㈠ 4层PCB电源和地线布线问题
电源网络和地网络在建立了内电层后就被赋予了网络(如VCC和GND),布线时连接电源或地线的过孔和穿孔就会自动连到相应层上。
如果有多种电源,还要在布局确定后进行电源层分割,在主电源层分割出其他电源的区域,让他们能覆盖板上需要使用这些电源的器件引脚。
㈡ 接地线和电源线在那个层
请问你想知道是电线?电缆?还是印刷电路板?
以地线为例
电线---同样一起;
电缆--外层
电路板---根据设计而定
七层: 物理层 、数据链路层、网络层、传输层、会话层、表示层、应用层。
1、物理层功能 : O S I 模型的最低层或第一层,该层包括物理连网媒介,如电缆连线连接器。物理层的协议产生并检测电压以便发送和接收携带数据的信号;
2、数据链路层: O S I 模型的第二层,它控制网络层与物理层之间的通信。它的主要功能是如何在不可靠的物理线路上进行数据的可靠传递;
3、网络层: O S I 模型的第三层,其主要功能是将网络地址翻译成对应的物理地址,并决定如何将数据从发送方路由到接收方;
4、传输层: O S I 模型中最重要的一层。传输协议同时进行流量控制或是基于接收方可接收数据的快慢程度规定适当的发送速率;
5、会话层: 负责在网络中的两节点之间建立和维持通信。 会话层的功能包括:建立通信链接,保持会话过程通信链接的畅通,同步两个节点之间的对 话,决定通信是否被中断以及通信中断时决定从何处重新发送;
6、表示层: 应用程序和网络之间的翻译官,在表示层,数据将按照网络能理解的方案进行格式化;这种格式化也因所使用网络的类型不同而不同;
7、应用层: 负责对软件提供接口以使程序能使用网络服务。术语“应用层”并不是指运行在网络上的某个特别应用程序 ,应用层提供的服务包括文件传输、文件管理以及电子邮件的信息处理。
㈣ PCB 4层板 中间两层是电源和地。顶层和底层通过过孔连接吗
中间层在过孔的周围是不铺铜的,所以过孔跟它连不上,当然同一网络的过孔除外。
㈤ PCB四层板的电源和地的内层到底怎么布线
1、先设置底层和电源层。“Design”--“Layer stack manager”,点击左边的“top layer”,再点击“Add plane”,会在“top layer”的下面出现“InternalPlane3(no net)”,双击之,修改为“GND(GND)”。重复上述操作,添加另外一层“POWER(multiple nets)”。
2、一般来说底层最好不要做分割,这样可以保证一个干净和大面积的地平面;
3、电源层分割。确定分割为几种电源,比如:5V,3.3V,1.8V等。先将布线层选择POWER层,再对你想分割的电源进行高亮显示,按住”ctrl“键,鼠标左键点击你想要分割的网络,再选“place”--“line”,沿着分割的网络进行画线,且首尾相接,最好不要跨接到别的电源网络。以此方法分割所有电源网络。
4、双击你分割好的区域,选择相应网络。
㈥ 路由器由哪几部分组成,简要说明一下各部分的作用
路由器的组成大致可以分成两部分:内部构件和外部构件
内部构件:
1、RAM(随机存储器)
功能:存放路由表;存放ARP告诉缓存;存放快速交换缓存;存放分组交换缓冲;存放解压后的IOS;路由器加电后,存放running配置文件;
2、NVRAM(非易失性RAM)
功能:存储路由器的startup配置文件;存储路由器的备份。
3、FLASH(快速闪存)
功能:存放IOS和微代码。
4、ROM(只读存储器)
功能:存放POST诊断所需的指令;存放mini-ios;存放ROM监控模式的代码。
5、CPU(中央处理器)
衡量路由器性能的重要指标,负责路由计算,路由选择等。
6、背板:
背板能力是一个重要参数,尤其在交换机中。
外部构件就是各种接线的接口。
(6)什么层用来连接电源和地网络扩展阅读:
路由器作用及功能
第一,网络互连:路由器支持各种局域网和广域网接口,主要用于互连局域网和广域网,实现不同网络互相通信;
第二,数据处理:提供包括分组过滤、分组转发、优先级、复用、加密、压缩和防火墙等功能;
第三,网络管理:路由器提供包括路由器配置管理、性能管理、容错管理和流量控制等功能。
从过滤网络流量的角度来看,路由器的作用与交换机和网桥非常相似。但是与工作在网络数据链路层,从物理上划分网段的交换机不同,路由器使用专门的软件协议从逻辑上对整个网络进行划分,有的路由器仅支持单一协议,但大部分路由器可以支持多种协议的传输。
㈦ 我是PADS2007的初学者想问下过孔是什么意思假如一个四层板我在板上打一个过孔子,这个过孔会不会同四层
过孔分三种:通孔,埋孔,盲孔。通孔就是把所有层都贯穿的孔;而埋孔顾名思义就是被埋在中间的孔,其中top层和bottom层没被贯穿;最后盲孔就是打通了top层或者bottom层的孔,注意这种孔只穿过top层或者bottom层这一层。
注意一点:pcb打孔,并不是想连接哪几层就可以直接打成这样的孔,比如说想连接四层板的一三层,并不能直接打连接一三层的孔,而是先打盲孔,该盲孔连接一二层,然后打埋孔连接二三四层,这样两个孔连接起来实现了连接一三层。
㈧ 论述网络中处于不同层次的网络连接设备的功能和特点
1、物理层:中继器(Repeater)和集线器(Hub)。用于连接物理特性相同的网段,这些网段,只是位置不同而已。Hub
的端口没有物理和逻辑地址。
2、逻辑链路层:网桥(Bridge)和交换机(Switch)。用于连接同一逻辑网络中、物理层规范不同的网段,这些网段的拓扑结构和其上的数据帧格式,都可以不同。Bridge和Switch的端口具有物理地址,但没有逻辑地址。
3、网络层:路由器(Router)。用于连接不同的逻辑网络。Router的每一个端口都有唯一的物理地址和逻辑地址。
4、应用层:网关(Gateway)。用于互连网络上,使用不同协议的应用程序之间的数据通信,目前尚无硬件产品。
前两者属于OSI和TCP/IP模型的最低层,即物理层,起到数字信号放大和中转的作用。
中继器(REPEATER),用来延长网络距离的互连设备。(局域网络互连长度是有限制,不是无限,例如在10M以太网中,任何两个数据终端设备允许的传输通路最多为5个中继器、4个中继器组成)。REPEATER可以增强线路上衰减的信号,它两端即可以连接相同的传输媒体,也可以连接不同的媒体,如一头是同轴电缆另一头是双绞线。
集线器(HUB)实际上就是一个多端口的中继器,它有一个端口与主干网相连,并有多个端口连接一组工作站。它应用于使用星型拓扑结构的网络中,连接多个计算机或网络设备。集线器又分成:1
能动式,2 被动式,3 混合式。1
动能式:对所连接的网络介质上的信号有再生和放大的作用,可使所连接的介质长度达到最大有效长度,需要有电源才能工作,目前多数HUB为此类型。2
被动式只充当连接器,其不需要电源就可以工作,市场上已经不多见。3 混合式:可以连接多种类型线缆,如同轴和双绞线。
集线器就是一种共享设备,HUB本身不能识别目的地址,当同一局域网内的A主机给B主机传输数据时,数据包在以HUB为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。也就是说,在这种工作方式下,同一时刻网络上只能传输一组数据帧的通讯,如果发生碰撞还得重试。这种方式就是共享网络带宽。
网桥和交换机属于OSI和TCP/IP的第二层,即数据链路层。数据链路层的作用包括数据链路的建立、维护和拆除、帧包装、帧传输、帧同步、帧差错控制以及流量控制等。
网桥(BRIDGE)工作在数据链路层,将两个局域网(LAN)连起来,根据MAC地址(物理地址)来转发帧,可以看作一个“低层的路由器”(路由器工作在网络层,根据网络地址如IP地址进行转发)。它可以有效地联接两个LAN,使本地通信限制在本网段内,并转发相应的信号至另一网段,网桥通常用于联接数量不多的、同一类型的网段。
网桥通常有透明网桥和源路由选择网桥两大类。 1、透明网桥
简单的讲,使用这种网桥,不需要改动硬件和软件,无需设置地址开关,无需装入路由表或参数。只须插入电缆就可以,现有LAN的运行完全不受网桥的任何影响。
2、源路由选择网桥
源路由选择的核心思想是假定每个帧的发送者都知道接收者是否在同一局域网(LAN)上。当发送一帧到另外的网段时,源机器将目的地址的高位设置成1作为标记。另外,它还在帧头加进此帧应走的实际路径。
交换机(SWITCH)是按照通信两端传输信息的需要,用人工或设备自动完成的方法,把要传输的信息送到符合要求的相应路由上的技术统称。广义的交换机就是一种在通信系统中完成信息交换功能的设备。
在计算机网络系统中,交换概念的提出是对于共享工作模式的改进。
交换机拥有一条很高带宽的背部总线和内部交换矩阵。交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表中。
使用交换机也可以把网络“分段”,通过对照地址表,交换机只允许必要的网络流量通过交换机。通过交换机的过滤和转发,可以有效的隔离广播风暴,减少误包和错包的出现,避免共享冲突。
总之,交换机是一种基于MAC地址识别,能完成封装转发数据包功能的网络设备。交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。
其实SWITCH的前身就是网桥。交换机是使用硬件来完成以往网桥使用软件来完成过滤、学习和转发过程的任务。SWITCH速度比HUB快,这是由于HUB不知道目标地址在何处,发送数据到所有的端口。而SWITCH中有一张路由表,如果知道目标地址在何处,就把数据发送到指定地点,如果它不知道就发送到所有的端口。这样过滤可以帮助降低整个网络的数据传输量,提高效率。但是交换机的功能还不止如此,它可以把网络拆解成网络分支、分割网络数据流,隔离分支中发生的故障,这样就可以减少每个网络分支的数据信息流量而使每个网络更有效,提高整个网络效率。目前有使用SWITCH代替HUB的趋势。
路由器(ROUTER)位于网络层,用于连接多个逻辑上分开的网络,几个使用不同协议和体系结构的网络。当一个子网传输到另外一个子网时,可以用路由器完成。它具有判断网络地址和选择路径的功能,过滤和分隔网络信息流。一方面能够跨越不同的物理网络类型(DDN、FDDI、以太网等等),另一方面在逻辑上将整个互连网络分割成逻辑上独立的网络单位,使网络具有一定的逻辑结构。
对于不同规模的网络,路由器作用的侧重点有所不同:
1、在主干网上,路由器的主要作用是路由选择。主干网上的路由器,必须知道到达所有下层网络的路径。这需要维护庞大的路由表,并对连接状态的变化作
出尽可能迅速的反应。路由器的故障将会导致严重的信息传输问题。
2、在地区网中,路由器的主要作用是网络连接和路由选择,即连接下层各个基层网络单位——园区网,同时,负责下层网络之间的数据转发。
3、在园区网内部,路由器的主要作用是分隔子网。早期的互连网基层单位是局域网(LAN),其中所有主机处于同一个逻辑网络中。随着网络规模的不断扩大,局域网演变成以高速主干和路由器连接的多个子网所组成的园区网。在其中,各个子网在逻辑上独立,而路由器就是唯一能够分隔它们的设备,它负责子网间的报文转发和广播隔离,在边界上的路由器则负责与上层网络的连接
㈨ Altium问题,为什么有时候已经有单独的地层和电源层,还要在信号层敷铜连接地或电源呢求解答
为了让整个平面更加完整,使得信号回路能进一步地减小。
单独的地层和电源层是依赖于过孔来实现连通的,而过孔与PCB的机械强度又互相掣肘、不可能打得太密;部分布线布件高密的区域根本没空间打过孔(最典型的就是高速并行总线)——有时候一个完整的回路比预期的要绕远很多。所以需要在信号层也进行大面积覆铜,这是一种有益的补充。
另外从机械方面来讲,每个层的铜箔面积如果相差太大,其热膨胀系数也会差异较大。当层数多、层厚度小的时候,热膨胀系数差异可能会对PCB造成不可忽视的影响。信号层进行大面积覆铜也有利于减小各层热膨胀系数的差异性。