Ⅰ 常见的网络拓扑结构主要有哪几种,各有什么特点
1、常见的网络拓扑结构主要有星型结构、环型结构、总线结构、分布式结构、树型结构、网状结构、蜂窝状结构等。
2、特点
①星型结构。星型结构是最古老的一种连接方式,大家每天都使用的电话属于这种结构。一般网络环境都被设计成星型拓扑结构。星型网是广泛而又首选使用的网络拓扑设计之一。
星型结构是指各工作站以星型方式连接成网。网络有中央节点,其他节点(工作站、服务器)都与中央节点直接相连,这种结构以中央节点为中心,因此又称为集中式网络。
星型拓扑结构便于集中控制,因为端用户之间的通信必须经过中心站。由于这一特点,也带来了易于维护和安全等优点。端用户设备因为故障而停机时也不会影响其它端用户间的通信。同时星型拓扑结构的网络延迟时间较小,系统的可靠性较高。
⑦蜂窝拓扑结构是无线局域网中常用的结构,它以无线传输介质(微波、卫星、红外等)点到点和多点传输为特征,是一种无线网,适用于城市网、校园网、企业网。
拓展资料:
拓扑这个名词是从几何学中借用来的。网络拓扑是网络形状,或者是网络在物理上的连通性。网络拓扑结构是指用传输媒体互连各种设备的物理布局,即用什么方式把网络中的计算机等设备连接起来。拓扑图给出网络服务器、工作站的网络配置和相互间的连接。网络的拓扑结构有很多种,主要有星型结构、环型结构、总线结构、分布式结构、树型结构、网状结构、蜂窝状结构等。
计算机网络一般由以下几个部分组成:
一、
综合布线系统
布线系统是构建计算机网络通信传输的基础设施,主要用于互联网设备和终端设备。布线系统分为干线子系统、水平子系统、工作区子系统、建筑群子系统和管理间,通常包括主干线缆、水平线缆、信息插座、配线架、跳线和适配器等。
二、网络交换设备
网络交换设备主要指构建计算机网络所采用的各类交换机,如模块化(也称机柜式)
交换机、固定端口(含堆叠式)交换机等。
三、网络接入设备
是指把计算机和数据设备接入网络的一种接口设备。
(一)网络接口卡(NIC):简称为网卡,通过电缆和插头将计算机(服务器和
工作站)连接到网络中。网卡的种类很多,取决于所使用的网络交换设备和传输介质。
(二)访问服务器+调制解调器:用于通过公共电话网络(PSTN)访问
Internet
和实现远程互连。优点是费用低,灵活、方便。缺点是传输速率低。
四、网络互连设备
为了提供网间互连以及访问Internet,需要使用网络互连设备。目前常用的网络互连设备主要有三层交换机、路由器、网桥和网关等。
五、网络服务器
网络服务器是计算机网络中最核心的设备之一,它既是网络服务的提供者,又是数据的集散地。
按应用分类,网络服务器可分为:
l
数据库服务器
l
Web服务器
l
邮件服务器
l
视频点播(VOD)服务器
l
文件服务器等
按硬件性能分类,网络服务器可分为:
l
PC服务器
l
工作站服务器
l
小型机服务器
l
大型机服务器等。
六、工作站
工作站是连接到计算机网络的计算机,工作站既可以独立工作,也可以访问服务器,共享网络资源。
七、网络外部设备
网络外部设备通常是网络用户共享的昂贵设备,例如网络打
印机、大容量存储设备(如磁盘阵列)、绘图仪等。
八、网络操作系统
网络操作系统是网络的核心和灵魂,其主要功能包括控制管理网络运行、资源管理、文件管理、用户管理和系统管理等。目前,常用的网络操作系统有
Unix族、Wndows
NT、Netware、
Linux等。
九、网络应用基础平台与应用软件
网络应用基础平台是用于构造计算机网络信息服务和应用的一组基础服务系统的集合,它包括数据库系统、Web服务系统、文件系统、工作流定义工具等。应用软件则主要包括网络通用软件工具和专有应用系统两类。典型的专有应用系统有:
l
管理信息系统(MIS)
l
办公自动化系统(OA)
l
财务管理软件
l
ERP、CIMS等。
十、不间断电源(UPS)
UPS是确保网络可靠供电所不可缺少的设备,对保护网络服务器、网络交换设备和运行关键业务的工作站是十分必要的。
81600168
11:34:10
十一、机房
由于计算机网络设备对运行环境要求很高,例如温度、湿度、空气和防静电等,因此,通常要对机房进行装修。
十二、网络管理系统
网络管理系统是现代网络系统所必需的组成部分。通过网络管理系统,网络管理员能监视网络的运行状态,控制网络运行参数,提高网络的性能,减轻网络管理和维护人员的工作负担。
十三、网络安全软硬件
由于电子商务的出现,人们对网络安全越来越重视,网络安全已成为影响网络发展的重大问题。目前,网络安全产品主要有防火墙和软硬件加密。
Ⅲ 网络安全策略都包括哪些方面的策略
(1)物理安全策略:物理安全策略的目的是保护计算机系统、网络服务器、打印机等硬件实体和通信链路免受自然灾害、人为破坏和搭线攻击;验证用户的身份和使用权限、防止用户越权操作;确保计算机系统有一个良好的电磁兼容工作环境;建立完备的安全管理制度,防止非法进入计算机控制室和各种偷窃、破坏活动的发生。
(2)访问控制策略:入网访问控制,网络的权限控制,目录级安全控制,属性安全控制,网络监测和锁定控制,网络端口和结点的安全控制。
(3)防火墙控制防火墙是近期发展起来的一种保护计算机网络安全的技术性措施,它是一个用以阻止网络中的黑客访问某个机构网络的屏障,也可称之为控制进/出两个方向通信的门槛。在网络边界上通过建立起来的相应网络通信监控系统来隔离内部和外部网络,以阻挡外部网络的侵入。当前主流的防火墙主要分为三类:包过滤防火墙、代理防火墙和双穴主机防火墙。
(4)信息加密策略网络加密常用的方法有链路加密、端点加密和结点加密三种。链路加密的目的是保护网络结点之间的链路信息安全;端点加密的目的是对源端用户到目的端用户的数据提供保护;结点加密的目的是对源结点到目的结点之间的传输链路提供保护。
(5)网络安全管理策略在网络安全中,除了采用上述技术措施之外,加强网络的安全管理,制定有关规章制度,对于确保网络的安全、可靠地运行,将起到十分有效的作用。网络的安全管理策略包括:确定安全管理等级和安全管理范围;制订有关网络操作使用规程和人员出入机房的管理制度;制订网络系统的维护制度和应急措施等。
Ⅳ 常见的计算机网络的拓扑结构有哪几种
计算机网络拓扑结构是指网络中各个站点相互连接的形式,在局域网中明确一点讲就是文件服务器、工作站和电缆等的连接形式。现在最主要的拓扑结构有总线型拓扑、星形拓扑、环形拓扑、树形拓扑(由总线型演变而来)以及它们的混合型。
常见的网络拓扑结构有:
1、总线型拓扑。总线型拓扑是一种基于多点连接的拓扑结构,是将网络中的所有的设备通过相应的硬件接口直接连接在共同的传输介质上。
2、环型拓扑。
3、树形拓扑结构。树形拓扑从总线拓扑演变而来,形状像一棵倒置的树,顶端是树根,树根以下带分支,每个分支还可再带子分支。
4、星形拓扑结构。星形拓扑结构是一种以中央节点为中心,把若干外围节点连接起来的辐射式互联结构,各结点与中央结点通过点与点方式连接,中央结点执行集中式通信控制策略,因此中央结点相当复杂,负担也重。
5、网状拓扑。网状拓扑又称作无规则结构,结点之间的联结是任意的,没有规律。
(1)网状网:在一个大的区域内,用无线电通信连路连接一个大型网络时,网状网是最好的拓扑结构。通过路由器与路由器相连,可让网络选择一条最快的路径传送数据。
(2)主干网:通过桥接器与路由器把不同的子网或LAN连接起来形成单个总线或环型拓扑结构,这种网通常采用光纤做主干线。
(3)星状相连网:利用一些叫做超级集线器的设备将网络连接起来,由于星型结构的特点,网络中任一处的故障都可容易查找并修复。
6、混合型拓扑结构。混合型拓扑结构就是两种或两种以上的拓扑结构同时使用。
7、蜂窝拓扑结构。蜂窝拓扑结构是无线局域网中常用的结构。
8、卫星通信拓扑结构。
Ⅳ 在计算机网络中把设备连接起来的布局方法
网络拓扑结构是指用传输媒体互连各种设备的物理布局,就是用什么方式把网络中的计算机等设备连接起来。常见的网络拓扑图有8种。
星型
星型结构是最古老的一种连接方式,大家每天都使用的电话属于这种结构。目前一般网络环境都被设计成星型拓朴结构。星型网是目前广泛而又首选使用的网络拓朴设计之一。
星型结构是指各工作站以星型方式连接成网。网络有中央节点,其他节点(工作站、服务器)都与中央节点直接相连,这种结构以中央节点为中心,因此又称为集中式网络。
星型拓扑结构便于集中控制,因为端用户之间的通信必须经过中心站。由于这一特点,也带来了易于维护和安全等优点。端用户设备因为故障而停机时也不会影响其它端用户间的通信。同时星型拓扑结构的网络延迟时间较小,传输误差较低。但这种结构非常不利的一点是,中心系统必须具有极高的可靠性,因为中心系统一旦损坏,整个系统便趋于瘫痪。对此中心系统通常采用双机热备份,以提高系统的可靠性。
在星型拓扑结构中,网络中的各节点通过点到点的方式连接到一个中央节点(又称中央转接站,一般是集线器或交换机)上,由该中央节点向目的节点传送信息。中央节点执行集中式通信控制策略,因此中央节点相当复杂,负担比各节点重得多。在星型网中任何两个节点要进行通信都必须经过中央节点控制。
现有的数据处理和声音通信的信息网大多采用星型网,目前流行的专用小交换机PBX(Private Branch Exchange),即电话交换机就是星型网拓扑结构的典型实例。它在一个单位内为综合语音和数据工作站交换信息提供信道,还可以提供语音信箱和电话会议等业务,是局域网的一个重要分支。
在星型网中任何两个节点要进行通信都必须经过中央节点控制。因此,中央节点的主要功能有三项:当要求通信的站点发出通信请求后,控制器要检查中央转接站是否有空闲的通路,被叫设备是否空闲,从而决定是否能建立双方的物理连接;在两台设备通信过程中要维持这一通路;当通信完成或者不成功要求拆线时,中央转接站应能拆除上述通道。
由于中央节点要与多机连接,线路较多,为便于集中连线,目前多采用交换设备(交换机)的硬件作为中央节点。
集中式
这种结构便于集中控制,因为端用户之间的通信必须经过中心站。由于这一特点,也带来了易于维护和安全等优点。端用户设备因为故障而停机时也不会影响其它端用户间的通信。同时它的网络延迟时间较小,传输误差较低。但这种结构非常不利的一点是,中心系统必须具有极高的可靠性,因为中心系统一旦损坏,整个系统便趋于瘫痪。对此中心系统通常采用双机热备份,以提高系统的可靠性。
环型
环型结构在LAN中使用较多。这种结构中的传输媒体从一个端用户到另一个端用户,直到将所有的端用户连成环型。数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到另一个节点。这种结构显而易见消除了端用户通信时对中心系统的依赖性。
环行结构的特点是:每个端用户都与两个相临的端用户相连,因而存在着点到点链路,但总是以单向方式操作,于是便有上游端用户和下游端用户之称;信息流在网中是沿着固定方向流动的,两个节点仅有一条道路,故简化了路径选择的控制;环路上各节点都是自举控制,故控制软件简单;由于信息源在环路中是串行地穿过各个节点,当环中节点过多时,势必影响信息传输速率,使网络的响应时间延长;环路是封闭的,不便于扩充;可靠性低,一个节点故障,将会造成全网瘫痪;维护难,对分支节点故障定位较难。
总线型
总线上传输信息通常多以基带形式串行传递,每个结点上的网络接口板硬件均具有收、发功能,接收器负责接收总线上的串行信息并转换成并行信息送到PC工作站;发送器是将并行信息转换成串行信息后广播发送到总线上,总线上发送信息的目的地址与某结点的接口地址相符合时,该结点的接收器便接收信息。由于各个结点之间通过电缆直接连接,所以总线型拓扑结构中所需要的电缆长度是最小的,但总线只有一定的负载能力,因此总线长度又有一定限制,一条总线只能连接一定数量的结点。
因为所有的结点共享一条公用的传输链路,所以一次只能由一个设备传输。需要某种形式的访问控制策略、来决定下一次哪一个站可以发送.通常采取分布式控制策略。发送时,发送站将报文分成分组.然后一次一个地依次发送这些分组。有时要与其它站来的分组交替地在介质上传输。当分组经过各站时,目的站将识别分组的地址。然后拷贝下这些分组的内容。这种拓扑结构减轻了网络通信处理的负担,它仅仅是一个无源的传输介质,而通信处理分布在各站点进行。
在总线两端连接有端结器(或终端匹配器),主要与总线进行阻抗匹配,最大限度吸收传送端部的能量,避免信号反射回总线产生不必要的干扰。
总线结构是使用同一媒体或电缆连接所有端用户的一种方式,也就是说,连接端用户的物理媒体由所有设备共享,各工作站地位平等,无中央结点控制,公用总线上的信息多以基带形式串行传递,其传递方向总是从发送信息的结点开始向两端扩散,如同广播电台发射的信息一样,因此又称广播式计算机网络。各结点在接受信息时都进行地址检查,看是否与自己的工作站地址相符,相符则接收网上的信息。
使用这种结构必须解决的一个问题是确保端用户使用媒体发送数据时不能出现冲突。在点到点链路配置时,这是相当简单的。如果这条链路是半双工操作,只需使用很简单的机制便可保证两个端用户轮流工作。在一点到多点方式中,对线路的访问依靠控制端的探询来确定。然而,在LAN环境下,由于所有数据站都是平等的,不能采取上述机制。对此,研究了一种在总线共享型网络使用的媒体访问方法:带有碰撞检测的载波侦听多路访问,英文缩写成CSMA/CD。
这种结构具有费用低、数据端用户入网灵活、站点或某个端用户失效不影响其它站点或端用户通信的优点。缺点是一次仅能一个端用户发送数据,其它端用户必须等待到获得发送权;媒体访问获取机制较复杂;维护难,分支结点故障查找难。尽管有上述一些缺点,但由于布线要求简单,扩充容易,端用户失效、增删不影响全网工作,所以是LAN技术中使用最普遍的一种。
分布式
分布式结构的网络是将分布在不同地点的计算机通过线路互连起来的一种网络形式。
分布式结构的网络具有如下特点:由于采用分散控制,即使整个网络中的某个局部出现故障,也不会影响全网的操作,因而具有很高的可靠性;网中的路径选择最短路径算法,故网上延迟时间少,传输速率高,但控制复杂;各个结点间均可以直接建立数据链路,信息流程最短;便于全网范围内的资源共享。缺点为连接线路用电缆长,造价高;网络管理软件复杂;报文分组交换、路径选择、流向控制复杂;在一般局域网中不采用这种结构。
树型
树型结构是分级的集中控制式网络,与星型相比,它的通信线路总长度短,成本较低,节点易于扩充,寻找路径比较方便,但除了叶节点及其相连的线路外,任一节点或其相连的线路故障都会使系统受到影响。
网状
网状拓扑结构主要指各节点通过传输线互联连接起来,并且每一个节点至少与其他两个节点相连.网状拓扑结构具有较高的可靠性,但其结构复杂,实现起来费用较高,不易管理和维护,不常用于局域网!
将多个子网或多个网络连接起来构成网状拓扑结构。在一个子网中,集线器、中继器将多个设备连接起来,而桥接器、路由器及网关则将子网连接起来。根据组网硬件不同,主要有三种网状拓扑:
网状网:在一个大的区域内,用无线电通信链路连接一个大型网络时,网状网是最好的拓扑结构。通过路由器与路由器相连,可让网络选择一条最快的路径传送数据,如图5-4所示。
主干网:通过桥接器与路由器把不同的子网或LAN连接起来形成单个总线或环型拓扑结构,这种网通常采用光纤做主干线。
星状相连网:利用一些叫做超级集线器的设备将网络连接起来,由于星型结构的特点,网络中任一处的故障都可容易查找并修复
蜂窝
蜂窝拓扑结构是无线局域网中常用的结构。它以无线传输介质(微波、卫星、红外等)点到点和多点传输为特征,是一种无线网,适用于城市网、校园网、企业网。
混合型
将两种或几种网络拓扑结构混合起来构成的一种网络拓扑结构称为混合型拓扑结构(也有的称之为杂合型结构)。
这种网络拓扑结构是由星型结构和总线型结构的网络结合在一起的网络结构,这样的拓扑结构更能满足较大网络的拓展,解决星型网络在传输距离上的局限,而同时又解决了总线型网络在连接用户数量的限制。这种网络拓扑结构同时兼顾了星型网与总线型网络的优点,在缺点方面得到了一定的弥补。
这种网络拓扑结构主要用于较大型的局域网中,如果一个单位有几栋在地理位置上分布较远(当然是同一小区中),如果单纯用星型网来组整个公司的局域网,因受到星型网传输介质--双绞线的单段传输距离(100m)的限制很难成功;如果单纯采用总线型结构来布线则很难承受公司的计算机网络规模的需求。结合这两种拓扑结构,在同一栋楼层我们采用双绞线的星型结构,而不同楼层我们采用同轴电缆的总线型结构,而在楼与楼之间我们也必须采用总线型,传输介质当然要视楼与楼之间的距离,如果距离较近(500m以内)我们可以采用粗同轴电缆来作传输介质,如果在180m之内还可以采用细同轴电缆来作传输介质。但是如果超过500m我们只有采用光缆或者粗缆加中继器来满足了。这种布线方式就是我们常见的综合布线方式。
无线电通信
传输线系统除同轴电缆、双绞线、和光纤外,还有一种手段是根本不使用导线,这就是无线电通信,无线电通信利用电磁波或光波来传输信息,利用它不用敷设缆线就可以把网络连接起来。无线电通信包括两个独特的网络:移动网络和无线LAN网络。利用LAN网,机器可以通过发射机和接收机连接起来;利用移动网,机器可以通过蜂窝式通信系统连接起来,该通信系统由无线电通信部门提供。
网络可采用以太网的结构,物理上由服务器,路由器,工作站,操作终端通过集线器形成星型结构共同构成局域网。
Ⅵ 简述网络安全策略的基本技术
1. 安全需求分析 "知已知彼,百战不殆"。只有明了自己的安全需求才能有针对性地构建适合于自己的安全体系结构,从而有效地保证网络系统的安全。
2. 安全风险管理 安全风险管理是对安全需求分析结果中存在的安全威胁和业务安全需求进行风险评估,以组织和部门可以接受的投资,实现最大限度的安全。风险评估为制定组织和部门的安全策略和构架安全体系结构提供直接的依据。
3. 制定安全策略 根据组织和部门的安全需求和风险评估的结论,制定组织和部门的计算机网络安全策略。
4. 定期安全审核 安全审核的首要任务是审核组织的安全策略是否被有效地和正确地执行。其次,由于网络安全是一个动态的过程,组织和部门的计算机网络的配置可能经常变化,因此组织和部门对安全的需求也会发生变化,组织的安全策略需要进行相应地调整。为了在发生变化时,安全策略和控制措施能够及时反映这种变化,必须进行定期安全审核。 5. 外部支持 计算机网络安全同必要的外部支持是分不开的。通过专业的安全服务机构的支持,将使网络安全体系更加完善,并可以得到更新的安全资讯,为计算机网络安全提供安全预警。
6. 计算机网络安全管理 安全管理是计算机网络安全的重要环节,也是计算机网络安全体系结构的基础性组成部分。通过恰当的管理活动,规范组织的各项业务活动,使网络有序地进行,是获取安全的重要条件。
Ⅶ 计算机网络的拓扑结构有
1、星型拓扑
星型拓扑结构是一个中心,多个分节点。多节点与中央节点通过点到点的方式连接。中央节点执行集中式控制策略,因此中央节点相当复杂,负担比其他各节点重的多。
2、环形拓扑
环形拓扑结构是节点形成一个闭合环。环形网中各节点通过环路接口连在一条首尾相连的闭合环形通信线路中,环上任何节点均可请求发送信息。
传输媒体从一个端用户到另一个端用户,直到将所有的端用户连成环型。数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到另一个节点。
3、总线型拓扑
总线拓扑结构所有设备连接到一条连接介质上。由一条高速公用总线连接若干个节点所形成的网络即为总线形网络,每个节点上的网络接口板硬件均具有收、发功能,接收器负责接收总线上的串行信息并转换成并行信息送到PC工作站;
发送器是将并行信息转换成串行信息后广播发送到总线上,总线上发送信息的目的地址与某节点的接口地址相符合时,该节点的接收器便接收信息。
4、树形拓扑
树形拓扑从总线拓扑演变而来,形状像一棵倒置的树,顶端是树根,树根以下带分支,每个分支还可再带子分支,树根接收各站点发送的数据,然后再广播发送到全网。我国电话网络即采用树形结构。
5、网状拓扑
主要指各节点通过传输线互联连接起来,并且每一个节点至少与其他两个节点相连。网状拓扑结构具有较高的可靠性,但其结构复杂,实现起来费用较高,不易管理和维护,不常用于局域网。
6、混合型拓扑
将两种或几种网络拓扑结构混合起来构成的一种网络拓扑结构称为混合型拓扑结构(也有的称之为杂合型结构)。
Ⅷ 什么是计算机网络计算机网络主要有哪些拓扑结构
1、计算机网络是将地理位置不同但具有独立功能的多个计算机系统,通过通信设备和线路将其连接起来,由功能完善的网络软件实现网络资源共享的计算机系统的集合。它是计算机技术与通信技术的结合产物。网络可以是点对点的。也可以是多点连接的。
2、计算机网络拓扑结构是指网络中各个站点相互连接的形式,在局域网中明确一点讲就是文件服务器、工作站和电缆等的连接形式。现在最主要的拓扑结构有总线型拓扑、星形拓扑、环形拓扑、树形拓扑(由总线型演变而来)以及它们的混合型。
常见的网络拓扑结构有:
1、总线型拓扑。总线型拓扑是一种基于多点连接的拓扑结构,是将网络中的所有的设备通过相应的硬件接口直接连接在共同的传输介质上。
2、环型拓扑。
3、树形拓扑结构。树形拓扑从总线拓扑演变而来,形状像一棵倒置的树,顶端是树根,树根以下带分支,每个分支还可再带子分支。
4、星形拓扑结构。星形拓扑结构是一种以中央节点为中心,把若干外围节点连接起来的辐射式互联结构,各结点与中央结点通过点与点方式连接,中央结点执行集中式通信控制策略,因此中央结点相当复杂,负担也重。
5、网状拓扑。网状拓扑又称作无规则结构,结点之间的联结是任意的,没有规律。
(1)网状网:在一个大的区域内,用无线电通信连路连接一个大型网络时,网状网是最好的拓扑结构。通过路由器与路由器相连,可让网络选择一条最快的路径传送数据。
(2)主干网:通过桥接器与路由器把不同的子网或LAN连接起来形成单个总线或环型拓扑结构,这种网通常采用光纤做主干线。
(3)星状相连网:利用一些叫做超级集线器的设备将网络连接起来,由于星型结构的特点,网络中任一处的故障都可容易查找并修复。
6、混合型拓扑结构。混合型拓扑结构就是两种或两种以上的拓扑结构同时使用。
7、蜂窝拓扑结构。蜂窝拓扑结构是无线局域网中常用的结构。
8、卫星通信拓扑结构。