Ⅰ 详解图解计算机网络177 个名词
大家好,我是伟哥。上篇《60 张图详解 98 个常见的网络概念》有一段时间了,现在重新汇总整理,把最近提到的网络名词也加上。同时为了方便阅读,增加了大量的配图,让网络小白也能轻松理解。考虑到 177 个网络名词加上 123 张图,文章的篇幅就很长了,有必要分类整理下,于是按照网络分层结构,加上分层的扩展内容,把所有名词分成了 15 个小类,方便查阅。
1、 电路交换 :在通信开始前,通信双方要在网络上建立专属信道来发送数据,信道至少会持续到通信结束才会断开。
2、 包交换 :又叫做分组交换,是将数据分为多个消息块(即数据包),再通过网络对每个数据块进行单独传输选路。
3、 网络协议 :为在网络中传输数据而对数据定义的一系列标准或规则。
4、 协议栈 :网络协议的具体定义或具体实现。
5、 万维网 ( WWW ):可以通过 URL 地址进行定义、通过 HTTP/HTTPS 协议建立连接、通过互联网进行访问的网页资源空间。
6、 局域网 ( LAN ):在一个有限区域内实现终端设备互联的网络。
7、 城域网 ( MAN ):规模大于局域网,覆盖区域小到一个方圆数千米的大型园区,大到一个城市圈的网络。
8、 广域网 ( WAN ):跨越大范围地理区域建立连接的网络。
9、 互联网 ( Internet ):通过各种互联网协议为全世界成千上万的设备建立互联的全球计算机网络系统。
10、 物联网 ( IoT ):通过内置电子芯片的方式,将各种物理设备连接到网络中,实现多元设备间信息交互的网络。
11、 云计算 ( Cloud Computing ):通过互联网为计算机和其它设备提供处理资源共享的网络。
12、 大数据 ( Big Data ):通过汇总的计算资源对庞大的数据量进行分析,得出更加准确的预测结论,并用来指导实践。
13、 SDN :指控制平面和数据平面分离,并通过提升网络编程能能力,使网络管理方式更优。
14、 数据平面/转发平面 :指网络设备中与判断如何转发数据和执行数据转发相关的部分。
15、 控制平面 :指网络设备中与控制设备完成转发工作的相关部分。
1、 操作系统 :一种安装在智能设备上,为操作智能设备消除硬件差异,并为程序提供可移植性的软件平台。
2、 图形用户界面 ( GUI ):指用户在大部分情况下可以通过点击图标等可视化图形来完成设备操作的软件界面。
3、 命令行界面 ( CLI ):指用户需要通过输入文本命令来完成设备操作的软件界面。
4、 RAM :随机存取存储器的简称,也叫做内存。安装在数通设备上与安装在计算机中的作用相同,即用于存储临时文件,断电内容消失。
5、 Flash :安装在数通设备上,与计算机硬盘的功能类似,用来存放包括操作系统在内的大量文件。
6、 NVRAM :非易失随机存取存储器的简称。用来保存数通设备的启动配置文件,断电不会消失。
7、 Console 接口 :即控制台接口,通过 Console 线缆连接自己的终端和数通设备的 Console 接口,使用终端模拟软件对数通设备进行本地管理访问。
1、 OSI 模型 :为规范和定义通信网络,将通信功能按照逻辑分为不同功能层级的概念模型,分为 7 层。
2、 TCP/IP 模型 :也叫做互联网协议栈,是目前互联网所使用的通信模型,由 TCP 协议和 IP 协议的规范发展而来,分为 4 层。
3、 应用层 :指 OSI 模型的第 7 层,也是 TCP/IP 模型的第 4 层,是离用户最近的一层,用户通过应用软件和这一层进行交互。理论上,在 TCP/IP 模型中,应用层也包含了 OSI 模型中的表示层和会话层的功能。但表示层和会话层的实用性不强,应用层在两种模型中区别不大。
4、 传输层 :指 OSI 模型的第 4 层,也是 TCP/IP 模型的第 3 层,在两个模型中区别不大,负责规范数据传输的功能和流程。
5、 网络层 :指 OSI 模型的第 3 层,这一层是规范如何将数据从源设备转发到目的设备。
6、 数据包 :经过网络层协议封装后的数据。
7、 数据链路层 :OSI 模型的第 2 层,规范在直连节点或同一个局域网中的节点之间,如何实现数据传输。另外,这一层也负责检测和纠正物理层在传输数据过程中造成的错误。
8、 数据帧 :经过数据链路层协议封装后的数据。
9、 物理层 :OSI 模型的第 1 层,这一层的服务是规范物理传输的相关标准,实现信号在两个设备之间进行传输。
10、 互联网层 :TCP/IP 协议中的第 2 层,功能与 OSI 模型中的网络层类似。
11、 网络接入层 :TCP/IP 协议中的第 1 层,作用是定义数据如何在两个直连节点或同一个局域网的节点之间传输,TCP/IP 模型中的这一层结合了 OSI 模型中数据链路层和物理层的功能。
12、 封装 :发送方设备按照协议标准定义的格式及相关参数添加到转发数据上,来保障通信各方执行协议标准的操作。
13、 解封装 :接收方设备拆除发送方设备封装的数据,还原转发数据的操作。
14、 头部 :按照协议定义的格式封装在数据上的协议功能数据和参数。
1、 双绞线 :将两根互相绝缘的导线按一定规格缠绕在一起,以便它们互相冲抵干扰,从而形成的通信介质。
2、 光纤 :为实现数据通信,利用全反射原理传输光线的玻璃纤维载体。
3、 IEEE 802.3 :IEEE 组织定义的以太网技术标准,即有线网络标准。
4、 IEEE 802.11 :IEEE 组织定义的无线局域网标准。
5、 奇偶校验 :接收方对比接收的数据与原始数据时,检测数据的二进制数位中 “ 1 ” 的奇偶个数是否相同,从而判断数据与发送时是否一致的校验方式。
6、 校验和 :接收方对比接收的数据与原始数据的校验和是否相同,判断数据与发送时是否一致的校验方式。
7、 循环冗余校验 :接收方通过多项式除法判断数据与发送时是否一致的校验方式。
8、 共享型以太网 :所有连网设备处在一个冲突域中,需要竞争发送资源的以太网环境。
9、 二进制 :逢 2 进位、只有 0 和 1 表示数字的计数系统。
10、 十六进制 :逢 16 进位、用 0 ~ F 表示数字的计数系统。
11、 冲突域 :通过共享媒介连接在一起的设备,共同构成的网络区域。在这个区域内,同时只能一台设备发送数据包。
12、 交换型以太网 :连网设备互相之间不需要竞争发送资源,而是分别与中心设备两两组成点到点连接的以太网环境。
13、 MAC 地址 :长度 48 位,固化在设备硬件上,用十六进制表示的数据链路层地址。
14、 广播域 :在这个区域中,各个节点都可以收到其它节点发送的广播数据包。
Ⅱ 计算机网络的主要拓扑结构有哪些
拓扑结构科技名词定义
中文名称:拓扑结构 英文名称:topological structure 定义:根据拓扑关系进行空间数据的组织方式。 所属学科:地理学(一级学科);地理信息系统(二级学科) 本内容由全国科学技术名词审定委员会审定公布
网络名片
计算机网络拓扑结构是指网络中各个站点相互连接的形式,在局域网中明确一点讲就是文件服务器、工作站和电缆等的连接形式。现在最主要的拓扑结构有总线型拓扑、星型拓扑、环型拓扑以及它们的混合型。顾名思义,总线型其实就是将文件服务器和工作站都连在称为总线的一条公共电缆上,且总线两端必须有终结器;星型拓扑则是以一台设备作为中央连接点,各工作站都与它直接相连形成星型;而环型拓扑就是将所有站点彼此串行连接,像链子一样构成一个环形回路;把这三种最基本的拓扑结构混合起来运用自然就是混合型了。
目录
简介
计算机网络拓扑1. 总线拓扑结构
2. 星型拓扑结构
3.环形拓扑结构
4. 树型拓扑结构
5. 网状拓扑结构
6.混合型拓扑结构
7.蜂窝拓扑结构
8.卫星通信拓扑结构
开关电源拓扑
优缺点对比
结构分类一、星型拓扑结构
二、环型拓扑结构
三、总线拓扑结构
四、树型拓扑结构
六、网状拓扑结构
结构特征简介
计算机网络拓扑 1. 总线拓扑结构
2. 星型拓扑结构
3.环形拓扑结构
4. 树型拓扑结构
5. 网状拓扑结构
6.混合型拓扑结构
7.蜂窝拓扑结构
8.卫星通信拓扑结构
开关电源拓扑
优缺点对比
结构分类 一、星型拓扑结构
二、环型拓扑结构
三、总线拓扑结构
四、树型拓扑结构
六、网状拓扑结构
结构特征
展开 编辑本段简介
计算机网络的最主要的拓扑结构有总线型拓扑、星型拓扑、环型拓扑以及它们的混合型。 计算机网络的拓扑结构是把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。 网络的拓扑结构:分为逻辑拓扑和物理拓扑结构这里讲物理拓扑结构。 总线型拓扑:是一种基于多点连接的拓扑结构,所有的设备连接在共同的传输介质上。总线拓扑结构使用一条所有PC都可访问的公共通道,每台PC只要连一条线缆即可但是它的缺点是所有的PC不得不共享线缆,优点是不会因为一条线路发生故障而使整个网络瘫痪。 环行拓扑:把每台PC连接起来,数据沿着环依次通过每台PC直接到达目的地,在环行结构中每台PC都与另两台PC相连每台PC的接口适配器必须接收数据再传往另一台一台出错,整个网络会崩溃因为两台PC之间都有电缆,所以能获得好的性能。 树型拓扑结构:把整个电缆连接成树型,树枝分层每个分至点都有一台计算机,数据依次往下传优点是布局灵活但是故障检测较为复杂,PC环不会影响全局。 星型拓扑结构:在中心放一台中心计算机,每个臂的端点放置一台PC,所有的数据包及报文通过中心计算机来通讯,除了中心机外每台PC仅有一条连接,这种结构需要大量的电缆,星型拓扑可以看成一层的树型结构不需要多层PC的访问权争用。星型拓扑结构在网络布线中较为常见。
编辑本段计算机网络拓扑
计算机网络的拓扑结构是引用拓扑学中研究与大小,形状无关的点,线关系的方法。把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构反映出网中个实体的结构关系,是建设计算机网络的第一步,是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。 最基本的网络拓扑结构有:环形拓扑、星形拓扑、总线拓扑三个。
1. 总线拓扑结构
是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。 拓扑结构
优点:结构简单、布线容易、可靠性较高,易于扩充,节点的故障不会殃及系统,是局域网常采用的拓扑结构。 缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;出现故障诊断较为困难。另外,由于信道共享,连接的节点不宜过多,总线自身的故障可以导致系统的崩溃。最着名的总线拓扑结构是以太网(Ethernet)。
2. 星型拓扑结构
是一种以中央节点为中心,把若干外围节点连接起来的辐射式互联结构。这种结构适用于局域网,特别是近年来连接的局域网大都采用这种连接方式。这种连接方式以双绞线或同轴电缆作连接线路。 优点:结构简单、容易实现、便于管理,通常以集线器(Hub)作为中央节点,便于维护和管理。 缺点:中心结点是全网络的可靠瓶颈,中心结点出现故障会导致网络的瘫痪。
3.环形拓扑结构
各结点通过通信线路组成闭合回路,环中数据只能单向传输,信息在每台设备上的延时时间是固定的。特别适合实时控制的局域网系统。 优点:结构简单,适合使用光纤,传输距离远,传输延迟确定。 缺点:环网中的每个结点均成为网络可靠性的瓶颈,任意结点出现故障都会造成网络瘫痪,另外故障诊断也较困难。最着名的环形拓扑结构网络是令牌环网(Token Ring)
4. 树型拓扑结构
是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或 拓扑结构示意图
同层结点之间一般不进行数据交换。 优点:连结简单,维护方便,适用于汇集信息的应用要求。 缺点:资源共享能力较低,可靠性不高,任何一个工作站或链路的故障都会影响整个网络的运行。
5. 网状拓扑结构
又称作无规则结构,结点之间的联结是任意的,没有规律。 优点:系统可靠性高,比较容易扩展,但是结构复杂,每一结点都与多点进行连结,因此必须采用路由算法和流量控制方法。目前广域网基本上采用网状拓扑结构。
6.混合型拓扑结构
就是两种或两种以上的拓扑结构同时使用。 优点:可以对网络的基本拓扑取长补短。 缺点:网络配置挂包那里难度大。
7.蜂窝拓扑结构
蜂窝拓扑结构是无线局域网中常用的结构。它以无线传输介质(微波、a卫星、红外线、无线发射台等)点到点和点到多点传输为特征,是一种无线网,适用于城市网、校园网、企业网,更适合于移动通信。 在计算机网络中还有其他类型的拓扑结构,如总线型与星型混合、总线型与环型混合连接的网络。在局域网中,使用最多的是星型结构。
8.卫星通信拓扑结构
优点: 缺点:
编辑本段开关电源拓扑
随着PWM技术的不断发展和完善,开关电源以其高的性价比得到了广泛的应用。开关电源的电路拓扑结构很多,常用的电路拓扑有推挽、全桥、半桥、单端正激和单端反激等形式。其中, 在半桥电路中,变压器初级在整个周期中都流过电流,磁芯利用充分,且没有偏磁的问题,所使用的功率开关管耐压要求较低,开关管的饱和压降减少到了最小,对输入滤波电容使用电压要求也较低。由于以上诸多原因,半桥式变换器在高频开关电源设计中得到广泛的应用。 开关电源常用的基本拓扑约有14种。 每种拓扑都有其自身的特点和适用场合。一些拓扑适用于离线式(电网供电的)AC/DC变换 网络拓扑
器。其中有些适合小功率输出(<200W),有些适合大功率输出;有些适合高压输入(≥220V AC),有些适合120V AC或者更低输入的场合;有些在高压直流输出(>~200V)或者多组(4~5组以上)输出场合有的优势;有些在相同输出功率下使用器件较少或是在器件数与可靠性之间有较好的折中。较小的输入/输出纹波和噪声也是选择拓扑经常考虑的因素。 一些拓扑更适用于DC/DC变换器。选择时还要看是大功率还是小功率,高压输出还是低压输出,以及是否要求器件尽量少等。另外,有些拓扑自身有缺陷,需要附加复杂且难以定量分析的电路才能工作。 因此,要恰当选择拓扑,熟悉各种不同拓扑的优缺点及适用范围是非常重要的。错误的选择会使电源设计一开始就注定失败。 开关电源常用拓扑: buck开关型调整器拓扑 、boost开关调整器拓扑 、反极性开关调整器拓扑 、推挽拓扑 、正激变换器拓扑 、双端正激变换器拓扑 、交错正激变换器拓扑 、半桥变换器拓扑 、全桥变换器拓扑 、反激变换器 、电流模式拓扑和电流馈电拓扑 、SCR振谐拓扑 、CUK变换器拓扑 开关电源各种拓扑集锦先给出六种基本DC/DC变换器拓扑 依次为buck,boost,buck-boost,cuk,zeta,sepic变换器
编辑本段优缺点对比
1、星形拓扑 星形拓扑是由中央节点和通过点到到通信链路接到中央节点的各个站点组成。 比较图
星形拓扑结构具有以下优点: (1)控制简单。 (2)故障诊断和隔离容易。 (3)方便服务。 星形拓扑结构的缺点: (1)电缆长度和安装工作量可观。 (2)中央节点的负担较重,形成瓶颈。 (3)各站点的分布处理能力较低。 2、总线拓扑 总线拓扑结构采用一个信道作为传输媒体,所有站点都通过相应的硬件接口直接连到这一公共传输媒体上,该公共传输媒体即称为总线。 总线拓扑结构的优点: (1)总线结构所需要的电缆数量少。 (2)总线结构简单,又是无源工作,有较高的可靠性。 (3)易于扩充,增加或减少用户比较方便。 总线拓扑的缺点: (1)总线的传输距离有限,通信范围受到限制。 (2)故障诊断和隔离较困难。 (3)分布式协议不能保证信息的及时传送,不具有实时功能。 3、环形拓扑 环形拓扑网络由站点和连接站的链路组成一个闭合环。 环形拓扑的优点: (1)电缆长度短。 (2)增加或减少工作站时,仅需简单的连接操作。 (3)可使用光纤。 环形拓扑的缺点: (1)节点的故障会引起全网故障。 (2)故障检测困难。 (3)环形拓扑结构的媒体访问控制协议都采用令牌传达室递的方式,在负载很轻时,信道利用率相对来说就比较低。 4、树形拓扑 树形拓扑从总线拓扑演变而来,形状像一棵倒置的树,顶端是树根,树根以下带分支,每个分支还可再带子分支。 树形拓扑的优点: (1)易于扩展。 (2)故障隔离较容易。 树形拓扑的缺点: 各个节点对根的依赖性太大。
编辑本段结构分类
网络拓扑结构是指抛开网络电缆的物理连接来讨论网络系统的连接形式,是指网络电缆构成的几何形状,它能从逻辑上表示出网络服务器、工作站的网络配置和互相之间的连接。 网络拓扑结构按形状可分为:星型、环型、总线型、树型及总线/星型及网状拓扑结构。
一、星型拓扑结构
星型布局是以中央结点为中心与各结点连接而组成的,各结点与中央结点通过点与点方式连接,中央结点执行集中式通信控制策略,因此中央结点相当复杂,负担也重。 以星型拓扑结构组网,其中任何两个站点要进行通信都要经过中央结点控制。中央结点主要功能有: 1、为需要通信的设备建立物理连接; 2、为两台设备通信过程中维持这一通路; 拓扑示意图
3、在完成通信或不成功时,拆除通道。 在文件服务器/工作站(File Servers/Workstation )局域网模式中,中心点为文件服务器,存放共享资源。由于这种拓扑结构,中心点与多台工作站相连,为便于集中连线,目前多采用集线器(HUB)。 星型拓扑结构优点:网络结构简单,便于管理、集中控制,组网容易,网络延迟时间短,误码率低。缺点:网络共享能力较差,通信线路利用率不高,中央节点负担过重,容易成为网络的瓶颈,一旦出现故障则全网瘫痪。
二、环型拓扑结构
环形网中各结点通过环路接口连在一条首尾相连的闭合环形通信线路中,环路上任何结点均可以请求发送信息。请求一旦被批准,便可以向环路发送信息。环形网中的数据可以是单向也可是双向传输。由于环线公用,一个结点发出的信息必须穿越环中所有的环路接口,信息流中目的地址与环上某结点地址相符时,信息被该结点的环路接口所接收,而后信息继续流向下一环路接口,一直流回到发送该信息的环路接口结点为止。 环形网的优点:信息在网络中沿固定方向流动,两个结点间仅有唯一的通路,大大简化了路径选择的控制;某个结点发生故障时,可以自动旁路,可靠性较高。缺点:由于信息是串行穿过多个结点环路接口,当结点过多时,影响传输效率,使网络响应时间变长;由于环路封闭故扩充不方便。
三、总线拓扑结构
用一条称为总线的中央主电缆,将相互之间以线性方式连接的工站连接起来的布局方式,称为总线形拓扑。 在总线结构中,所有网上微机都通过相应的硬件接口直接连在总线上, 任何一个结点的信息都可以沿着总线向两个方向传输扩散,并且能被总线中任何一个结点所接收。由于其信息向四周传播,类似于广播电台,故总线网络也被称为广播式网络。 电路拓扑
总线有一定的负载能力,因此,总线长度有一定限制,一条总线也只能连接一定数量的结点。 总线布局的特点:结构简单灵活,非常便于扩充;可靠性高,网络响应速度快;设备量少、价格低、安装使用方便;共享资源能力强,非常便于广播式工作,即一个结点发送所有结点都可接收。 在总线两端连接的器件称为端结器(末端阻抗匹配器、或终止器)。主要与总线进行阻抗匹配,最大限度吸收传送端部的能量,避免信号反射回总线产生不必要的干扰。 总线形网络结构是目前使用最广泛的结构,也是最传统的一种主流网络结构,适合于信息管理系统、办公自动化系统领域的应用。
四、树型拓扑结构
树形结构是总线型结构的扩展,它是在总线网上加上分支形成的,其传输介质可有多条分支,但不形成闭合回路,树形网是一种分层网,其结构可以对称,联系固定,具有一定容错能力,一般一个分支和结点的故障不影响另一分支结点的工作,任何一个结点送出的信息都可以传遍整个传输介质,也是广播式网络。一般树形网上的链路相对具有一定的专用性,无须对原网做任何改动就可以扩充工作站。 五、总线/星型拓扑结构 用一条或多条总线把多组设备连接起来,相连的每组设备呈星型分布。采用这种拓扑结构,用户很容易配置和重新配置网络设备。总线采用同轴电缆,星型配置可采用双绞线。
六、网状拓扑结构
将多个子网或多个局域网连接起来构成网际拓扑结构。在一个子网中,集线器、中继器将多个设备连接起来,而桥接器、路由器及网关则将子网连接起来。根据组网硬件不同,主要有三种网际拓扑: 1、网状网: 拓扑比较图
在一个大的区域内,用无线电通信连路连接一个大型网络时,网状网是最好的拓扑结构。通过路由器与路由器相连,可让网络选择一条最快的路径传送数据。 2、主干网: 通过桥接器与路由器把不同的子网或LAN连接起来形成单个总线或环型拓扑结构,这种网通常采用光纤做主干线。 3、星状相连网: 利用一些叫做超级集线器的设备将网络连接起来,由于星型结构的特点,网络中任一处的故障都可容易查找并修复。 应该指出,在实际组网中,为了符合不同的要求,拓扑结构不一定是单一的,往往都是几种结构的混用。
编辑本段结构特征
综合以上所述,可总结出以下计算机网络拓扑结构: 1、总线拓扑结构是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。 优点:结构简单、布线容易、可靠性较高,易于扩充,是局域网常采用的拓扑结构。缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;出现故障诊断较为困难。最着名的总线拓扑结构是以太网(Ethernet)。 2、星型拓扑结构每个结点都由一条单独的通信线路与中心结点连结。 优点:结构简单、容易实现、便于管理,连接点的故障容易监测和排除。缺点:中心结点是全网络的可靠瓶颈,中心结点出现故障会导致网络的瘫痪。 3、环形拓扑结构各结点通过通信线路组成闭合回路,环中数据只能单向传输。 优点:结构简单,适合使用光纤,传输距离远,传输延迟确定。缺点:环网中的每个结点均成为网络可靠性的瓶颈,任意结点出现故障都会造成网络瘫痪,另外故障诊断也较困难。最着名的环形拓扑结构网络是令牌环网(Token Ring) 4、树型拓扑结构是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或同层结点之间一般不进行数据交换。优点:连结简单,维护方便,适用于汇集信息的应用要求。缺点:资源共享能力较低,可靠性不高,任何一个工作站或链路的故障都会影响整个网络的运行。 5、 网状拓扑结构又称作无规则结构,结点之间的联结是任意的,没有规律。优点:系统可靠性高,比较容易扩展,但是结构复杂,每一结点都与多点进行连结,因此必须采用路由算法和流量控制方法。目前广域网基本上采用网状拓扑结构。 6、混合型拓扑结构就是两种或两种以上的拓扑结构同时使用。优点:可以对网络的基本拓扑取长补短。缺点:网络配置挂包那里难度大。 7、蜂窝拓扑结构蜂窝拓扑结构是无线局域网中常用的结构。它以无线传输介质(微波、a卫星、红外线、无线发射台等)点到点和点到多点传输为特征,是一种无线网,适用于城市网、校园网、企业网,更适合于移动通信。在计算机网络中还有其他类型的拓扑结构,如总线型与星型混合、总线型与环型混合连接的网络。在局域网中,使用最多的是星型结构。 8、卫星通信拓扑结构。
简介计算机网络拓扑1. 总线拓扑结构2. 星型拓扑结构3.环形拓扑结构4. 树型拓扑结构5. 网状拓扑结构6.混合型拓扑结构7.蜂窝拓扑结构8.卫星通信拓扑结构开关电源拓扑优缺点对比结构分类一、星型拓扑结构二、环型拓扑结构三、总线拓扑结构四、树型拓扑结构六、网状拓扑结构结构特征
Ⅲ 计算机学习——计算机网络数据传输
计算机网络数据传输详解
计算机网络数据传输是指数据在计算机网络中从源端传输到目标端的过程。这一过程涉及多个层次的协议和数据封装,以确保数据能够准确、高效地传输。以下是对计算机网络数据传输的详细解析。
一、数据传输流程
以TCP/IP五层结构为例,数据传输流程如下:
- 应用层:应用进程将数据传输给应用层,应用层在数据前添加应用层头部,形成应用层PDU(协议数据单元)。
- 传输层:传输层接收应用层的数据,并添加传输层头部,形成传输层PDU。这一层负责数据的分段、重组以及端到端的传输控制。
- 网络层:网络层接收传输层的数据,并添加网络层头部,形成网络层PDU。这一层负责数据的路由选择和IP地址的解析。
- 链路层:链路层接收网络层的数据,并在数据首尾分别添加帧头和帧尾,形成链路层PDU(帧)。这一层负责数据的帧传输和物理链路的建立与管理。
- 物理层:物理层将接收到的帧以比特流的形式传输到物理媒体中。物理媒体将物理信号从源发送到目标端。
在目标端,数据传输过程与源端相反,依次经过物理层、链路层、网络层、传输层和应用层,最终将数据上传到目标端应用程序中。
流程图:
综上所述,计算机网络数据传输是一个复杂而精细的过程,涉及多个层次的协议和数据封装。通过理解数据传输流程、层间数据传输以及源到目标数据传输的三种方式,可以更好地掌握计算机网络数据传输的原理和机制。
Ⅳ 计算机网络第四章(网络层)
4.1、网络层概述
简介
网络层的主要任务是 实现网络互连 ,进而 实现数据包在各网络之间的传输
这些异构型网络N1~N7如果只是需要各自内部通信,他们只要实现各自的物理层和数据链路层即可
但是如果要将这些异构型网络互连起来,形成一个更大的互联网,就需要实现网络层设备路由器
有时为了简单起见,可以不用画出这些网络,图中N1~N7,而将他们看做是一条链路即可
要实现网络层任务,需要解决一下主要问题:
网络层向运输层提供怎样的服务(“可靠传输”还是“不可靠传输”)
在数据链路层那课讲过的可靠传输,详情可以看那边的笔记:网络层对以下的 分组丢失 、 分组失序 、 分组重复 的传输错误采取措施,使得接收方能正确接受发送方发送的数据,就是 可靠传输 ,反之,如果什么措施也不采取,则是 不可靠传输
网络层寻址问题
路由选择问题
路由器收到数据后,是依据什么来决定将数据包从自己的哪个接口转发出去?
依据数据包的目的地址和路由器中的路由表
但在实际当中,路由器是怎样知道这些路由记录?
由用户或网络管理员进行人工配置,这种方法只适用于规模较小且网络拓扑不改变的小型互联网
另一种是实现各种路由选择协议,由路由器执行路由选择协议中所规定的路由选择算法,而自动得出路由表中的路有记录,这种方法更适合规模较大且网络拓扑经常改变的大型互联网
补充 网络层(网际层) 除了 IP协议 外,还有之前介绍过的 地址解析协议ARP ,还有 网际控制报文协议ICMP , 网际组管理协议IGMP
总结
4.2、网络层提供的两种服务
在计算机网络领域,网络层应该向运输层提供怎样的服务(“ 面向连接 ”还是“ 无连接 ”)曾引起了长期的争论。
争论焦点的实质就是: 在计算机通信中,可靠交付应当由谁来负责 ?是 网络 还是 端系统 ?
面向连接的虚电路服务
一种观点:让网络负责可靠交付
这种观点认为,应借助于电信网的成功经验,让网络负责可靠交付,计算机网络应模仿电信网络,使用 面向连接 的通信方式。
通信之前先建立 虚电路 (Virtual Circuit),以保证双方通信所需的一切网络资源。
如果再使用可靠传输的网络协议,就可使所发送的分组无差错按序到达终点,不丢失、不重复。
发送方 发送给 接收方 的所有分组都沿着同一条虚电路传送
虚电路表示这只是一条逻辑上的连接,分组都沿着这条逻辑连接按照存储转发方式传送,而并不是真正建立了一条物理连接。
请注意,电路交换的电话通信是先建立了一条真正的连接。
因此分组交换的虚连接和电路交换的连接只是类似,但并不完全一样
无连接的数据报服务
另一种观点:网络提供数据报服务
互联网的先驱者提出了一种崭新的网络设计思路。
网络层向上只提供简单灵活的、 无连接的 、 尽最大努力交付 的 数据报服务 。
网络在发送分组时不需要先建立连接。每一个分组(即 IP 数据报)独立发送,与其前后的分组无关(不进行编号)。
网络层不提供服务质量的承诺 。即所传送的分组可能出错、丢失、重复和失序(不按序到达终点),当然也不保证分组传送的时限。
发送方 发送给 接收方 的分组可能沿着不同路径传送
尽最大努力交付
如果主机(即端系统)中的进程之间的通信需要是可靠的,那么就由网络的 主机中的运输层负责可靠交付(包括差错处理、流量控制等) 。
采用这种设计思路的好处是 :网络的造价大大降低,运行方式灵活,能够适应多种应用。
互连网能够发展到今日的规模,充分证明了当初采用这种设计思路的正确性。
虚电路服务与数据报服务的对比
对比的方面 虚电路服务 数据报服务
思路 可靠通信应当由网络来保证 可靠通信应当由用户主机来保证
连接的建立 必须有 不需要
终点地址 仅在连接建立阶段使用,每个分组使用短的虚电路号 每个分组都有终点的完整地址
分组的转发 属于同一条虚电路的分组均按照同一路由进行转发 每个分组独立选择路由进行转发
当结点出故障时 所有通过出故障的结点的虚电路均不能工作 出故障的结点可能会丢失分组,一些路由可能会发生变化
分组的顺序 总是按发送顺序到达终点 到达终点时不一定按发送顺序
端到端的差错处理和流量控制 可以由网络负责,也可以由用户主机负责 由用户主机负责
4.3、IPv4
概述
分类编制的IPv4地址
简介
每一类地址都由两个固定长度的字段组成,其中一个字段是 网络号 net-id ,它标志主机(或路由器)所连接到的网络,而另一个字段则是 主机号 host-id ,它标志该主机(或路由器)。
主机号在它前面的网络号所指明的网络范围内必须是唯一的。
由此可见, 一个 IP 地址在整个互联网范围内是唯一的 。
A类地址
B类地址
C类地址
练习
总结
IP 地址的指派范围
一般不使用的特殊的 IP 地址
IP 地址的一些重要特点
(1) IP 地址是一种分等级的地址结构 。分两个等级的好处是:
第一 ,IP 地址管理机构在分配 IP 地址时只分配网络号,而剩下的主机号则由得到该网络号的单位自行分配。这样就方便了 IP 地址的管理。
第二 ,路由器仅根据目的主机所连接的网络号来转发分组(而不考虑目的主机号),这样就可以使路由表中的项目数大幅度减少,从而减小了路由表所占的存储空间。
(2) 实际上 IP 地址是标志一个主机(或路由器)和一条链路的接口 。
当一个主机同时连接到两个网络上时,该主机就必须同时具有两个相应的 IP 地址,其网络号 net-id 必须是不同的。这种主机称为 多归属主机 (multihomed host)。
由于一个路由器至少应当连接到两个网络(这样它才能将 IP 数据报从一个网络转发到另一个网络),因此 一个路由器至少应当有两个不同的 IP 地址 。
(3) 用转发器或网桥连接起来的若干个局域网仍为一个网络 ,因此这些局域网都具有同样的网络号 net-id。
(4) 所有分配到网络号 net-id 的网络,无论是范围很小的局域网,还是可能覆盖很大地理范围的广域网,都是平等的。
划分子网的IPv4地址
为什么要划分子网
在 ARPANET 的早期,IP 地址的设计确实不够合理:
IP 地址空间的利用率有时很低。
给每一个物理网络分配一个网络号会使路由表变得太大因而使网络性能变坏。
两级的 IP 地址不够灵活。
如果想要将原来的网络划分成三个独立的网路
所以是否可以从主机号部分借用一部分作为子网号
但是如果未在图中标记子网号部分,那么我们和计算机又如何知道分类地址中主机号有多少比特被用作子网号了呢?
所以就有了划分子网的工具: 子网掩码
从 1985 年起在 IP 地址中又增加了一个“ 子网号字段 ”,使两级的 IP 地址变成为 三级的 IP 地址 。
这种做法叫做 划分子网 (subnetting) 。
划分子网已成为互联网的正式标准协议。
如何划分子网
基本思路
划分子网纯属一个 单位内部的事情 。单位对外仍然表现为没有划分子网的网络。
从主机号 借用 若干个位作为 子网号 subnet-id,而主机号 host-id 也就相应减少了若干个位。
凡是从其他网络发送给本单位某个主机的 IP 数据报,仍然是根据 IP 数据报的 目的网络号 net-id,先找到连接在本单位网络上的路由器。
然后 此路由器 在收到 IP 数据报后,再按 目的网络号 net-id 和 子网号 subnet-id 找到目的子网。
最后就将 IP 数据报直接交付目的主机。
划分为三个子网后对外仍是一个网络
优点
1. 减少了 IP 地址的浪费 2. 使网络的组织更加灵活 3. 更便于维护和管理
划分子网纯属一个单位内部的事情,对外部网络透明 ,对外仍然表现为没有划分子网的一个网络。
子网掩码
(IP 地址) AND (子网掩码) = 网络地址 重要,下面很多相关知识都会用到
举例
例子1
例子2
默认子网掩码
总结
子网掩码是一个网络或一个子网的重要属性。
路由器在和相邻路由器交换路由信息时,必须把自己所在网络(或子网)的子网掩码告诉相邻路由器。
路由器的路由表中的每一个项目,除了要给出目的网络地址外,还必须同时给出该网络的子网掩码。
若一个路由器连接在两个子网上,就拥有两个网络地址和两个子网掩码。
无分类编址的IPv4地址
为什么使用无分类编址
无分类域间路由选择 CIDR (Classless Inter-Domain Routing)。
CIDR 最主要的特点
CIDR使用各种长度的“ 网络前缀 ”(network-prefix)来代替分类地址中的网络号和子网号。
IP 地址从三级编址(使用子网掩码)又回到了两级编址 。
如何使用无分类编址
举例
路由聚合(构造超网)
总结
IPv4地址的应用规划
给定一个IPv4地址快,如何将其划分成几个更小的地址块,并将这些地址块分配给互联网中不同网络,进而可以给各网络中的主机和路由器接口分配IPv4地址
定长的子网掩码FLSM(Fixed Length Subnet Mask)
划分子网的IPv4就是定长的子网掩码
举例
通过上面步骤分析,就可以从子网1 ~ 8中任选5个分配给左图中的N1 ~ N5
采用定长的子网掩码划分,只能划分出2^n个子网,其中n是从主机号部分借用的用来作为子网号的比特数量,每个子网所分配的IP地址数量相同
但是也因为每个子网所分配的IP地址数量相同,不够灵活,容易造成IP地址的浪费
变长的子网掩码VLSM(Variable Length Subnet Mask)
无分类编址的IPv4就是变长的子网掩码
举例
4.4、IP数据报的发送和转发过程
举例
源主机如何知道目的主机是否与自己在同一个网络中,是直接交付,还是间接交付?
可以通过 目的地址IP 和 源地址的子网掩码 进行 逻辑与运算 得到 目的网络地址
如果 目的网络地址 和 源网络地址 相同 ,就是 在同一个网络 中,属于 直接交付
如果 目的网络地址 和 源网络地址 不相同 ,就 不在同一个网络 中,属于 间接交付 ,传输给主机所在网络的 默认网关 (路由器——下图会讲解),由默认网关帮忙转发
主机C如何知道路由器R的存在?
用户为了让本网络中的主机能和其他网络中的主机进行通信,就必须给其指定本网络的一个路由器的接口,由该路由器帮忙进行转发,所指定的路由器,也被称为 默认网关
例如。路由器的接口0的IP地址192.168.0.128做为左边网络的默认网关
主机A会将该IP数据报传输给自己的默认网关,也就是图中所示的路由器接口0
路由器收到IP数据报后如何转发?
检查IP数据报首部是否出错:
若出错,则直接丢弃该IP数据报并通告源主机
若没有出错,则进行转发
根据IP数据报的目的地址在路由表中查找匹配的条目:
若找到匹配的条目,则转发给条目中指示的吓一跳
若找不到,则丢弃该数据报并通告源主机
假设IP数据报首部没有出错,路由器取出IP数据报首部各地址字段的值
接下来路由器对该IP数据报进行查表转发
逐条检查路由条目,将目的地址与路由条目中的地址掩码进行逻辑与运算得到目的网络地址,然后与路由条目中的目的网络进行比较,如果相同,则这条路由条目就是匹配的路由条目,按照它的下一条指示,图中所示的也就是接口1转发该IP数据报
路由器是隔离广播域的
4.5、静态路由配置及其可能产生的路由环路问题
概念
多种情况举例
静态路由配置
举例
默认路由
举例
默认路由可以被所有网络匹配,但路由匹配有优先级,默认路由是优先级最低的
特定主机路由
举例
有时候,我们可以给路由器添加针对某个主机的特定主机路由条目
一般用于网络管理人员对网络的管理和测试
多条路由可选,匹配路由最具体的
静态路由配置错误导致路由环路
举例
假设将R2的路由表中第三条目录配置错了下一跳
这导致R2和R3之间产生了路由环路
聚合了不存在的网络而导致路由环路
举例
正常情况
错误情况
解决方法
黑洞路由的下一跳为null0,这是路由器内部的虚拟接口,IP数据报进入它后就被丢弃
网络故障而导致路由环路
举例
解决方法
添加故障的网络为黑洞路由
假设。一段时间后故障网络恢复了
R1又自动地得出了其接口0的直连网络的路由条目
针对该网络的黑洞网络会自动失效
如果又故障
则生效该网络的黑洞网络
总结
4.6、路由选择协议
概述
因特网所采用的路由选择协议的主要特点
因特网采用分层次的路由选择协议
自治系统 AS :在单一的技术管理下的一组路由器,而这些路由器使用一种 AS 内部的路由选择协议和共同的度量以确定分组在该 AS 内的路由,同时还使用一种 AS 之间的路由选择协议用以确定分组在 AS之间的路由。
自治系统之间的路由选择简称为域间路由选择,自治系统内部的路由选择简称为域内路由选择
域间路由选择使用外部网关协议EGP这个类别的路由选择协议
域内路由选择使用内部网关协议IGP这个类别的路由选择协议
网关协议 的名称可称为 路由协议
常见的路由选择协议
Ⅳ 网络系统由哪些部分组成的
计算机网络系统是一个集计算机硬件设备、通信设施、软件系统及数据处理能力为一体的,能够实现资源共享的现代化综合服务系统。计算机网络系统的组成可分为三个部分,即硬件系统,软件系统及网络信息系统。
1. 硬件系统
硬件系统是计算机网络的基础。硬件系统有计算机、通信设备、连接设备及辅助设备组成,如图1.6.4所示。硬件系统中设备的组合形式决定了计算机网络的类型。下面介绍几种网络中常用的硬件设备。
⑴服务器
服务器是一台速度快,存储量大的计算机,它是网络系统的核心设备,负责网络资源管理和用户服务。服务器可分为文件服务器、远程访问服务器、数据库服务器、打印服务器等,是一台专用或多用途的计算机。在互联网中,服务器之间互通信息,相互提供服务,每台服务器的地位是同等的。服务器需要专门的技术人员对其进行管理和维护,以保证整个网络的正常运行。
⑵工作站
工作站是具有独立处理能力的计算机,它是用户向服务器申请服务的终端设备。用户可以在工作站上处理日常工作,并随时向服务器索取各种信息及数据,请求服务器提供各种服务(如传输文件,打印文件等等)。
⑶网卡
网卡又称为网络适配器,它是计算机和计算机之间直接或间接传输介质互相通信的接口,它插在计算机的扩展槽中。一般情况下,无论是服务器还是工作站都应安装网卡。网卡的作用是将计算机与通信设施相连接,将计算机的数字信号转换成通信线路能够传送的电子信号或电磁信号。网卡是物理通信的瓶颈,它的好坏直接影响用户将来的软件使用效果和物理功能的发挥。目前,常用的有10Mbps、100Mbps和10Mbps/100Mbps自适应网卡,网卡的总线形式有ISA和PCI两种。
⑷调制解调器
调制解调器(Modem)是一种信号转换装置。它可以把计算机的数字信号“调制”成通信线路的模拟信号,将通信线路的模拟信号“解调”回计算机的数字信号。调制解调器的作用是将计算机与公用电话线相连接,使得现有网络系统以外的计算机用户,能够通过拨号的方式利用公用电话网访问计算机网络系统。这些计算机用户被称为计算机网络的增值用户。增值用户的计算机上可以不安装网卡,但必须配备一个调制解调器。
⑸集线器
集线器(Hub)是局域网中使用的连接设备。它具有多个端口,可连接多台计算机。在局域网中常以集线器为中心,用双绞线将所有分散的工作站与服务器连接在一起,形成星形拓扑结构的局域网系统。这样的网络连接,在网上的某个节点发生故障时,不会影响其他节点的正常工作。
集线器分为普通型和交换型(Switch),交换型的传输效率比较高,目前用的较多。集线器的传输速率有10Mbps、100Mbps和10Mbps/100Mbps自适应的。
⑹网桥
网桥(Bridge)也是局域网使用的连接设备。网桥的作用是扩展网络的距离,减轻网络的负载。在局域网中每条通信线路的长度和连接的设备数都是有最大限度的,如果超载就会降低网络的工作性能。对于较大的局域网可以采用网桥将负担过重的网络分成多个网络段,当信号通过网桥时,网桥会将非本网段的信号排除掉(即过滤),使网络信号能够更有效地使用信道,从而达到减轻网络负担的目的。由网桥隔开的网络段仍属于同一局域网,网络地址相同,但分段地址不同。
⑺路由器
路由器(Router)是互联网中使用的连接设备。它可以将两个网络连接在一起,组成更大的网络。被连接的网络可以是局域网也可以是互联网,连接后的网络都可以称为互联网。路由器不仅有网桥的全部功能,还具有路径的选择功能。路由器可根据网络上信息拥挤的程度,自动地选择适当的线路传递信息。
在互联网中,两台计算机之间传送数据的通路会有很多条,数据包(或分组)从一台计算机出发,中途要经过多个站点才能到达另一台计算机。这些中间站点通常是由路由器组成的,路由器的作用就是为数据包(或分组)选择一条合适的传送路径。用路由器隔开的网络属于不同的局域网地址。
2. 软件系统
计算机网络中的软件按其功能可以划分为数据通信软件、网络操作系统和网络应用软件。
⑴数据通信软件
数据通信软件是指按着网络协议的要求,完成通信功能的软件。
⑵网络操作系统
网络操作系统是指能够控制和管理网络资源的软件。网络操作系统的功能作用在两个级别上:在服务器机器上,为在服务器上的任务提供资源管理;在每个工作站机器上,向用户和应用软件提供一个网络环境的“窗口”。这样,向网络操作系统的用户和管理人员提供一个整体的系统控制能力。网络服务器操作系统要完成目录管理,文件管理,安全性,网络打印,存储管理,通信管理等主要服务。工作站的操作系统软件主要完成工作站任务的识别和与网络的连接。即首先判断应用程序提出的服务请求是使用本地资源还是使用网络资源。若使用网络资源则需完成与网络的连接。常用的网络操作系统有:Net ware系统、Windows NT系统、Unix 系统和Linux系统等。
⑶网络应用软件
网络应用软件是指网络能够为用户提供各种服务的软件。如浏览查询软件,传输软件,远程登录软件,电子邮件等等。
⒊ 网络信息系统
网络信息系统是指以计算机网络为基础开发的信息系统。如各类网站、基于网络环境的管理信息系统。