Open Shortest Path First)协议。

EGP 外部网关协议 (Exterior Gateway Protocol)

BGP 边界网关协议 (Border Gateway Protocol)

DHCP 动态主机配置协议( Dynamic Host Configuration Protocol)

Telnet工作原理 : 远程主机连接服务

FTP 文件传输工作原理 File Transfer Protocol

SMTP 邮件传输模型 Simple Message Transfer Protocol

HTTP 工作原理

③ 常用的网络协议有哪些

网络协议为计算机网络中进行数据交换而建立的规则、标准或约定的集合。网络协议的本质是规则,即各种硬件和软件必须遵循的共同守则。网络协议并不是一套单独的软件,它融合于其他所有的软件系统中,因此可以说,协议在网络中无所不在。网络协议遍及OSI通信模型的各个层次,从我们非常熟悉的TCP/IP、HTTP、FTP协议,到OSPF、IGP等协议,有上千种之多。

常见的网络协议有以下几种:

TCP/IP协议、IPX/SPX协议、NetBEUI协议

TCP/IP是“transmissionControlProtocol/InternetProtocol”的简写,中文译名为传输控制协议/互联网络协议)协议,TCP/IP(传输控制协议/网间协议)是一种网络通信协议,它规范了网络上的所有通信设备,尤其是一个主机与另一个主机之间的数据往来格式以及传送方式。TCP/IP是INTERNET的基础协议,也是一种电脑数据打包和寻址的标准方法。在数据传送中,可以形象地理解为有两个信封,TCP和IP就像是信封,要传递的信息被划分成若干段,每一段塞入一个TCP信封,并在该信封面上记录有分段号的信息,再将TCP信封塞入IP大信封,发送上网。在接受端,一个TCP软件包收集信封,抽出数据,按发送前的顺序还原,并加以校验,若发现差错,TCP将会要求重发。因此,TCP/IP在INTERNET中几乎可以无差错地传送数据。对普通用户来说,并不需要了解网络协议的整个结构,仅需了解IP的地址格式,即可与世界各地进行网络通信。

IPX/SPX是基于施乐的XEROX’SNetworkSystem(XNS)协议,而SPX是基于施乐的XEROX’SSPP(SequencedPacketProtocol:顺序包协议)协议,它们都是由novell公司开发出来应用于局域网的一种高速协议。它和TCP/IP的一个显着不同就是它不使用ip地址,而是使用网卡的物理地址即(MAC)地址。在实际使用中,它基本不需要什么设置,装上就可以使用了。由于其在网络普及初期发挥了巨大的作用,所以得到了很多厂商的支持,包括microsoft等,到现在很多软件和硬件也均支持这种协议。

NetBEUI即NetBiosEnhancedUserInterface,或NetBios增强用户接口。它是NetBIOS协议的增强版本,曾被许多操作系统采用,例如WindowsforWorkgroup、Win9x系列、WindowsNT等。NETBEUI协议在许多情形下很有用,是WINDOWS98之前的操作系统的缺省协议。总之NetBEUI协议是一种短小精悍、通信效率高的广播型协议,安装后不需要进行设置,特别适合于在“网络邻居”传送数据。所以建议除了TCP/IP协议之外,局域网的计算机最好也安上NetBEUI协议。另外还有一点要注意,如果一台只装了TCP/IP协议的WINDOWS98机器要想加入到WINNT域,也必须安装NetBEUI协议。

Telnet(RemoteLogin):提供远程登录功能,一台计算机用户可以登录到远程的另一台计算机上,如同在远程主机上直接操作一样。
FTP(FileTransferProtocol):远程文件传输协议,允许用户将远程主机上的文件拷贝到自己的计算机上。
SMTP(SimpleMailtransferProtocol):简单邮政传输协议,用于传输电子邮件。
NFS(NetworkFileServer):网络文件服务器,可使多台计算机透明地访问彼此的目录。
UDP(UserDatagramProtocol):用户数据包协议,它和TCP一样位于传输层,和IP协议配合使用,在传输数据时省去包头,但它不能提供数据包的重传,所以适合传输较短的文件。

其余还有DNSFTPTELNETSMTPPOP3等等。

拓展资料:

网络协议是由三个要素组成:

  • 语义:语义是解释控制信息每个部分的意义。它规定了需要发出何种控制信息,以及完成的动作与做出什么样的响应。

  • 语法:语法是用户数据与控制信息的结构与格式,以及数据出现的顺序。

  • 时序:时序是对事件发生顺序的详细说明。(也可称为“同步”)。

人们形象地把这三个要素描述为:语义表示要做什么,语法表示要怎么做,时序表示做的顺序。

④ 计算机网络协议有哪些

网络协议

1、协议:通信双方所共同遵守的规则。

2、网络协议:计算机在网络中实现通信时必须遵守的规则和约定。

每个网络中至少要选择一种网络协议。具体选择哪一种网络通信协议主要取决于网络的规模、网败则络的兼容性和网络管理等几个方面。常接触的局域网中,一般使用NETBEUT、IPX/SPX和TCP/IP三种协议。
NETBEUI:是为IBM开发的非路由协议,用于携带NETBIOS通信。NETBEUI缺乏路由和网络层寻址功能,既是其最大的优点,也是其最大的缺点。因为它不需要附加的网络地址和网络层头尾,所以很快并很有效且适用于只有单个网络或整个环境都桥接起来的小工作组环境。
IPX/SPX:它是由Novell提出的用于客户/服务器相连的网络协议。使用IPX/SPX协议能运行通常需要NetBEUI支持的程序,通过IPX/SPX协议可以跨过路由器访问其他网络。IPX具有完全的路由能力,可用于大型企业网。
TCP/IP:TCP/IP是在60年代由麻省理工学院和一些商业组织为美国国防部开发的,即便遭到核攻击而破坏了大部分网络,TCP/IP仍然能够维持有效的通信。TCP/IP同时具备了可扩展性和可靠性的需求。每种网络协议都有自己的优点,但是只有含枯凳TCP/IP允许与Internet完全的连接。TCP/IP的32位寻址功能方案不足以支持即将加入Internet的主机和网络数。因谈旅而可能代替当前实现的标准是IPv6。

⑤ 计算机网络协议有哪些

应用层
·DHCP(动态主机分配协议) · DNS (域名解析) · FTP(File Transfer Protocol)文件传输协议 · Gopher (英文原义:The Internet Gopher Protocol 中文释义:(RFC-1436)网际Gopher协议) · HTTP (Hypertext Transfer Protocol)超文本传输协议 · IMAP4 (Internet Message Access Protocol 4) 即 Internet信息访问协议的第4版本 · IRC (Internet Relay Chat )网络聊天协议 · NNTP (Network News Transport Protocol)RFC-977)网络新闻传输协议 · XMPP 可扩展消息处理现场协议 · POP3 (Post Office Protocol 3)即邮局协议的第3个版本 · SIP 信令控制协议 · SMTP (Simple Mail Transfer Protocol)即简单邮件传输协议 · SNMP (Simple Network Management Protocol,简单网络管理协议) · SSH (Secure Shell)安全外壳协议 · TELNET 远程登录协议 · RPC (Remote Procere Call Protocol)(RFC-1831)远程过程调用协议 · RTCP (RTP Control Protocol)RTP 控制协议 · RTSP (Real Time Streaming Protocol)实时流传输协议 · TLS (Transport Layer Security Protocol)安全传输层协议 · SDP( Session Description Protocol)会话描述协议 · SOAP (Simple Object Access Protocol)简单对象访问协议 · GTP 通用数据传输平台 · STUN (Simple Traversal of UDP over NATs,NAT 的UDP简单穿越)是一种网络协议 · NTP (Network Time Protocol)网络校时协议
传输层
·TCP(Transmission Control Protocol) 传输控制协议 · UDP (User Datagram Protocol) 用户数据报协议 · DCCP (Datagram Congestion Control Protocol)数据报拥塞控制协议 · SCTP(STREAM CONTROL TRANSMISSION PROTOCOL)流控制传输协议 · RTPReal-time Transport Protocol或简写RTP)实时传送协议 · RSVP (Resource ReSer Vation Protocol)资源预留协议 · PPTP ( Point to Point Tunneling Protocol)点对点隧道协议
网络层
IP (IPv4 · IPv6) · ARP · RARP · ICMP · ICMPv6 · IGMP · RIP · OSPF · BGP · IS-IS · IPsec
数据链路层
802.11 · 802.16 · Wi-Fi · WiMAX · ATM · DTM · 令牌环 · 以太网 · FDDI · 帧中继 · GPRS · EVDO · HSPA · HDLC · PPP · L2TP · ISDN
物理层
以太网物理层 · 调制解调器 · PLC · SONET/SDH · G.709 · 光导纤维 · 同轴电缆 · 双绞线

⑥ OSI七层模型的每一层都有哪些协议谢谢!

第一层:物理层

物理层规定了激活、维持、关闭通信端点之间的机械特性、电气特性、功能特性以及过程特性。该层为上层协议提供了一个传输数据的物理媒体。只是说明标准。在这一层,数据的单位称为比特(bit)。

属于物理层定义的典型规范代表包括:EIA/TIA RS-232、EIA/TIA RS-449、V.35、RJ-45、fddi令牌环网等。

第二层:数据链路层

数据链路层在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。在这一层,数据的单位称为帧(frame)。数据链路层协议的代表包括:ARP、RARP、SDLC、HDLC、PPP、STP、帧中继等

第三层:网络层

网络层负责对子网间的数据包进行路由选择。网络层还可以实现拥塞控制、网际互连等功能。在这一层,数据的单位称为数据包(packet)。网络层协议的代表包括:IP、IPX、RIP、OSPF等。

第四层:传输层

传输层是第一个端到端,即主机到主机的层次。传输层负责将上层数据分段并提供端到端的、可靠的或不可靠的传输。此外,传输层还要处理端到端的差错控制和流量控制问题。在这一层,数据的单位称为数据段(segment)。传输层协议的代表包括:TCP、UDP、SPX等

第五层:会话层

会话层管理主机之间的会话进程,即负责建立、管理、终止进程之间的会话。会话层还利用在数据中插入校验点来实现数据的同步。会话层协议的代表包括:RPC、SQL、NFS 、X WINDOWS、ASP

第六层:表示层

表示层对上层数据或信息进行变换以保证一个主机应用层信息可以被另一个主机的应用程序理解。表示层的数据转换包括数据的加密、压缩、格式转换等。表示层协议的代表包括:ASCII、PICT、TIFF、JPEG、 MIDI、MPEG

第七层:应用层

应用层为操作系统或网络应用程序提供访问网络服务的接口。应用层协议的代表包括:Telnet、FTP、HTTP、SNMP等。

(6)计算机网络列举各层常见的协议扩展阅读:

谈到网络不能不谈OSI参考模型,OSI参考模型(OSI/RM)的全称是开放系统互连参考模型(Open SystemInterconnection Reference Model,OSI/RM),它是由国际标准化组织ISO提出的一个网络系统互连模型。虽然OSI参考模型的实际应用意义不是很大,但其的确对于理解网络协议内部的运作很有帮助,也为我们学习网络协议提供了一个很好的参考

七层理解:

物理层:物理接口规范,传输比特流,网卡是工作在物理层的。

数据层:成帧,保证帧的无误传输,MAC地址,形成EHTHERNET帧

网络层:路由选择,流量控制,IP地址,形成IP包

传输层:端口地址,如HTTP对应80端口。TCP和UDP工作于该层,还有就是差错校验和流量控制。

会话层:组织两个会话进程之间的通信,并管理数据的交换使用NETBIOS和WINSOCK协议。QQ等软件进行通讯因该是工作在会话层的。

表示层:使得不同操作系统之间通信成为可能。

应用层:对应于各个应用软

⑦ 常用的网络协议有哪些

常见的有以下几种协议

(1)HTTP协议(超文本传输协议)

(2)HTTPS协议(安全超文本传输协议)

(3)TCP协议(传输控制协议)

主要用于网间传输的协议,分割处理报文并把结果包传到IP层,并接收处理IP曾传到的数据包

(4)IP协议(网络互连协议)

(5)FTP协议(文件传输协议)

(6)SMTP协议(简单邮件传输协议)

(7)Telnet协议

Telnet是TCP/IP中的一种应用协议,可以为终端仿真提供支持。

AR7091

爱陆通的工业网关支持MQTT协议以及华为/阿里/电信/移动等主流IOT物联网平台,满足工控 OPCUA 协议与 MODBUS 协议转换。

⑧ 网络协议分别是哪七层协议

根据建议X.200,OSI将计算机网络体系结构划分为以下七层,标有1~7,第1层在底部。 现“OSI/RM”是英文“Open Systems Interconnection Reference Model”的缩写。

  • 第7层 应用层

  • 应用层(Application Layer)提供为应用软件而设的界面,以设置与另一应用软件之间的通信。例如: HTTP,HTTPS,FTP,TELNET,SSH,SMTP,POP3等。

  • 第6层 表示层

  • 表示层(Presentation Layer)把数据转换为能与接收者的系统格式兼容并适合传输的格式。

  • 第5层 会话层

  • 会话层(Session Layer)负责在数据传输中设置和维护电脑网络中两台电脑之间的通信连接。

  • 第4层 传输层

  • 传输层(Transport Layer)把传输表头(TH)加至数据以形成数据包。传输表头包含了所使用的协议等发送信息。例如:传输控制协议(TCP)等。

  • 第3层 网络层

  • 网络层(Network Layer)决定数据的路径选择和转寄,将网络表头(NH)加至数据包,以形成分组。网络表头包含了网络数据。例如:互联网协议(IP)等。

  • 第2层 数据链路层

  • 数据链路层(Data Link Layer)负责网络寻址、错误侦测和改错。当表头和表尾被加至数据包时,会形成帧。数据链表头(DLH)是包含了物理地址和错误侦测及改错的方法。数据链表尾(DLT)是一串指示数据包末端的字符串。例如以太网、无线局域网(Wi-Fi)和通用分组无线服务(GPRS)等。分为两个子层:逻辑链路控制(logic link control,LLC)子层和介质访问控制(media access control,MAC)子层。

  • 第1层 物理层

  • 物理层(Physical Layer)在局部局域网上传送数据框(frame),它负责管理电脑通信设备和网络媒体之间的互通。包括了针脚、电压、线缆规范、集线器、中继器、网卡、主机适配器等。

其中高层(即7、6、5、4层)定义了应用程序的功能,下面3层(即3、2、1层)主要面向通过网络的端到端的数据流。

⑨ 我们经常使用的计算机网络协议主要有哪些

常用的网络协议有:x0dx0ax0dx0aIP/IPv4:网际协议x0dx0aTCP:传输控制协议x0dx0aIGMP:Internet 组管理协议x0dx0aICMP/ICMPv6:Internet控制信息协议x0dx0aSNMP:简单网络管理协议x0dx0aDNS:域名系统(服务)协议x0dx0ax0dx0a具体介绍:x0dx0ax0dx0aIP/IPv4:网际协议x0dx0ax0dx0a 网际协议(IP)是一个网络层协议,它包含寻址信息和控制信息 ,可使数据包在网络中路由。IP 协议是 TCP/IP 协议族中的主要网络层协议,与 TCP 协议结合组成整个因特网协议的核心协议。IP 协议同样都适用于 LAN 和 WAN 通信。x0dx0ax0dx0a IP 协议有两个基本任务:提供无连接的和最有效的数据包传送;提供数据包的分割及重组以支持不同最大传输单元大小的数据连接。对于互联网络中 IP 数据报的路由选择处理,有一套完善的 IP 寻址方式。每一个 IP 地址都有其特定的组成但同时遵循基本格式。IP 地址可以进行细分并可用于建立子网地址。TCP/IP 网络中的每台计算机都被分配了一个唯一的 32 位逻辑地址,这个地址分为两个主要部分:网络号和主机号。网络号用以确认网络,如果该网络是因特网的一部分,其网络号必须由 InterNIC 统一分配。一个网络服务器供应商(ISP)可以从 InterNIC 那里获得一块网络地址,按照需要自己分配地址空间。主机号确认网络中的主机,它由本地网络管理员分配。x0dx0ax0dx0a 当你发送或接受数据时(例如,一封电子信函或网页),消息分成若干个块,也就是我们所说的“包”。每个包既包含发送者的网络地址又包含接受者的地址。由于消息被划分为大量的包,若需要,每个包都可以通过不同的网络路径发送出去。包到达时的顺序不一定和发送顺序相同, IP 协议只用于发送包,而 TCP 协议负责将其按正确顺序排列。x0dx0ax0dx0a 除了 ARP 和 RARP,其它所有 TCP/IP 族中的协议都是使用 IP 传送主机与主机间的通信。当前 IP 协议有两种版本:IPv4 和 IPv6。本文主要阐述 IPv4 。IPv6 的相关细节将在其它文件中再作介绍。 x0dx0ax0dx0aTCP:传输控制协议x0dx0a 传输控制协议 TCP 是 TCP/IP 协议栈中的传输层协议,它通过序列确认以及包重发机制,提供可靠的数据流发送和到应用程序的虚拟连接服务。与 IP 协议相结合, TCP 组成了因特网协议的核心。 x0dx0ax0dx0a 由于大多数网络应用程序都在同一台机器上运行,计算机上必须能够确保目的地机器上的软件程序能从源地址机器处获得数据包,以及源计算机能收到正确的回复。这是通过使用 TCP 的“端口号”完成的。网络 IP 地址和端口号结合成为唯一的标识 , 我们称之为“套接字”或“端点”。 TCP 在端点间建立连接或虚拟电路进行可靠通信。x0dx0ax0dx0a TCP 服务提供了数据流传输、可靠性、有效流控制、全双工操作和多路复用技术等。x0dx0ax0dx0a 关于流数据传输 ,TCP 交付一个由序列号定义的无结构的字节流。 这个服务对应用程序有利,因为在送出到 TCP 之前应用程序不需要将数据划分成块, TCP 可以将字节整合成字段,然后传给 IP 进行发送。x0dx0ax0dx0a TCP 通过面向连接的、端到端的可靠数据报发送来保证可靠性。 TCP 在字节上加上一个递进的确认序列号来告诉接收者发送者期望收到的下一个字节。如果在规定时间内,没有收到关于这个包的确认响应,重新发送此包。 TCP 的可靠机制允许设备处理丢失、延时、重复及读错的包。超时机制允许设备监测丢失包并请求重发。x0dx0ax0dx0a TCP 提供了有效流控制。当向发送者返回确认响应时,接收 TCP 进程就会说明它能接收并保证缓存不会发生溢出的最高序列号。x0dx0ax0dx0a 全双工操作: TCP 进程能够同时发送和接收包。x0dx0ax0dx0a TCP 中的多路技术:大量同时发生的上层会话能在单个连接上时进行多路复用。x0dx0ax0dx0aIGMP:Internet 组管理协议x0dx0a Internet 组管理协议(IGMP)是因特网协议家族中的一个组播协议,用于 IP 主机向任一个直接相邻的路由器报告他们的组成员情况。IGMP 信息封装在 IP 报文中,其 IP 的协议号为 2。IGMP 具有三种版本,即 IGMP v1、v2 和 v3。x0dx0ax0dx0aIGMPv1: 主机可以加入组播组。没有离开信息(leave messages)。路由器使用基于超时的机制去发现其成员不关注的组。 x0dx0aIGMPv2: 该协议包含了离开信息,允许迅速向路由协议报告组成员终止情况,这对高带宽组播组或易变型组播组成员而言是非常重要的。 x0dx0aIGMPv3: 与以上两种协议相比,该协议的主要改动为:允许主机指定它要接收通信流量的主机对象。来自网络中其它主机的流量是被隔离的。IGMPv3 也支持主机阻止那些来自于非要求的主机发送的网络数据包。 x0dx0a IGMP 协议变种有: x0dx0ax0dx0a距离矢量组播路由选择协议(DVMRP: Distance Vector Multicast Routing Protocol) x0dx0aIGMP 用户认证协议 (IGAP: IGMP for user Authentication Protocol) x0dx0a路由器端口组管理协议(RGMP: Router-port Group Management Protocol) x0dx0ax0dx0aICMP/ICMPv6:Internet控制信息协议x0dx0a Internet 控制信息协议(ICMP)是 IP 组的一个整合部分。通过 IP 包传送的 ICMP 信息主要用于涉及网络操作或错误操作的不可达信息。ICMP 包发送是不可靠的,所以主机不能依靠接收 ICMP 包解决任何网络问题。ICMP 的主要功能如下:x0dx0ax0dx0a 通告网络错误。比如,某台主机或整个网络由于某些故障不可达。如果有指向某个端口号的 TCP 或 UDP 包没有指明接受端,这也由 ICMP 报告。x0dx0ax0dx0a 通告网络拥塞。当路由器缓存太多包,由于传输速度无法达到它们的接收速度,将会生成“ ICMP 源结束”信息。对于发送者,这些信息将会导致传输速度降低。当然,更多的 ICMP 源结束信息的生成也将引起更多的网络拥塞,所以使用起来较为保守。x0dx0ax0dx0a 协助解决故障。ICMP 支持 Echo 功能,即在两个主机间一个往返路径上发送一个包。 Ping 是一种基于这种特性的通用网络管理工具,它将传输一系列的包,测量平均往返次数并计算丢失百分比。x0dx0ax0dx0a 通告超时。如果一个 IP 包的 TTL 降低到零,路由器就会丢弃此包,这时会生成一个 ICMP 包通告这一事实。TraceRoute 是一个工具,它通过发送小 TTL 值的包及监视 ICMP 超时通告可以显示网络路由。x0dx0ax0dx0a ICMP 在 IPv6 定义中重新修订。此外, IPv4 组成员协议(IGMP)的多点传送控制功能也嵌入到 ICMPv6 中。 x0dx0ax0dx0aSNMP:简单网络管理协议x0dx0a SNMP 是专门设计用于在 IP 网络管理网络节点(服务器、工作站、路由器、交换机及 HUBS 等)的一种标准协议,它是一种应用层协议。 SNMP 使网络管理员能够管理网络效能,发现并解决网络问题以及规划网络增长。通过 SNMP 接收随机消息(及事件报告)网络管理系统获知网络出现问题。x0dx0ax0dx0a SNMP 管理的网络有三个主要组成部分:管理的设备、代理和网络管理系统。管理设备是一个网络节点,包含 ANMP 代理并处在管理网络之中。被管理的设备用于收集并储存管理信息。通过 SNMP , NMS 能得到这些信息。被管理设备,有时称为网络单元,可能指路由器、访问服务器,交换机和网桥、 HUBS 、主机或打印机。 SNMP 代理是被管理设备上的一个网络管理软件模块。 SNMP 代理拥有本地的相关管理信息,并将它们转换成与 SNMP 兼容的格式。 NMS 运行应用程序以实现监控被管理设备。此外, NMS 还为网络管理提供了大量的处理程序及必须的储存资源。任何受管理的网络至少需要一个或多个 NMS 。x0dx0ax0dx0a 目前, SNMP 有 3 种: SNMPV1 、 SNMPV2 、 SNMPV3。第 1 版和第 2 版没有太大差距,但 SNMPV2 是增强版本,包含了其它协议操作。与前两种相比, SNMPV3 则包含更多安全和远程配置。为了解决不同 SNMP 版本间的不兼容问题, RFC3584 种定义了三者共存策略。x0dx0ax0dx0a SNMP 还包括一组由 RMON 、 RMON2 、 MTB 、 MTB2 、 OCDS 及 OCDS 定义的扩展协议。 x0dx0ax0dx0aDNS:域名系统(服务)协议x0dx0a 域名系统(服务)协议(DNS)是一种分布式网络目录服务,主要用于域名与 IP 地址的相互转换,以及控制因特网的电子邮件的发送。大多数因特网服务依赖于 DNS 而工作,一旦 DNS 出错,就无法连接 Web 站点,电子邮件的发送也会中止。x0dx0ax0dx0a DNS 有两个独立的方面 : x0dx0ax0dx0a定义了命名语法和规范,以利于通过名称委派域名权限。基本语法是: local.group.site; x0dx0a定义了如何实现一个分布式计算机系统,以便有效地将域名转换成 IP 地址。 x0dx0a 在 DNS 命名方式中,采用了分散和分层的机制来实现域名空间的委派授权以及域名与地址相转换的授权。通过使用 DNS 的命名方式来为遍布全球的网络设备分配域名,而这则是由分散在世界各地的服务器实现的。x0dx0ax0dx0a 理论上, DNS 协议中的域名标准阐述了一种可用任意标签值的分布式的抽象域名空间。任何组织都可以建立域名系统,为其所有分布结构选择标签,但大多数 DNS 协议用户遵循官方因特网域名系统使用的分级标签。常见的顶级域是: COM 、 EDU 、 GOV 、 NET 、 ORG 、 BIZ ,另外还有一些带国家代码的顶级域。x0dx0ax0dx0a DNS 的分布式机制支持有效且可靠的名字到 IP 地址的映射。多数名字可以在本地映射,不同站点的服务器相互合作能够解决大网络的名字与 IP 地址的映射问题。单个服务器的故障不会影响 DNS 的正确操作。 DNS 是一种通用协议,它并不仅限于网络设备名称。

⑩ 计算机网络的应用层协议主要有哪些

应用层协议包含以下内容:

1、DNS:域名系统DNS是因特网使用的命名系统,用来把便于人们使用的机器名字转换为IP地址。

2、FTP:文件传输协议FTP是因特网上使用得最广泛的文件传送协议。FTP提供交互式的访问,允许客户指明文件类型与格式镇桥,并允许文件具有存取权限。FTP其于TCP。

3、telnet远程终端协议御乱猛:telnet是一个简单的远程终端协议,它也是因特网的正式标准。又称为终端仿真协议。

4、HTTP:超文本传送协议,是面向事务的应用层协议,它是万维网上能够可靠地交换文件的重要基础。http使用面向连接的TCP作为运输层协议,保证了数据的可靠传输。

5、电子邮件协议SMTP:即简单邮件传送协议。SMTP规定了在两个相互通信的SMTP进程之间应如何交换信息。SMTP通信的三个陪旁阶段:建立连接、邮件传送、连接释放。

6、POP3:邮件读取协议,POP3(Post Office Protocol 3)协议通常被用来接收电子邮件。

7、远程登录协议(Telnet):用于实现远程登录功能。

8、SNMP:简单网络管理协议。由三部分组成:SNMP本身、管理信息结构SMI和管理信息MIB。SNMP定义了管理站和代理之间所交换的分组格式。SMI定义了命名对象类型的通用规则,以及把对象和对象的值进行编码。MIB在被管理的实体中创建了命名对象,并规定类型。