㈠ 跪求一篇《计算机在农业上的应用》的论文,三千字左右的,谢谢各位啦!~~~
电子计算机在农业中的应用
dianzi jisuanji zai nongye zhong de yingyong
电子计算机在农业中的应用
computer applied in agriculture
促进农业生产管理科学化、农业生产过程控制自动化和农业科研、农业教育现代化的重要手段。电子计算机分为电子数字计算机和电子模拟计算机两大类,一般系指电子数字计算机,主要由硬件和软件两部分组成。使用者通过软件向计算机输入信息,计算机在软件控制下自动加工输入的信息,最后输出处理结果。计算机在农业中的应用,早在1946年世界上第一台计算机问世后不久就有报道,近20年来发展更快。当代计算机的特点是运算速度快、精确度高、贮存能力强,具有记忆、判断、推理等人工智能,常被称之为“电脑”。因而在被应用到农业领域以后,对于进行农业的规划和决策、资源的普查和监测、病虫害和产量的预测预报、农业信息与情报资料的管理,以及农业的科学研究与教学等,都已发挥很大作用。电子计算机在中国农业中的应用始于70年代初期,但80年代才获得了较好的发展条件。现在,应用的领域从种植业、畜牧业逐渐扩大到渔业、林业,从教学、科研逐渐扩大到生产管理,应用的途径从科学计算逐渐深入到信息处理、模拟试验和实时控制,均已取得初步成果。
迄今电子计算机在农业中应用的途径,主要有以下几个方面。
数值运算 主要包括科学计算和数值试验。
科学计算 现在计算机的运算速度一般在每秒几十万次至千万次,巨型机可达每秒亿次以上。计算的位数也不断增加,常用的32位计算机能精确到有效数字十几位。因此农业中用计算机进行繁杂的和时间性强的计算有显着效益。问题复杂、计算量大、精度要求高的计算和农业工程设计,科学研究工作中经常需要进行的代数与矩阵运算、微分与积分运算,或复杂的统计分析(如回归分析、聚类分析、变量分析、时序分析)和最佳选择等,用计算机就可大大节省时间。时间性强的计算如气象预报、病虫害预报等往往需要收集大量观测数据,运用数学模型进行计算。过去一个地方 3小时的气象变化,需用6万人才能使计算的结果赶上天气的变化,而今天用小型计算机做4天的天气预报,只有几十分钟。为了进行这些计算,现代计算机多配有功能很强的科学与工程计算应用程序,在农业研究中广泛应用的这类程序包括 GENSTAT、NAG Library和SAS等。另外,应用单位还可结合自己需要编写专用的计算机程序,使用时只须按要求输入必要的参数,就会给出计算结果。
数值试验 即通过电子计算机计算进行方案的设计、分析和比较,从许多设计中选取最佳方案,求得以较低的成本,获得较大的效益。已广泛地应用于农业工程、企业经营管理和科学研究工作中。突出的例子是用计算机指导制订畜禽饲料配方:根据饲料的库存量、畜禽对各种营养物质的需要量,以及市场价格变动等条件,将有关数据输入计算机,再提出一些约束条件,如规定某种饲料或添加剂的用量范围、高价或缺档饲料的控制量等,计算机即可给出多种混合饲料的配方,并能选出最佳配方。此外,计算机也被用于选择最佳施肥方案、作物种植方案和生产管理方案。由于数值试验需要采用线性规划、整数规划、动态规划等方法,功能较强的计算机都配有进行这些计算的程序,便于使用。
信息处理 用计算机处理的信息包括数字、文字、图象模式和声音信号。声音处理尚在研究之中,数字-文字资料和图象模式的处理已得到广泛应用。
数据处理 多指数字和数字-文字型资料处理,又称数据综合分析。在生产实践、科学研究和经济活动中获得的各种统计数据和实验数据,一般无需进行复杂的数学运算,但要求处理的数量
大、速度快,符合贮存、检索、编辑等多种目的。农业中用计算机进行数据处理的主要有:①环境和资源信息,包括水土资源信息、气象资源信息、动植物资源信息等。多属具有相对稳定性的基础资料,是编制农业区划规划、制订生产计划的重要信息来源。有的国家建立的计算机数据库或数据处理系统,可以贮存和管理多达数十万份的作物品种资源信息。依靠联机检索网络,育种工作者可以在全国各地通过计算机终端随时向数据库输送新品种的信息,查找到自己需要的作物品种和向世界各地发放品种资源情报。此外,计算机的数字国土信息系统和土地资源管理或地理信息系统等对于提供有关农业自然资源的数据、情报也有重要作用。②生产和经济活动信息。是活跃的动态信息,计算机数据库可以帮助准确、及时地掌握这些信息,为农业决策服务。中国从1983年起已着手建立全国县级统计资料和农村调查资料数据库。③科技情报资料。据联合国粮农组织1981年的统计,全世界每年平均产生的农业新资料多达25万份。为了提高这些资料的利用率,一些国家利用大型计算机建立了许多独立的科技信息中心,或由多台计算机构成的情报信息网络进行资料管理工作。这些网络有的是一个国家范围内的,有的是国家间的,通过网络向全国各地或有关国家提供农业科技资料。联合国粮农组织的农业科学技术情报网(简称AGRIS)有107个成员国,计算机处理中心设在维也纳,另在东南亚、欧洲共同体设有 4个分中心。中国农业科技情报的计算机管理,也正在试验研究中。
图象信息处理 是一个复杂的模式识别过程。图形或照片首先由二维空间扫描装置进行图象加强和数字化转换成数字信号,输入到计算机;然后由计算机对数字化的图象进行数据压缩,抽取出反映该图象特征的特征量度;最后经过综合分析和比较,确定或判别出图象的类别。在农业上,可以利用这种方法处理飞机和卫星进行资源普查时拍下的照片,识别土地类型、植被情况、农作物生长及病虫害发生情况等。英国为进行本土24万平方公里面积的土地利用普查,过去每次动用几千人,工作时间长达 6年之久。而1976年利用遥感和计算机模式识别技术仅4个人9个月就已完成。此外,计算机图象处理技术还可用于分析染色体照片和脑电图等,帮助诊断畜禽疾病。
模拟试验 计算机模拟技术是研究系统的有力手段。系统在大小和复杂程度上可有差异。整个农业可以看成一个大系统,一个农场也可视为一个生产系统。用计算机对一个系统进行模拟研究一般包括下列程序:①对所研究的系统进行调查、分析,找出构成系统的各客体间的关系,经过数学抽象,建立代表这个系统的数学模型;②根据数学模型建立计算机模型,编写计算机程序;③输入运行这个系统的必要数据,执行计算机程序;④把先前从系统中获得的数据或通过必要的补充试验得到的数据和计算机程序结果进行比较,修改和确认所建立的计算机模拟模型;⑤利用已经确认的模型来研究这个真实系统的性能及系统中各主要因子之间的关系,找出管理和改善这个系统的办法。
农业是一个涉及多种因子的复杂系统。电子计算机模拟技术在农业和科学研究中的应用主要有以下几方面的作用:①对于时间长、费用高的试验,可帮助选定试验方案。如在作物和畜禽品种杂交后代遗传行为的研究中,研究者根据遗传学规律编写计算机程序,就能计算出杂交后代的遗传行为,包括后代的表现及遗传分离情况,从而大大节省试验的时间和材料。②对于因条件限制不能实地进行的试验,可用以预报结果。如根据作物产量和病虫害发生主要影响因子之间的关系,建立计算机模型,再根据预报时的实际情况输入相应数据,就可以预报作物产量或病虫害发生趋势。一些国家在预报水稻、柑橘的病虫害,描述害虫在田间迁移的行为,对不同种类害虫计算出相应的田间集中施药面积(陷井区)和时间等方面,已取得成功。中国也已开始计算机预报研究,所建立的小麦产量和气象因子关系模型、小麦条锈病日传染率预报模型、水稻稻瘟病和螟虫危害预报模型等,已在小范围内应用。③对于意义重大、但具有风险、不能轻率进行的研究,可用计算机进行预备性试验。如在农业经济研究和生产管理方面,建立电子计算机模型,模拟现行农业政策,可以分析主要农产品的供需关系以及它们的价格和产量平衡,帮助制订长期的战略性规划。如美国的“国家—区域农业规划系统”模型、印度尼西亚的土地安排模型、古巴糖业模型等,都属此类。中国也正在研究建立农场或县级生产管理优化模型和全国范围内的“发展粮食与经济作物战略模型”等,为制订农业发展战略服务。为适应计算机模拟技术而产生的各种专用的模拟语言,如GPSS、GASP、CSMP等,可使模拟程序的编写较之使用一般的算法语言更为方便。
实时控制 又称过程控制。即在生产和科学试验中,利用计算机及时检测和搜集系统中的主要参数,并按照预先规定的这些参数的某种标准状态或最佳值进行自动调节,实行控制自动化。实时控制在园艺栽培和畜禽饲养中的作用尤为显着。由于这方面的生产日趋集约化、工厂化,要求对温度、湿度、光照等环境条件和水分、养料的供给等能够自动控制和综合调节,许多生产单位常采用单板计算机或微型计算机来实现这一目的。方法是不断地将温室和畜舍中测得的各种参数输入计算机,由计算机将其与预先编制的程序所确定的理想值进行比较,不相符时即发出警报或调节信号,控制调节部件,自动进行通风、遮光、给水、给料等操作,以保证系统处于理想状态。另外,有些农机具如谷物风干机、拖拉机等也可用单板计算机实现自动控制,改善工作性能。科学研究中使用的大型精密仪器,如各种光谱仪、中子活化装置等,配备专用的微型计算机后可以自动收集和处理数据,也大大提高了使用效率。
辅助设计 设计图形本质上是由坐标系和点构成的。电子计算机能够贮存成千上万个点的数据,如指明了点在坐标系中的位置,计算机就能描绘出极其复杂的图形来。辅助设计就是根据这个原理,由配备带光笔的显示器和绘图仪的计算机系统进行的。常应用于农业工程上,帮助设计畜舍、农机具和水利设施等。
㈡ 计算机专业毕业论文怎么写
计算机专业毕业论文范文:
范文一:
计算机科学技术的发展飞快,已经渐渐融入人们日常生活的点点滴滴中,快速发展中不免有些隐患,因此谨慎分析现状也是十分有必要的,对计迟巧算机科学的进一步发展也有着积极意义。如今,计算机科学技术作为一个生命力强、发展前景良好的科学技术,在个人、家庭、企业乃至国家各个层面区域的应用都很广泛,在成本、运行速度及性能等方面都取得了不小的突破。
同时,计算机科学的发展也带码野键动了集成电路技术、网络技术、软件工程、材料科学等领域的快速发展,各个行业相辅相成,共同向前进步发展。在这个信息化的时代,计算机已经融入了千家万户的生活与工作中,在各个行业如工农业、文化教育行业、社会服务业等之中都发挥着不可代替的重要作用,对于社会来说已是不可缺少的一部分。
其中最重要的则是计算机科学技术在社会生产方面的作用。随着全球信息化时代的进步,人与人之间、生活与工作之中,信息传递是格外重要的。而计算机技术是通过互联网的作用改善信息传递的方式,加快速度,促进了信息技术行业的发展。同时,人们对于信息的认识也与日剧增,从而对信息选择的要求也越来越高,精确性、有效性、及时性都是人们所追求的目标。
由于计算机与网络的运行形势,使得人们的劳动方式与工作模式也得到了转变。秀才不出门,能知天下事。人们可以足不出户得完成工作与学习任务,节省了更多人力物力去完成其他的事情,对行动与思想方面也有一定的解放作用。这正是说明了科技乃人类社会第一生产力。
㈢ 计算机在农业上有哪些应用
计算机在农业上的应用,可分为以下五个方面:农业科学的数值计算;农业数据库的建立和使用;农业计算机模拟系统;农业计算机专家系统;因特网与农业。
农业计算机专家系统,就是利用计算机模拟农业专家的工作,它综合土壤、气象、水利、良种、肥料、病虫害防治等影响农业生产效益的因子,汇集农业专家的群体智慧,提出了播种、施肥、田间管理等方面最优方案,从而指导农民科学种田,并获得较好的效果。
㈣ 农业信息化是在农业什么等各个领域应用计算机技术
农业信息化是在农业(生产、经营、管理、服务)等各个领域应用计算机技术。
农业信息化的概念:
包括计算机技术、微电子技术、通信技术、光电技术、遥感技术等多项信息技术在农业普遍而系统的应用过程。
农业信息化专业主要依托计算机应用技术、林业工程、农业资源与环境、森林经理学等课程。农业信息化专业属于农学,但专业课程大量和计算机相关:农业信息技术应用、计算机组成原理、计算机软件、图形图像处理、网络与通信、传感器原理等。
农业信息化专业研究方向:01. 土地信息化;02. 环境信息化;03. 农业信息化。
一是推动农业现代化的“发动机”。
发展农业信息化,可以充分发挥物联网节本增效的作用,充分发挥电子商务降低流通成本的作用,充分发挥大数据指导生产、引导市场的作用,充分发挥信息服务拓展消费空间的作用,为带动农业市场化、倒逼农业标准化、促进农业规模化、提升农业品牌化增添新元素、提供新动力,加快实现农业现代化取得明显进展的目标
二是加快农业供给侧结构性改革的“推进器”。
2015年中央农村工作会议首次提出要着力加强农业供给侧结构性改革。这是适应、引领经济发展新常态,有效应对农业资源环境约束趋紧、部分品种阶段性过剩与优质安全农产品紧缺并存、农产品价格下行压力加大与农民增收难度加大的战略举措。
㈤ 计算机论文范文5000字
近年来,随着就业竞争越演越烈,关于 毕业 生就业质量问题的研讨亦日益广泛深入。下面是我为大家推荐的计算机论文,供大家参考。
计算机论文 范文 一:认知无线电系统组成与运用场景探析
认知无线电系统组成
认知无线电系统是指采用认知无线电技术的无线通信系统,它借助于更加灵活的收发信机平台和增强的计算智能使得通信系统更加灵活。认知无线电系统主要包括信息获取、学习以及决策与调整3个功能模块,如图1所示[3]。
认知无线电系统的首要特征是获取无线电外部环境、内部状态和相关政策等知识,以及监控用户需求的能力。认知无线电系统具备获取无线电外部环境并进行分析处理的能力,例如,通过对当前频谱使用情况的分析,可以表示出无线通信系统的载波频率和通信带宽,甚至可以得到其覆盖范围和干扰水平等信息;认知无线电系统具备获取无线电内部状态信息能力,这些信息可以通过其配置信息、流量负载分布信息和发射功率等来得到;认知无线电系统具备获取相关政策信息的能力,无线电政策信息规定了特定环境下认知无线电系统可以使用的频带,最大发射功率以及相邻节点的频率和带宽等;认知无线电系统具备监控用户需求并根据用户需求进行决策调整的能力。如表1所示,用户的业务需求一般可以分为话音、实时数据(比如图像)和非实时数据(比如大的文件包)3类,不同类型的业务对通信QoS的要求也不同。
认知无线电系统的第2个主要特征是学习的能力。学习过程的目标是使用认知无线电系统以前储存下来的决策和结果的信息来提高性能。根据学习内容的不同, 学习 方法 可以分为3类。第一类是监督学习,用于对外部环境的学习,主要是利用实测的信息对估计器进行训练;第2类是无监督学习,用于对外部环境的学习,主要是提取外部环境相关参数的变化规律;第3类是强化学习,用于对内部规则或行为的学习,主要是通过奖励和惩罚机制突出适应当前环境的规则或行为,抛弃不适合当前环境的规则或行为。机器学习技术根据学习机制可以分为:机械式学习、基于解释的学习、指导式学习、类比学习和归纳学习等。
认知无线电系统的第3个主要特性是根据获取的知识,动态、自主地调整它的工作参数和协议的能力,目的是实现一些预先确定的目标,如避免对其他无线电系统的不利干扰。认知无线电系统的可调整性不需要用户干涉。它可以实时地调整工作参数,以达到合适的通信质量;或是为了改变某连接中的无线接入技术;或是调整系统中的无线电资源;或是为了减小干扰而调整发射功率。认知无线电系统分析获取的知识,动态、自主地做出决策并进行重构。做出重构决策后,为响应控制命令,认知无线电系统可以根据这些决策来改变它的工作参数和/或协议。认知无线电系统的决策过程可能包括理解多用户需求和无线工作环境,建立政策,该政策的目的是为支持这些用户的共同需求选择合适的配置。
认知无线电与其他无线电的关系
在认知无线电提出之前,已经有一些“某某无线电”的概念,如软件定义无线电、自适应无线电等,它们与认知无线电间的关系如图2所示。软件定义无线电被认为是认知无线电系统的一种使能技术。软件定义无线电不需要CRS的特性来进行工作。SDR和CRS处于不同的发展阶段,即采用SDR应用的无线电通信系统已经得到利用,而CRS正处于研究阶段,其应用也正处于研究和试验当中。SDR和CRS并非是无线电通信业务,而是可以在任何无线电通信业务中综合使用的技术。自适应无线电可以通过调整参数与协议,以适应预先设定的信道与环境。与认知无线电相比,自适应无线电由于不具有学习能力,不能从获取的知识与做出的决策中进行学习,也不能通过学习改善知识获取的途径、调整相应的决策,因此,它不能适应未预先设定的信道与环境。可重构无线电是一种硬件功能可以通过软件控制来改变的无线电,它能够更新部分或全部的物理层波形,以及协议栈的更高层。基于策略的无线电可以在未改变内部软件的前提下通过更新来适应当地监管政策。对于较新的无线电网络,因特网路由器一直都是基于策略的。这样,网络运营商就可以使用策略来控制访问权限、分配资源以及修改网络拓扑结构和行为。对于认知无线电来说,基于策略技术应该能够使产品可以在全世界通用,可以自动地适应当地监管要求,而且当监管规则随时间和 经验 变化时可以自动更新。智能无线电是一种根据以前和当前情况对未来进行预测,并提前进行调整的无线电。与智能无线电比较,自适应无线电只根据当前情况确定策略并进行调整,认知无线电可以根据以前的结果进行学习,确定策略并进行调整。
认知无线电关键技术
认知无线电系统的关键技术包括无线频谱感知技术、智能资源管理技术、自适应传输技术与跨层设计技术等,它们是认知无线电区别传统无线电的特征技术[4,5]。
频谱检测按照检测策略可以分为物理层检测、MAC层检测和多用户协作检测,如图3所示。3.1.1物理层检测物理层的检测方法主要是通过在时域、频域和空域中检测授权频段是否存在授权用户信号来判定该频段是否被占用,物理层的检测可以分为以下3种方式:发射机检测的主要方法包括能量检测、匹配滤波检测和循环平稳特性检测等,以及基于这些方法中某一种的多天线检测。当授权用户接收机接收信号时,需要使用本地振荡器将信号从高频转换到中频,在这个转换过程中,一些本地振荡器信号的能量不可避免地会通过天线泄露出去,因而可以通过将低功耗的检测传感器安置在授权用户接收机的附近来检测本振信号的能量泄露,从而判断授权用户接收机是否正在工作。干扰温度模型使得人们把评价干扰的方式从大量发射机的操作转向了发射机和接收机之间以自适应方式进行的实时性交互活动,其基础是干扰温度机制,即通过授权用户接收机端的干扰温度来量化和管理无线通信环境中的干扰源。MAC层检测主要关注多信道条件下如何提高吞吐量或频谱利用率的问题,另外还通过对信道检测次序和检测周期的优化,使检测到的可用空闲信道数目最多,或使信道平均搜索时间最短。MAC层检测主要可以分为以下2种方式:主动式检测是一种周期性检测,即在认知用户没有通信需求时,也会周期性地检测相关信道,利用周期性检测获得的信息可以估计信道使用的统计特性。被动式检测也称为按需检测,认知用户只有在有通信需求时才依次检测所有授权信道,直至发现可用的空闲信道。由于多径衰落和遮挡阴影等不利因素,单个认知用户难以对是否存在授权用户信号做出正确的判决,因此需要多个认知用户间相互协作,以提高频谱检测的灵敏度和准确度,并缩短检测的时间。协作检测结合了物理层和MAC层功能的检测技术,不仅要求各认知用户自身具有高性能的物理层检测技术,更需要MAC层具有高效的调度和协调机制。
智能资源管理的目标是在满足用户QoS要求的条件下,在有限的带宽上最大限度地提高频谱效率和系统容量,同时有效避免网络拥塞的发生。在认知无线电系统中,网络的总容量具有一定的时变性,因此需要采取一定的接入控制算法,以保障新接入的连接不会对网络中已有连接的QoS需求造成影响。动态频谱接入概念模型一般可分为图4所示的3类。动态专用模型保留了现行静态频谱管理政策的基础结构,即频谱授权给特定的通信业务专用。此模型的主要思想是引入机会性来改善频谱利用率,并包含2种实现途径:频谱产权和动态频谱分配。开放共享模型,又称为频谱公用模型,这个模型向所有用户开放频谱使其共享,例如ISM频段的开放共享方式。分层接入模型的核心思想是开放授权频谱给非授权用户,但在一定程度上限制非授权用户的操作,以免对授权用户造成干扰,有频谱下垫与频谱填充2种。认知无线电中的频谱分配主要基于2种接入策略:①正交频谱接入。在正交频谱接入中,每条信道或载波某一时刻只允许一个认知用户接入,分配结束后,认知用户之间的通信信道是相互正交的,即用户之间不存在干扰(或干扰可以忽略不计)。②共享频谱接入。在共享频谱接入中,认知用户同时接入授权用户的多条信道或载波,用户除需考虑授权用户的干扰容限外,还需要考虑来自其他用户的干扰。根据授权用户的干扰容限约束,在上述2种接入策略下又可以分为以下2种频谱接入模式:填充式频谱接入和下垫式频谱接入。对于填充式频谱接入,认知用户伺机接入“频谱空穴”,它们只需要在授权用户出现时及时地出让频谱而不存在与授权用户共享信道时的附加干扰问题,此种方法易于实现,且不需要现有通信设备提供干扰容限参数。在下垫式频谱接入模式下,认知用户与授权用户共享频谱,需要考虑共用信道时所附加的干扰限制。
在不影响通信质量的前提下,进行功率控制尽量减少发射信号的功率,可以提高信道容量和增加用户终端的待机时间。认知无线电网络中的功率控制算法设计面临的是一个多目标的联合优化问题,由于不同目标的要求不同,存在着多种折中的方案。根据应用场景的不同,现有的认知无线电网络中的功率控制算法可以分成2大类:一是适用于分布式场景下的功率控制策略,一是适用于集中式场景下的功率控制策略。分布式场景下的功率控制策略大多以博弈论为基础,也有参考传统Adhoc网络中功率控制的方法,从集中式策略入手,再将集中式策略转换成分布式策略;而集中式场景下的功率控制策略大多利用基站能集中处理信息的便利,采取联合策略,即将功率控制与频谱分配结合或是将功率控制与接入控制联合考虑等。
自适应传输可以分为基于业务的自适应传输和基于信道质量的自适应传输。基于业务的自适应传输是为了满足多业务传输不同的QoS需求,其主要在上层实现,不用考虑物理层实际的传输性能,目前有线网络中就考虑了这种自适应传输技术。认知无线电可以根据感知的环境参数和信道估计结果,利用相关的技术优化无线电参数,调整相关的传输策略。这里的优化是指无线通信系统在满足用户性能水平的同时,最小化其消耗的资源,如最小化占用带宽和功率消耗等。物理层和媒体控制层可能调整的参数包括中心频率、调制方式、符号速率、发射功率、信道编码方法和接入控制方法等。显然,这是一种非线性多参数多目标优化过程。
现有的分层协议栈在设计时只考虑了通信条件最恶劣的情况,导致了无法对有限的频谱资源及功率资源进行有效的利用。跨层设计通过在现有分层协议栈各层之间引入并传递特定的信息来协调各层之间的运行,以与复杂多变的无线通信网络环境相适应,从而满足用户对各种新的业务应用的不同需求。跨层设计的核心就是使分层协议栈各层能够根据网络环境以及用户需求的变化,自适应地对网络的各种资源进行优化配置。在认知无线电系统中,主要有以下几种跨层设计技术:为了选择合适的频谱空穴,动态频谱管理策略需要考虑高层的QoS需求、路由、规划和感知的信息,通信协议各层之间的相互影响和物理层的紧密结合使得动态频谱管理方案必须是跨层设计的。频谱移动性功能需要同频谱感知等其他频谱管理功能结合起来,共同决定一个可用的频段。为了估计频谱切换持续时间对网络性能造成的影响,需要知道链路层的信息和感知延迟。网络层和应用层也应该知道这个持续时间,以减少突然的性能下降;另外,路由信息对于使用频谱切换的路由发现过程也很重要。频谱共享的性能直接取决于认知无线电网络中频谱感知的能力,频谱感知主要是物理层的功能。然而,在合作式频谱感知情况下,认知无线电用户之间需要交换探测信息,因此频谱感知和频谱共享之间的跨层设计很有必要。在认知无线电系统中,由于多跳通信中的每一跳可用频谱都可能不同,网络的拓扑配置就需要知道频谱感知的信息,而且,认知无线电系统路由设计的一个主要思路就是路由与频谱决策相结合。
认知无线电应用场景
认知无线电系统不仅能有效地使用频谱,而且具有很多潜在的能力,如提高系统灵活性、增强容错能力和提高能量效率等。基于上述优势,认知无线电在民用领域和军用领域具有广阔的应用前景。
频谱效率的提高既可以通过提高单个无线接入设备的频谱效率,也可以通过提高各个无线接入技术的共存性能。这种新的频谱利用方式有望增加系统的性能和频谱的经济价值。因此,认知无线电系统的这些共存/共享性能的提高推动了频谱利用的一种新方式的发展,并且以一种共存/共享的方式使获得新的频谱成为可能。认知无线电系统的能力还有助于提高系统灵活性,主要包括提高频谱管理的灵活性,改善设备在生命周期内操作的灵活性以及提高系统鲁棒性等。容错性是通信系统的一项主要性能,而认知无线电可以有效改善通信系统的容错能力。通常容错性主要是基于机内测试、故障隔离和纠错 措施 。认知无线电对容错性的另一个优势是认知无线电系统具有学习故障、响应和错误信息的能力。认知无线电系统可以通过调整工作参数,比如带宽或者基于业务需求的信号处理算法来改善功率效率。
认知无线电所要解决的是资源的利用率问题,在农村地区应用的优势可以 总结 为如下。农村无线电频谱的使用,主要占用的频段为广播、电视频段和移动通信频段。其特点是广播频段占用与城市基本相同,电视频段利用较城市少,移动通信频段占用较城市更少。因此,从频率域考虑,可利用的频率资源较城市丰富。农村经济发达程度一般不如城市,除电视频段的占用相对固定外,移动通信的使用率不及城市,因此,被分配使用的频率利用率相对较低。由于农村地广人稀,移动蜂窝受辐射半径的限制,使得大量地域无移动通信频率覆盖,尤其是边远地区,频率空间的可用资源相当丰富。
在异构无线环境中,一个或多个运营商在分配给他们的不同频段上运行多种无线接入网络,采用认知无线电技术,就允许终端具有选择不同运营商和/或不同无线接入网络的能力,其中有些还可能具有在不同无线接入网络上支持多个同步连接的能力。由于终端可以同时使用多种 无线网络 ,因此应用的通信带宽增大。随着终端的移动和/或无线环境的改变,可以快速切换合适的无线网络以保证稳定性。
在军事通信领域,认知无线电可能的应用场景包括以下3个方面。认知抗干扰通信。由于认知无线电赋予电台对周围环境的感知能力,因此能够提取出干扰信号的特征,进而可以根据电磁环境感知信息、干扰信号特征以及通信业务的需求选取合适的抗干扰通信策略,大大提升电台的抗干扰水平。战场电磁环境感知。认知无线电的特点之一就是将电感环境感知与通信融合为一体。由于每一部电台既是通信电台,也是电磁环境感知电台,因此可以利用电台组成电磁环境感知网络,有效地满足电磁环境感知的全时段、全频段和全地域要求。战场电磁频谱管理。现代战场的电磁频谱已经不再是传统的无线电通信频谱,静态的和集重视的频谱管理策略已不能满足灵活多变的现代战争的要求。基于认知无线电技术的战场电磁频谱管理将多种作战要素赋予频谱感知能力,使频谱监测与频谱管理同时进行,大大提高了频谱监测网络的覆盖范围,拓宽了频谱管理的涵盖频段。
结束语
如何提升频谱利用率,来满足用户的带宽需求;如何使无线电智能化,以致能够自主地发现何时、何地以及如何使用无线资源获取信息服务;如何有效地从环境中获取信息、进行学习以及做出有效的决策并进行调整,所有这些都是认知无线电技术要解决的问题。认知无线电技术的提出,为实现无线环境感知、动态资源管理、提高频谱利用率和实现可靠通信提供了强有力的支撑。认知无线电有着广阔的应用前景,是无线电技术发展的又一个里程碑。
计算机论文范文二:远程无线管控体系的设计研究
1引言
随着我国航天事业的发展,测量船所承担的任务呈现高密度、高强度的趋势,造成码头期间的任务准备工作越来越繁重,面临着考核项目多、考核时间短和多船协调对标等现实情况,如何提高对标效率、确保安全可靠对标成为紧迫的课题。由于保密要求,原研制的远程标校控制系统无法接入现有网络,而铺设专网的耗资巨大,性价比低,也非首选方案。近些年来,无线通信已经成为信息通信领域中发展最快、应用最广的技术,广泛应用于家居、农业、工业、航天等领域,已成为信息时代社会生活不可或缺的一部分[1],这种技术也为解决测量船远程控制标校设备提供了支持。本文通过对常用中远距离无线通信方式的比较,择优选择了无线网桥,采用了桥接中继的网络模式,通过开发远程设备端的网络控制模块,以及相应的控制软件,实现了测量船对远程设备的有效、安全控制。
2无线通信方式比较
无线通信技术是利用电磁波信号在自由空间中进行信息传播的一种通信方式,按技术形式可分为两类:一是基于蜂窝的接入技术,如蜂窝数字分组数据、通用分组无线传输技术、EDGE等;二是基于局域网的技术,如WLAN、Bluetooth、IrDA、Home-RF、微功率短距离无线通信技术等。在中远距离无线通信常用的有ISM频段的通信技术(比如ZigBee以及其他频段的数传模块等)和无线 网络技术 (比如GSM、GPRS以及无线网桥等)。基于ISM频段的数传模块的通信频率为公共频段,产品开发没有限制,因此发展非常迅速,得到了广泛应用。特别是近年来新兴的ZigBee技术,因其低功耗、低复杂度、低成本,尤其是采用自组织方式组网,对网段内设备数量不加限制,可以灵活地完成网络链接,在智能家居、无线抄表等网络系统开发中得到应用[2]。但是,对于本系统的开发而言,需要分别研制控制点和被控制点的硬件模块,并需通过软件配置网络环境,开发周期长,研制成本高,故非本系统开发的最优方案。
GSM、GPRS这种无线移动通信技术已经成为人们日常生活工作必不可少的部分,在其他如无线定位、远程控制等领域的应用也屡见不鲜[3],但是由于保密、通信费用、开发成本等因素,也无法适用于本系统的开发。而无线网桥为本系统的低成本、高效率的研发提供了有利支持,是开发本系统的首选无线通信方式。无线网桥是无线网络的桥接,它可在两个或多个网络之间搭起通信的桥梁,也是无线接入点的一个分支。无线网桥工作在2•4GHz或5•8GHz的免申请无线执照的频段,因而比其他有线网络设备更方便部署,特别适用于城市中的近距离、远距离通信。
3系统设计
该远程控制系统是以保障测量船对远端标校设备的有效控制为目标,包括标校设备的开关机、状态参数的采集等,主要由测量船控制微机、标校设备、网络控制模块、主控微机以及无线网桥等组成。工作流程为测量船控制微机或主控微机发送控制指令,通过无线网桥进行信息传播,网络控制模块接收、解析指令,按照Modbus协议规定的数据格式通过串口发给某一标校设备,该标校设备响应控制指令并执行;网络控制模块定时发送查询指令,并将采集的状态数据打包,通过无线发给远程控制微机,便于操作人员监视。网络通信协议采用UDP方式,对于测量船控制微机、主控微机仅需按照一定的数据格式发送或接收UDP包即可。网络控制模块是系统的核心部件,是本文研究、设计的重点。目前,常用的网络芯片主要有ENC28J60、CP2200等,这里选用了ENC28J60,设计、加工了基于STC89C52RC单片机的硬件电路。通过网络信息处理软件模块的开发,满足了网络信息交互的功能要求;通过Modbus串口协议软件模块的开发,满足了标校设备监控功能,从而实现了系统设计目标。
3.1组网模式
无线网桥有3种工作方式,即点对点、点对多点、中继连接。根据系统的控制要求以及环境因素,本系统采用了中继连接的方式,其网络拓扑如图1所示。从图中可以清晰看出,这种中继连接方式在远程控制端布置两个无线网桥,分别与主控点和客户端进行通信,通过网络控制模块完成数据交互,从而完成组网。
3.2安全防范
由于是开放性设计,无线网络安全是一个必须考虑的问题。本系统的特点是非定时或全天候开机,涉密数据仅为频点参数,而被控设备自身均有保护措施(协议保护)。因此,系统在设计时重点考虑接入点防范、防止攻击,采取的措施有登录密码设施、网络密匙设置、固定IP、对数据结构体的涉密数据采取动态加密等方式,从而最大限度地防止了“被黑”。同时,采用了网络防雷器来防护雷电破坏。
3.3网络控制模块设计
3.3.1硬件设计
网络控制模块的功能是收命令信息、发状态信息,并通过串口与标校设备实现信息交互,其硬件电路主要由MCU(微控制单元)、ENC28J60(网络芯片)、Max232(串口芯片)以及外围电路组成,其电原理图如图2所示。硬件设计的核心是MCU、网络芯片的选型,本系统MCU选用的STC89C52RC单片机,是一种低功耗、高性能CMOS8位微控制器,可直接使用串口下载,为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。ENC28J60是由M-icrochip公司出的一款高集成度的以太网控制芯片,其接口符合IEEE802.3协议,仅28个引脚就可提供相应的功能,大大简化了相关设计。ENC28J60提供了SPI接口,与MCU的通信通过两个中断引脚和SPI实现,数据传输速率为10Mbit/s。ENC28J60符合IEEE802.3的全部规范,采用了一系列包过滤机制对传入的数据包进行限制,它提供了一个内部DMA模块,以实现快速数据吞吐和硬件支持的IP校验和计算[4]。ENC28J60对外网络接口采用HR911102A,其内置有网络变压器、电阻网络,并有状态显示灯,具有信号隔离、阻抗匹配、抑制干扰等特点,可提高系统抗干扰能力和收发的稳定性。
3.3.2软件设计
网络控制模块的软件设计主要包括两部分,一是基于SPI总线的ENC28J60的驱动程序编写,包括以太网数据帧结构定义、初始化和数据收发;二是Modbus协议编制,其软件流程如图3所示。
3.3.2.1ENC28J60的驱动程序编写
(1)以太网数据帧结构符合IEEE802.3标准的以太网帧的长度是介于64~1516byte之间,主要由目标MAC地址、源MAC地址、类型/长度字段、数据有效负载、可选填充字段和循环冗余校验组成。另外,在通过以太网介质发送数据包时,一个7byte的前导字段和1byte的帧起始定界符被附加到以太网数据包的开头。以太网数据包的结构如图4所示。(2)驱动程序编写1)ENC28J60的寄存器读写规则由于ENC28J60芯片采用的是SPI串行接口模式,其对内部寄存器读写的规则是先发操作码<前3bit>+寄存器地址<后5bit>,再发送欲操作数据。通过不同操作码来判别操作时读寄存器(缓存区)还是写寄存器(缓冲区)或是其他。2)ENC28J60芯片初始化程序ENC28J60发送和接收数据包前必须进行初始化设置,主要包括定义收发缓冲区的大小,设置MAC地址与IP地址以及子网掩码,初始化LEDA、LEDB显示状态通以及设置工作模式,常在复位后完成,设置后不需再更改。3)ENC28J60发送数据包ENC28J60内的MAC在发送数据包时会自动生成前导符合帧起始定界符。此外,也会根据用户配置以及数据具体情况自动生成数据填充和CRC字段。主控器必须把所有其他要发送的帧数据写入ENC28J60缓冲存储器中。另外,在待发送数据包前要添加一个包控制字节。包控制字节包括包超大帧使能位(PHUGEEN)、包填充使能位(PPADEN)、包CRC使能位(PCRCEN)和包改写位(POVERRIDE)4个内容。4)ENC28J60接收数据包如果检测到EIR.PKTIF为1,并且EPKTCNT寄存器不为空,则说明接收到数据,进行相应处理。
3.3.2.2ModBus协议流程
本系统ModBus协议的数据通信采用RTU模式[5],网络控制模块作为主节点与从节点(标校设备)通过串口建立连接,主节点定时向从节点发送查询命令,对应从节点响应命令向主节点发送设备状态信息。当侦测到网络数据时,从ENC28J60接收数据包中解析出命令,将对应的功能代码以及数据,按照Modbus数据帧结构进行组帧,发送给从节点;对应从节点响应控制命令,进行设备参数设置。
4系统调试与验证
试验调试环境按照图1进行布置,主要包括5个无线网桥、1个主控制点、2个客户端、1块网络控制模块板以及标校设备等,主要测试有网络通信效果、网络控制能力以及简单的安全防护测试。测试结论:网络连接可靠,各控制点均能安全地对远端设备进行控制,具备一定安全防护能力,完全满足远程设备控制要求。
5结束语
本文从实际需要出发,通过对当下流行的无线通信技术的比较,选用无线网桥实现远控系统组网;通过开发网络控制模块,以及相应的控制软件编制,研制了一套用于测量船远程控制设备的系统。经几艘测量船的应用表明,采用无线网桥进行组网完全满足系统设计要求,具有高安全性、高可靠性、高扩展性等优点,在日趋繁重的保障任务中发挥了重要的作用。本系统所采用的无线组网方法,以及硬件电路的设计方案,对其他相关控制领域均有一定的参考价值。